Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Preparation
2.2. Databases
2.3. Molecular Docking
2.4. Molecular Dynamics Simulation
2.5. In Silico Pharmacokinetic Analysis
2.6. In Vitro Leishmanicidal Evaluation on Promastigotes
2.7. Cytotoxicity in Murine Macrophages
3. Results
3.1. Molecular Docking on LmTIM
3.2. Molecular Dynamics Simulation on the LmTIM protein
3.3. Molecular Docking and Molecular Dynamics Simulation on HsTIM
3.4. In Silico Prediction of Pharmacokinetic Properties
3.5. Biological Activity against Promastigotes of L. mexicana and Cytotoxicity
4. Discussion
4.1. Molecular Docking on LmTIM
4.2. Molecular Dynamics Simulation on LmTIM
4.3. Molecular Docking and Molecular Dynamics Simulation on HsTIM
4.4. In Silico Prediction of Pharmacokinetic Properties
4.5. Biological Activity against L. mexicana Promastigotes and Cytotoxicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokni, M. Leishmanioses cutanées [Cutaneous leishmaniasis]. Ann. Dermatol. Venereol. 2019, 146, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Gurel, M.S.; Tekin, B.; Uzun, S. Cutaneous leishmaniasis: A great imitator. Clin. Dermatol. 2020, 38, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Coombs, G.H. Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003, 19, 502–508. [Google Scholar] [CrossRef]
- Yanik, M.; Gurel, M.S.; Simsek, Z.; Kati, M. The psychological impact of cutaneous leishmaniasis. Clin. Exp. Dermatol. Clin. Dermatol. 2004, 29, 464–467. [Google Scholar] [CrossRef]
- Handler, M.Z.; Patel, P.A.; Kapila, R.; Al-Qubati, Y.; Schwartz, R.A. Cutaneous and mucocutaneous leishmaniasis: Differential diagnosis, diagnosis, histopathology, and management. J. Am. Acad. Dermatol. 2015, 73, 911–926, 927–928. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [PubMed]
- Kedzierski, L. Leishmaniasis. Hum. Vaccin. 2011, 7, 1204–1214. [Google Scholar] [CrossRef] [Green Version]
- Safety and Efficacy of Azithromycin to Treat Cutaneous Leishmaniasis (PCL01). Available online: https://clinicaltrials.gov/ct2/show/NCT00682656?cond=Leishmaniasis&draw=3&rank=55 (accessed on 16 March 2023).
- Ilari, A.; Baiocco, P.; Messori, L.; Fiorillo, A.; Boffi, A.; Gramiccia, M.; Di Muccio, T.; Colotti, G. A gold-containing drug against parasitic polyamine metabolism: The X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 2012, 42, 803–811. [Google Scholar]
- Figueroa-Villar, J.D.; Sales, E.M. The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: A review. Chem. Biol. Interact. 2017, 263, 18–27. [Google Scholar] [CrossRef]
- Garcia, A.R.; Oliveira, D.M.P.; Claudia, F.; Amaral, A.; Jesus, J.B.; Rennó Sodero, A.C.; Souza, A.M.T.; Supuran, C.T.; Vermelho, A.B.; Rodrigues, I.A.; et al. Leishmania infantum arginase: Biochemical characterization and inhibition by naturally occurring phenolic substances. J. Enzyme Inhib. Med. Chem. 2019, 34, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.T.; Paes-Vieira, L.; Gomes-Vieira, A.L.; Cosentino-Gomes, D.; da Silva, A.P.P.; Giarola, N.L.L.; Da Silva, D.; Sola-Penna, M.; Galina, A.; Meyer-Fernandes, J.R. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp. Parasitol. 2021, 229, 108154. [Google Scholar] [CrossRef]
- Kelpšas, V.; Lafumat, B.; Blakeley, M.P.; Coquelle, N.; Oksanen, E.; von Wachenfeldt, C. Perdeuteration, large crystal growth and neutron data collection of Leishmania mexicana triose-phosphate isomerase E65Q variant. Acta Crystallogr. F Struct. Biol. Commun. 2019, 75, 260–269. [Google Scholar]
- Olivares-Illana, V.; Rodríguez-Romero, A.; Becker, I.; Berzunza, M.; García, J.; Pérez-Montfort, R.; Cabrera, N.; López-Calahorra, F.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2007, 1, e1. [Google Scholar]
- Zin, N.N.I.N.M.; Rahimi, W.N.A.W.M.; Bakar, N.A. A Review of Quercus infectoria (Olivier) Galls as a Resource for Anti-parasitic Agents: In Vitro and In Vivo Studies. Malays. J. Med. Sci. 2019, 26, 19–34. [Google Scholar]
- Kingston, D.G.I.; Cassera, M.B. Antimalarial Natural Products. Prog. Chem. Org. Nat. Prod. 2022, 117, 1–106. [Google Scholar]
- Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.J.; San Nicolás-Hernández, D.; Lorenzo-Morales, J.; Piñero, J.E.; Díaz-Marrero, A.R.; Fernández, J.J. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020, 10, 657. [Google Scholar] [PubMed] [Green Version]
- Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.S.S.; Souza, P.V.R.; Moreira, D.L.; de Souza, C.S.F.; Teixeira, K.F.; Cenci, A.R.; de Oliveira, A.S.; Almeida-Souza, F.; et al. Carajurin: A anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed. Pharmacother. 2021, 141, 111910. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Das, S.S.; Dubey, A.K.; Verma, P.R.P.; Singh, S.K.; Singh, S.K. Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/Ex Vivo Studies and Mechanistic Insights. Mol. Pharm. 2022, 19, 3367–3384. [Google Scholar] [PubMed]
- Fróes, Y.N.; Araújo, J.G.N.; Gonçalves, J.R.d.S.; Oliveira, M.d.J.M.G.d.; Everton, G.O.; Filho, V.E.M.; Silva, M.R.C.; Silva, L.D.M.; Silva, L.A.; Neto, L.G.L.; et al. Chemical Characterization and Leishmanicidal Activity In Vitro and In Silico of Natural Products Obtained from Leaves of Vernonanthura brasiliana (L.) H. Rob (Asteraceae). Metabolites 2023, 13, 285. [Google Scholar] [CrossRef]
- Adasme, M.F.; Bolz, S.N.; Adelmann, L.; Salentin, S.; Haupt, V.J.; Moreno-Rodríguez, A.; Nogueda-Torres, B.; Castillo-Campos, V.; Yepez-Mulia, L.; De Fuentes-Vicente, J.A.; et al. Repositioned Drugs for Chagas Disease Unveiled via Structure-Based Drug Repositioning. Int. J. Mol. Sci. 2020, 21, 8809. [Google Scholar]
- Juárez-Saldivar, A.; Barbosa-Cabrera, E.; Lara-Ramírez, E.E.; Paz-González, A.D.; Martínez-Vázquez, A.V.; Bocanegra-García, V.; Palos, I.; Campillo, N.E.; Rivera, G. Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. Int. J. Mol. Sci. 2021, 22, 5943. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Mayorga, V.; Lara-Ramírez, E.E.; Chacón-Vargas, K.F.; Aguirre-Alvarado, C.; Rodríguez-Páez, L.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Nogueda-Torres, B.; Reyes-Espinosa, F.; Bocanegra-García, V.; et al. Structure-Based Virtual Screening and In Vitro Evaluation of New Trypanosoma cruzi Cruzain Inhibitors. Int. J. Mol. Sci. 2019, 20, 1742. [Google Scholar] [PubMed] [Green Version]
- Matadamas-Martínez, F.; Hernández-Campos, A.; Téllez-Valencia, A.; Vázquez-Raygoza, A.; Comparán-Alarcón, S.; Yépez-Mulia, L.; Castillo, R. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. Molecules 2019, 24, 3216. [Google Scholar] [PubMed] [Green Version]
- Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona-Lopez, C.; Ortiz-Pérez, E.; Nogueda-Torres, B.; et al. Ligand-Based Virtual Screening and Molecular Docking of Benzimidazoles as Potential Inhibitors of Triosephosphate Isomerase Identified New Trypanocidal Agents. Int. J. Mol. Sci. 2022, 23, 10047. [Google Scholar]
- Juárez-Saldivar, A.; Schroeder, M.; Salentin, S.; Haupt, V.J.; Saavedra, E.; Vázquez, C.; Reyes-Espinosa, F.; Herrera-Mayorga, V.; Villalobos-Rocha, J.C.; García-Pérez, C.A.; et al. Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. Int. J. Mol. Sci. 2020, 21, 4270. [Google Scholar]
- Berman, H.M.; Kleywegt, G.J.; Nakamura, H.; Markley, J.L. How community has shaped the Protein Data Bank. Structure 2013, 21, 1485–1491. [Google Scholar] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [PubMed] [Green Version]
- Ravi, L.; Kannabiran, K. A handbook on protein-ligand docking tool: AutoDock 4. Innovare J. Med. Sci. 2016, 4, 28–33. [Google Scholar]
- Pilón-Jiménez, B.A.; Saldívar-González, F.I.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. BIOFACQUIM: A Mexican compound database of natural products. Biomolecules 2019, 9, 31. [Google Scholar]
- Flores-Padilla, E.A.; Juárez-Mercado, K.E.; Naveja, J.J.; Kim, T.D.; Alain Miranda-Quintana, R.; Medina-Franco, J.L. Chemoinformatic characterization of synthetic screening libraries focused on epigenetic targets. Mol. Inform. 2022, 41, 2100285. [Google Scholar]
- O'Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Téllez-Valencia, A.; Olivares-Illana, V.; Hernandez-Santoyo, A.; Perez-Montfort, R.; Costas, M.; Rodriguez-Romero, A.; López-Calahorra, F.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol. 2004, 341, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Illana, V.; Pérez-Montfort, R.; López-Calahorra, F.; Costas, M.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; Gómez Puyou, A. Structural differences in triosephosphate isomerase from different species and discovery of a multi-trypanosomatid inhibitor. Biochemistry 2006, 45, 2556–2560. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Z.Y.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. Application of QSAR Method in the Design of Enhanced Antimalarial Derivatives of Azetidine-2-carbonitriles, their Molecular Docking, Drug-likeness, and SwissADME Properties. Iran. J. Pharm. Res. 2021, 20, 254–270. [Google Scholar]
- Kurkcuoglu, Z.; Ural, G.; Demet Akten, E.; Doruker, P. Blind Dockings of Benzothiazoles to Multiple Receptor Conformations of Triosephosphate Isomerase from Trypanosoma cruzi and Human. Mol. Inform. 2011, 30, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-López, J.M.; Hernández-Campos, A.; Yépez-Mulia, L.; Téllez-Valencia, A.; Flores-Carrillo, P.; Nieto-Meneses, R.; Castillo, R. Synthesis and trypanocidal activity of novel benzimidazole derivatives. Eur. J. Med. Chem. Lett. 2016, 26, 4377–4381. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Jiménez, L.K.; Moreno-Herrera, A.; Juárez-Saldivar, A.; González-González, A.; Ortiz-Pérez, E.; Paz-González, A.D.; Palos, I.; Ramírez-Moreno, E.; Rivera, G. Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents. Curr. Med. Chem. 2022, 29, 2504–2529. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Chan-Bacab, M.J.; Delgado-Maldonado, T.; González-Morales, L.D.; Palos, I.; Ortiz-Pérez, E.; Lara-Ramírez, E.E.; Ramírez-Moreno, E.; Rivera, G. Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals 2023, 16, 390. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Jagadeesan, R.; Rai, P.; Nandi, R.; Gugan, K.; Kumar, D. Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. J. Biomol. Struct. Dyn. 2021, 39, 1838–1852. [Google Scholar] [CrossRef]
- Kumari, M.; Subbarao, N. Virtual screening to identify novel potential inhibitors for Glutamine synthetase of Mycobacterium tuberculosis. J. Biomole Struct. Dyn. 2020, 38, 5062–5080. [Google Scholar] [CrossRef]
- Méndez-Álvarez, D.; Herrera-Mayorga, V.; Juárez-Saldivar, A.; Paz-González, A.D.; Ortiz-Pérez, E.; Bandyopadhyay, D.; Pérez-Sánchez, H.; Rivera, G. Ligand-based virtual screening, molecular docking, and molecular dynamics of eugenol analogs as potential acetylcholinesterase inhibitors with biological activity against Spodoptera frugiperda. Mol. Divers. 2022, 26, 2025–2037. [Google Scholar] [CrossRef]
- Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular Dynamics Simulation of Proteins. Methods Mol. Biol. 2020, 2073, 311–327. [Google Scholar]
- Singh, S. Dynamics of heroin molecule inside the lipid membrane: A molecular dynamics study. J. Mol. Model. 2019, 25, 121. [Google Scholar] [CrossRef]
- Wolf, A.; Kirschner, K.N. Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J. Mol. Model. 2013, 19, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Minini, L.; Álvarez, G.; González, M.; Cerecetto, H.; Merlino, A. Molecular docking and molecular dynamics simulation studies of Trypanosoma cruzi triosephosphate isomerase inhibitors. Insights into the inhibition mechanism and selectivity. J. Mol. Graph. Model. 2015, 58, 40–49. [Google Scholar] [CrossRef]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klecker, C.; Nair, L.S. Matrix Chemistry Controlling Stem Cell Behavior. In Biology and Engineering of Stem Cell Niches; Academic Press, Elsevier: Cambridge, MA, USA, 2017; pp. 195–213. [Google Scholar]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2020, 15, 261–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murali, K.; Machado, L.A.; Carvalho, R.L.; Pedrosa, L.F.; Mukherjee, R.; Da Silva Júnior, E.N.; Maiti, D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021, 27, 12453–12508. [Google Scholar] [CrossRef] [PubMed]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 44, pp. 239–266. [Google Scholar]
- Efstathiou, A.; Smirlis, D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021, 9, 691. [Google Scholar] [CrossRef]
- McKeage, K. Indacaterol: A review of its use as maintenance therapy in patients with chronic obstructive pulmonary disease. Drugs 2012, 72, 543–563. [Google Scholar] [CrossRef]
- Sebastián-Pérez, V.; Hendrickx, S.; Munday, J.C.; Kalejaiye, T.; Martínez, A.; Campillo, N.E.; de Koning, H.; Caljon, G.; Maes, L.; Gil, C. Cyclic Nucleotide-Specific Phosphodiesterases as Potential Drug Targets for Anti-Leishmania Therapy. Antimicrob. Agents Chemother. 2018, 62, 00603–00618. [Google Scholar] [CrossRef]
- Alpizar-Sosa, E.A.; Ithnin, N.R.B.; Wei, W.; Pountain, A.W.; Weidt, S.K.; Donachie, A.M.; Ritchie, R.; Dickie, E.A.; Burchmore, R.J.S.; Denny, P.W.; et al. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl. Trop. Dis 2022, 16, 0010779. [Google Scholar] [CrossRef] [PubMed]
Biofacquim | Selleckchem | ||||
---|---|---|---|---|---|
ID | Structure | Vina Score (Kcal/mol) | ID | Structure | Vina Score (Kcal/mol) |
B-1 | −8.3 | S-1 | −8.2 | ||
B-2 | −7.8 | S-2 | −8.1 | ||
B-3 | −7.6 | S-3 | −7.7 | ||
B-4 | −7.6 | S-4 | −7.7 | ||
B-5 | −7.6 | S-5 | −7.3 | ||
B-6 | −7.5 | S-6 | −6.8 | ||
B-7 | −7.2 | S-7 | −6.7 | ||
B-8 | −7.1 | S-8 | −6.5 | ||
B-9 | −6.5 | S-9 | −6.0 | ||
B-10 | −6.5 | S-10 | −5.8 |
Compound | Molecular Weight (g/mol) < 500 | Hydrogen Bond Acceptors < 10 | Hydrogen Bond Donors < 5 | Rotatable Bonds < 10 | a TPSA (Ų) < 140 | pKa (-COOH) | b Log P < 5 | c Log S |
---|---|---|---|---|---|---|---|---|
B-3 | 456.7 | 3 | 2 | 1 | 57.53 | 4.74 | 5.88 | Poor |
S-3 | 470.68 | 4 | 2 | 1 | 74.60 | 4.44 | 5.17 | Moderate |
S-7 | 464.82 | 7 | 3 | 9 | 92.35 | – | 4.10 | Moderate |
S-8 | 392.49 | 4 | 4 | 6 | 85.35 | – | 3.53 | Soluble |
Pharmacokinetic and Toxicological Properties | Compound | |||
---|---|---|---|---|
B-3 | S-3 | S-7 | S-8 | |
GI absorption | Low | High | Low | High |
BBB permeant | No | No | No | No |
P-gp substrate | No | Yes | No | Yes |
CYP1A2 inhibitor | No | No | Yes | No |
CYP2C19 inhibitor | No | No | Yes | No |
CYP2C9 inhibitor | No | No | Yes | No |
CYP2D6 inhibitor | No | No | Yes | Yes |
CYP3A4 inhibitor | No | No | Yes | No |
Hepatotoxicity | Active 52% | Inactive 69% | Active 82% | Inactive 99% |
Carcinogenicity | Active 57% | Active 55% | Inactive 50% | Inactive 91% |
Mutagenicity | Inactive 85% | Inactive 90% | Inactive 79% | Inactive 97% |
Cytotoxicity | Inactive 99% | Inactive 91% | Active 77% | Inactive 66% |
Compound | Leishmania mexicana c IC50 (µM ± SD) | J774.2 Cell Line d CC50 (µM ± SD) | e SI M379 | e SI FCQEPS | |
---|---|---|---|---|---|
a M379 | b FCQEPS | ||||
B-3 (ursolic acid) | >200 | 87.16 ± 7.05 * | 49.16 ± 5.53 | 0.24 | 0.56 |
S-3 (glycyrrhetinic acid) | 44.18 ± 5.03 * | 144.52 ± 12.13 | >100 | 2.26 | 0.69 |
S-7 (sorafenib) | 24.91 ± 3.08 * | 166.23 ± 18.13 | 64.89 ± 9.58 | 2.60 | 0.39 |
S-8 (indacaterol) | 55.13 ± 2.34 * | 55.97 ± 5.87 * | >100 | 1.81 | 1.78 |
Glucantime | 133.96 ± 2.79 | 125.23 ± 11.64 | >273.20 | 2.03 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Morales, L.D.; Moreno-Rodríguez, A.; Vázquez-Jiménez, L.K.; Delgado-Maldonado, T.; Juárez-Saldivar, A.; Ortiz-Pérez, E.; Paz-Gonzalez, A.D.; Lara-Ramírez, E.E.; Yépez-Mulia, L.; Meza, P.; et al. Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics 2023, 15, 2046. https://doi.org/10.3390/pharmaceutics15082046
González-Morales LD, Moreno-Rodríguez A, Vázquez-Jiménez LK, Delgado-Maldonado T, Juárez-Saldivar A, Ortiz-Pérez E, Paz-Gonzalez AD, Lara-Ramírez EE, Yépez-Mulia L, Meza P, et al. Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics. 2023; 15(8):2046. https://doi.org/10.3390/pharmaceutics15082046
Chicago/Turabian StyleGonzález-Morales, Luis D., Adriana Moreno-Rodríguez, Lenci K. Vázquez-Jiménez, Timoteo Delgado-Maldonado, Alfredo Juárez-Saldivar, Eyra Ortiz-Pérez, Alma D. Paz-Gonzalez, Edgar E. Lara-Ramírez, Lilian Yépez-Mulia, Patricia Meza, and et al. 2023. "Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors" Pharmaceutics 15, no. 8: 2046. https://doi.org/10.3390/pharmaceutics15082046
APA StyleGonzález-Morales, L. D., Moreno-Rodríguez, A., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Juárez-Saldivar, A., Ortiz-Pérez, E., Paz-Gonzalez, A. D., Lara-Ramírez, E. E., Yépez-Mulia, L., Meza, P., & Rivera, G. (2023). Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics, 15(8), 2046. https://doi.org/10.3390/pharmaceutics15082046