Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Recombinant Protegrin Analogs
2.2. Antimicrobial Assay
2.3. Hemolysis and Cytotoxicity Assay
2.4. Bacterial Membranes’ Permeability Assay
2.5. CD and FTIR Spectroscopy
2.6. Animal Studies
3. Results and Discussions
3.1. Peptide Design and Expression and Purification of Protegrin Analogs
3.2. In Vitro Biological Assays
3.3. Spectroscopy Analysis of PG-1 and Its Analog [V16R]
3.4. In Vivo Assay
4. Conclusions
- A slight decrease in the hydrophobicity of a PG-1 β-sheet region (for example, [L5A], [V14A], or [V16A]) may improve peptide selectivity without increasing the MIC values against bacteria.
- Double amino acid substitutions in the β-sheet region of PG-1 reduce both antibacterial activity (to a lesser extent toward Gram-negative bacteria) and cytotoxicity ≥10-fold.
- The amino acid residue at position 14 is important for biological activity: analog [V14R] has a 20-fold lower antibacterial activity compared to wild-type PG-1.
- The arginine mutants [Y7R], [V14R], and [V16R] (but not [L5R]) have significantly reduced hemolytic activities. Analysis of analog [V16R] by FTIR spectroscopy showed that the peptide is unable to form oligomeric structures in eukaryotic membrane-mimicking environment, in contrast to wild-type PG-1.
- The decrease in the antibacterial activities of the tested PG-1 analogs generally correlates with a decrease in hemolytic activity and cytotoxicity. The only exception found is analog [V16R].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical Analysis of Antibacterial Agents in Clinical Development. Nat. Rev. Microbiol. 2020, 18, 286–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of Cell Selectivity, Physiological Stability and Endotoxin Neutralization Capabilities of α-Helix-Based Peptide Amphiphiles. Biomaterials 2015, 52, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of Antimicrobial Peptides. A Review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [Green Version]
- van Harten, R.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokryakov, V.N.; Harwig, S.S.; Panyutich, E.A.; Shevchenko, A.A.; Aleshina, G.M.; Shamova, O.V.; Korneva, H.A.; Lehrer, R.I. Protegrins: Leukocyte Antimicrobial Peptides That Combine Features of Corticostatic Defensins and Tachyplesins. FEBS Lett. 1993, 327, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Falla, T.J.; Liu, H.; Hurst, M.A.; Fujii, C.A.; Mosca, D.A.; Embree, J.R.; Loury, D.J.; Radel, P.A.; Chang, C.C.; et al. Development of Protegrins for the Treatment and Prevention of Oral Mucositis: Structure-Activity Relationships of Synthetic Protegrin Analogues. Biopolymers 2000, 55, 88–98. [Google Scholar] [CrossRef]
- Capone, R.; Mustata, M.; Jang, H.; Arce, F.T.; Nussinov, R.; Lal, R. Antimicrobial Protegrin-1 Forms Ion Channels: Molecular Dynamic Simulation, Atomic Force Microscopy, and Electrical Conductance Studies. Biophys. J. 2010, 98, 2644–2652. [Google Scholar] [CrossRef] [Green Version]
- Panteleev, P.V.; Balandin, S.V.; Ivanov, V.T.; Ovchinnikova, T.V. A Therapeutic Potential of Animal β-Hairpin Antimicrobial Peptides. Curr. Med. Chem. 2017, 24, 1724–1746. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Yuan, J.; Osapay, G.; Osapay, K.; Tran, D.; Miller, C.J.; Ouellette, A.J.; Selsted, M.E. A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated Alpha-Defensins. Science 1999, 286, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Park, N.G.; Lee, S.; Oishi, O.; Aoyagi, H.; Iwanaga, S.; Yamashita, S.; Ohno, M. Conformation of Tachyplesin I from Tachypleus Tridentatus When Interacting with Lipid Matrices. Biochemistry 1992, 31, 12241–12247. [Google Scholar] [CrossRef]
- Fahrner, R.L.; Dieckmann, T.; Harwig, S.S.; Lehrer, R.I.; Eisenberg, D.; Feigon, J. Solution Structure of Protegrin-1, a Broad-Spectrum Antimicrobial Peptide from Porcine Leukocytes. Chem. Biol. 1996, 3, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolintineanu, D.S.; Kaznessis, Y.N. Computational Studies of Protegrin Antimicrobial Peptides: A Review. Peptides 2011, 32, 188–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.; Chai, S.; You, X.; Wang, W.; Qin, C.; Gong, Q.; Zhang, T.; Wan, P. Expression of Porcine Protegrin-1 in Pichia pastoris and Its Anticancer Activity in Vitro. Exp. Ther. Med. 2015, 9, 1075–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechinger, B.; Lohner, K. Detergent-like Actions of Linear Amphipathic Cationic Antimicrobial Peptides. Biochim. Biophys. Acta (BBA) Biomembr. 2006, 1758, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Mani, R.; Tang, M.; Wu, X.; Buffy, J.J.; Waring, A.J.; Sherman, M.A.; Hong, M. Membrane-Bound Dimer Structure of a Beta-Hairpin Antimicrobial Peptide from Rotational-Echo Double-Resonance Solid-State NMR. Biochemistry 2006, 45, 8341–8349. [Google Scholar] [CrossRef]
- Langham, A.A.; Khandelia, H.; Schuster, B.; Waring, A.J.; Lehrer, R.I.; Kaznessis, Y.N. Correlation between Simulated Physicochemical Properties and Hemolycity of Protegrin-like Antimicrobial Peptides: Predicting Experimental Toxicity. Peptides 2008, 29, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Usachev, K.S.; Kolosova, O.A.; Klochkova, E.A.; Yulmetov, A.R.; Aganov, A.V.; Klochkov, V.V. Oligomerization of the Antimicrobial Peptide Protegrin-5 in a Membrane-Mimicking Environment. Structural Studies by High-Resolution NMR Spectroscopy. Eur. Biophys. J. 2017, 46, 293–300. [Google Scholar] [CrossRef]
- Mohanram, H.; Bhattacharjya, S. Cysteine Deleted Protegrin-1 (CDP-1): Anti-Bacterial Activity, Outer-Membrane Disruption and Selectivity. Biochim. Biophys. Acta 2014, 1840, 3006–3016. [Google Scholar] [CrossRef]
- Robinson, J.A.; Shankaramma, S.C.; Jetter, P.; Kienzl, U.; Schwendener, R.A.; Vrijbloed, J.W.; Obrecht, D. Properties and Structure-Activity Studies of Cyclic Beta-Hairpin Peptidomimetics Based on the Cationic Antimicrobial Peptide Protegrin I. Bioorg Med. Chem. 2005, 13, 2055–2064. [Google Scholar] [CrossRef]
- Giles, F.J.; Miller, C.B.; Hurd, D.D.; Wingard, J.R.; Fleming, T.R.; Sonis, S.T.; Bradford, W.Z.; Pulliam, J.G.; Anaissie, E.J.; Beveridge, R.A.; et al. A Phase III, Randomized, Double-Blind, Placebo-Controlled, Multinational Trial of Iseganan for the Prevention of Oral Mucositis in Patients Receiving Stomatotoxic Chemotherapy (PROMPT-CT Trial). Leuk. Lymphoma 2003, 44, 1165–1172. [Google Scholar] [CrossRef]
- Panteleev, P.V.; Bolosov, I.A.; Balandin, S.V.; Ovchinnikova, T.V. Design of Antimicrobial Peptide Arenicin Analogs with Improved Therapeutic Indices. J. Pept. Sci. 2015, 21, 105–113. [Google Scholar] [CrossRef]
- Panteleev, P.V.; Bolosov, I.A.; Ovchinnikova, T.V. Bioengineering and Functional Characterization of Arenicin Shortened Analogs with Enhanced Antibacterial Activity and Cell Selectivity. J. Pept. Sci. 2016, 22, 82–91. [Google Scholar] [CrossRef]
- Panteleev, P.V.; Ovchinnikova, T.V. Improved Strategy for Recombinant Production and Purification of Antimicrobial Peptide Tachyplesin I and Its Analogs with High Cell Selectivity. Biotechnol. Appl. Biochem. 2017, 64, 35–42. [Google Scholar] [CrossRef]
- Panteleev, P.V.; Bolosov, I.A.; Kalashnikov, A.À.; Kokryakov, V.N.; Shamova, O.V.; Emelianova, A.A.; Balandin, S.V.; Ovchinnikova, T.V. Combined Antibacterial Effects of Goat Cathelicidins with Different Mechanisms of Action. Front. Microbiol. 2018, 9, 2983. [Google Scholar] [CrossRef] [Green Version]
- Sychev, S.V.; Panteleev, P.V.; Ovchinnikova, T.V. Structural Study of the β-Hairpin Marine Antimicrobial Peptide Arenicin-2 in PC/PG Lipid Bilayers by Fourier Transform Infrared Spectroscopy. Russ. J. Bioorg Chem. 2017, 43, 502–508. [Google Scholar] [CrossRef]
- Bolosov, I.A.; Panteleev, P.V.; Sychev, S.V.; Sukhanov, S.V.; Mironov, P.A.; Myshkin, M.Y.; Shenkarev, Z.O.; Ovchinnikova, T.V. Dodecapeptide Cathelicidins of Cetartiodactyla: Structure, Mechanism of Antimicrobial Action, and Synergistic Interaction with Other Cathelicidins. Front. Microbiol. 2021, 12, 725526. [Google Scholar] [CrossRef] [PubMed]
- Safronova, V.N.; Bolosov, I.A.; Kruglikov, R.N.; Korobova, O.V.; Pereskokova, E.S.; Borzilov, A.I.; Panteleev, P.V.; Ovchinnikova, T.V. Novel β-Hairpin Peptide from Marine Polychaeta with a High Efficacy against Gram-Negative Pathogens. Mar. Drugs 2022, 20, 517. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Waring, A.J.; Lehrer, R.I.; Hong, M. Effects of Guanidinium–Phosphate Hydrogen Bonding on the Membrane-Bound Structure and Activity of an Arginine-Rich Membrane Peptide from Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed. 2008, 47, 3202–3205. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.W.; Lis, M.; Zhao, K.; Lai, G.H.; Alexandrova, A.N.; Tew, G.N.; Wong, G.C.L. Molecular Basis for Nanoscopic Membrane Curvature Generation from Quantum Mechanical Models and Synthetic Transporter Sequences. J. Am. Chem. Soc. 2012, 134, 19207–19216. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, N.W.; Mishra, A.; Lai, G.H.; Davis, M.; Sanders, L.K.; Tran, D.; Garcia, A.; Tai, K.P.; McCray, P.B.; Ouellette, A.J.; et al. Criterion for Amino Acid Composition of Defensins and Antimicrobial Peptides Based on Geometry of Membrane Destabilization. J. Am. Chem. Soc. 2011, 133, 6720–6727. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cui, Q.; Yethiraj, A. Why Do Arginine and Lysine Organize Lipids Differently? Insights from Coarse-Grained and Atomistic Simulations. J. Phys. Chem. B 2013, 117, 12145–12156. [Google Scholar] [CrossRef] [PubMed]
- Soundrarajan, N.; Cho, H.-S.; Ahn, B.; Choi, M.; Thong, L.M.; Choi, H.; Cha, S.-Y.; Kim, J.-H.; Park, C.-K.; Seo, K.; et al. Green Fluorescent Protein as a Scaffold for High Efficiency Production of Functional Bacteriotoxic Proteins in Escherichia coli. Sci. Rep. 2016, 6, 20661. [Google Scholar] [CrossRef] [Green Version]
- Safronova, V.N.; Panteleev, P.V.; Sukhanov, S.V.; Toropygin, I.Y.; Bolosov, I.A.; Ovchinnikova, T.V. Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Marine Drugs 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Cady, S.D.; Tang, M.; Waring, A.J.; Lehrer, R.I.; Hong, M. Membrane-Dependent Oligomeric Structure and Pore Formation of a β-Hairpin Antimicrobial Peptide in Lipid Bilayers from Solid-State NMR. Proc. Natl. Acad. Sci. USA 2006, 103, 16242–16247. [Google Scholar] [CrossRef]
- Roumestand, C.; Louis, V.; Aumelas, A.; Grassy, G.; Calas, B.; Chavanieu, A. Oligomerization of Protegrin-1 in the Presence of DPC Micelles. A Proton High-Resolution NMR Study. FEBS Lett. 1998, 421, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Yang, S.-T.; Lee, S.K.; Jung, H.H.; Shin, S.Y.; Hahm, K.-S.; Kim, J.I. Salt-Resistant Homodimeric Bactenecin, a Cathelicidin-Derived Antimicrobial Peptide. FEBS J. 2008, 275, 3911–3920. [Google Scholar] [CrossRef]
- Greenfield, N.; Fasman, G.D. Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry 1969, 8, 4108–4116. [Google Scholar] [CrossRef]
- Raj, P.A.; Karunakaran, T.; Sukumaran, D.K. Synthesis, Microbicidal Activity, and Solution Structure of the Dodecapeptide from Bovine Neutrophils. Biopolymers 2000, 53, 281–292. [Google Scholar] [CrossRef]
- Langham, A.A.; Waring, A.J.; Kaznessis, Y. Comparison of Interactions between Beta-Hairpin Decapeptides and SDS/DPC Micelles from Experimental and Simulation Data. BMC Biochem. 2007, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Hollósi, M.; Majer, Z.; Rónai, A.Z.; Magyar, A.; Medzihradszky, K.; Holly, S.; Perczel, A.; Fasman, G.D. CD and Fourier Transform Ir Spectroscopic Studies of Peptides. II. Detection of Beta-Turns in Linear Peptides. Biopolymers 1994, 34, 177–185. [Google Scholar] [CrossRef]
- Mantsch, H.H.; Perczel, A.; Hollósi, M.; Fasman, G.D. Characterization of Beta-Turns in Cyclic Hexapeptides in Solution by Fourier Transform IR Spectroscopy. Biopolymers 1993, 33, 201–207. [Google Scholar] [CrossRef]
- Chirgadze, Y.N.; Nevskaya, N.A. Infrared Spectra and Resonance Interaction of Amide-I Vibration of the Paraellel-Chain Pleated Sheets. Biopolymers 1976, 15, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Optimization of the Hydrochloric Acid Concentration Used for Trifluoroacetate Removal from Synthetic Peptides. J. Pept. Sci. 2007, 13, 37–43. [Google Scholar] [CrossRef]
- Steinberg, D.A.; Hurst, M.A.; Fujii, C.A.; Kung, A.H.; Ho, J.F.; Cheng, F.C.; Loury, D.J.; Fiddes, J.C. Protegrin-1: A Broad-Spectrum, Rapidly Microbicidal Peptide with in Vivo Activity. Antimicrob. Agents Chemother. 1997, 41, 1738–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostberg, N.; Kaznessis, Y. Protegrin Structure-Activity Relationships: Using Homology Models of Synthetic Sequences to Determine Structural Characteristics Important for Activity. Peptides 2005, 26, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Wu, C.; Yang, J.L. Membranolytic Selectivity of Cystine-Stabilized Cyclic Protegrins. Eur. J. Biochem. 2000, 267, 3289–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptide | MIC *, μM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
E. coli ATCC 25922 | E. coli ML35p | E. coli BW 25113 | P. aeruginosa PAO1 | P. aeruginosa ATCC 27853 | A. baumannii | K. pneumoniae ATCC 700603 | S. aureus 209P | S. aureus ATCC 29213 | M. luteus B-1314 | |
PG-1 | 0.5 | 0.25 | 0.125 | 0.5 | 0.25 | 0.25 | 1 | 0.5 | 1 | 0.25 |
Iseganan | 0.5 | 0.5 | 0.5 | 8 | 4 | 0.5 | 4 | 2 | 4 | 0.5 |
[L5R] | 1 | 0.5 | 0.25 | 1 | 1 | 0.5 | 8 | 4 | 4 | 1 |
[L5A] | 0.5 | 0.25 | 0.125 | 0.5 | 0.25 | 0.25 | 1 | 1 | 1 | 0.5 |
[V16R] | 0.5 | 0.25 | 0.25 | 1 | 0.5 | 0.125 | 4 | 4 | 4 | 1 |
[V16A] | 0.5 | 0.125 | 0.25 | 0.25 | 0.5 | 0.125 | 1 | 1 | 1 | 0.5 |
[V14R] | 4 | 4 | 2 | 32 | >32 | 2 | 32 | 32 | 32 | 2 |
[V14A] | 0.5 | 0.25 | 0.125 | 0.5 | 0.25 | 0.125 | 1 | 1 | 1 | 0.5 |
[Y7R] | 0.5 | 0.5 | 0.5 | 8 | 4 | 0.5 | 8 | 16 | 16 | 2 |
[Y7T] | 1 | 0.5 | 0.5 | 2 | 2 | 0.5 | 8 | 16 | 16 | 4 |
[Y7T,V16R] | 8 | 4 | 8 | >32 | >32 | 4 | >32 | >32 | >32 | 4 |
[V14A,V16R] | 2 | 1 | 2 | 8 | 4 | 0.5 | 32 | 32 | 32 | 4 |
[L5A,V16R] | 2 | 1 | 2 | 8 | 4 | 0.5 | 32 | 32 | 32 | 4 |
[L5A,V14A] | 0.5 | 0.5 | 0.5 | 1 | 1 | 0.25 | 8 | 4 | >32 | 4 |
[L5A,V16A] | 0.5 | 0.5 | 0.5 | 1 | 1 | 0.25 | 8 | 4 | >32 | 4 |
MHC a | MIC (GM) b | TI c | |
---|---|---|---|
PG-1 | 0.7 | 0.4 | 1.8 |
Iseganan | 1 | 1.4 | 0.7 |
[L5R] | 4.1 | 1.2 | 3.3 |
[L5A] | 4.1 | 0.4 | 9.4 |
[V16R] | 49.2 | 0.8 | 60.6 |
[V16A] | 4.3 | 0.4 | 10.6 |
[V14R] | >64 | 9.8 | 13.0 |
[V14A] | 5.5 | 0.4 | 13.5 |
[Y7R] | 61.4 | 2.5 | 24.9 |
[Y7T] | 33.5 | 4.4 | 7.6 |
[Y7T,V16R] | >64 | 21.1 | 6.1 |
[V14A,V16R] | >64 | 4.9 | 26.0 |
[L5A,V16R] | >64 | 4.9 | 26.0 |
[L5A,V14A] | 18.8 | 4.5 | 4.2 |
[L5A,V16A] | 11.9 | 4.5 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolosov, I.A.; Panteleev, P.V.; Sychev, S.V.; Khokhlova, V.A.; Safronova, V.N.; Toropygin, I.Y.; Kombarova, T.I.; Korobova, O.V.; Pereskokova, E.S.; Borzilov, A.I.; et al. Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics 2023, 15, 2047. https://doi.org/10.3390/pharmaceutics15082047
Bolosov IA, Panteleev PV, Sychev SV, Khokhlova VA, Safronova VN, Toropygin IY, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, et al. Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics. 2023; 15(8):2047. https://doi.org/10.3390/pharmaceutics15082047
Chicago/Turabian StyleBolosov, Ilia A., Pavel V. Panteleev, Sergei V. Sychev, Veronika A. Khokhlova, Victoria N. Safronova, Ilia Yu. Toropygin, Tatiana I. Kombarova, Olga V. Korobova, Eugenia S. Pereskokova, Alexander I. Borzilov, and et al. 2023. "Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity" Pharmaceutics 15, no. 8: 2047. https://doi.org/10.3390/pharmaceutics15082047
APA StyleBolosov, I. A., Panteleev, P. V., Sychev, S. V., Khokhlova, V. A., Safronova, V. N., Toropygin, I. Y., Kombarova, T. I., Korobova, O. V., Pereskokova, E. S., Borzilov, A. I., Ovchinnikova, T. V., & Balandin, S. V. (2023). Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics, 15(8), 2047. https://doi.org/10.3390/pharmaceutics15082047