Cocrystals Enhance Biopharmaceutical and Antimicrobial Properties of Norfloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining Norfloxacin–Isonicotinamide Cocrystal
2.3. Solid State Characterization Techniques
2.3.1. X-ray Powder Diffraction (XRPD)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Thermogravimetry (TG)
2.3.5. Scanning Electron Microscopy (SEM)
2.4. Analysis of Cocrystal Dissolution under Supersaturation Conditions
2.5. Solubility of the Cocrystal at the Vertex of Triphasic Domain and Eutectic Constant (Keu)
2.5.1. Solubility of the Cocrystal at the Vertex of Triphasic Domain in Water
2.5.2. Solubility of the Cocrystal at the Vertex of Triphasic Domain in FaSSIF
2.5.3. Calculation of Cocrystal Solubility at the Vertex of Triphasic Domain and Eutectic Constant (Keu)
2.6. Colorimetric Microdilution Assay
2.6.1. Determination of the Minimum Inhibitory Concentration (MIC) of Antimicrobial Compounds
2.6.2. Determination of the Inhibitory Concentration of 50% (IC50%) and 90% (IC90%) of the Microorganisms
3. Results
3.1. Solid State Characterization Techniques
3.2. Analysis of Cocrystal Dissolution under Supersaturation Conditions
3.3. Solubility of the Cocrystal at the Vertex of Triphasic Domain and Eutectic Constant (Keu)
3.4. Colorimetric Microdilution Assay
3.4.1. Determination of the Minimum Inhibitory Concentration (MIC) of Antimicrobial Compounds
3.4.2. Determination of the Inhibitory Concentration of 50% (IC50%) and 90% (IC90%) of the Microorganisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blagden, N.; De Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ho, C.; Yang, D.; Chen, J.; Orton, E. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts. J. Pharm. Sci. 2017, 106, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Izutsu, K.-I.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem. Pharm. Bull. 2016, 64, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Steed, J.W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. [Google Scholar] [CrossRef]
- Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7, 439–448. [Google Scholar] [CrossRef]
- Sekhon, B.S. Pharmaceutical co-crystals—A review. Ars. Pharm. 2009, 50, 99–117. [Google Scholar]
- Al-Tamrah, S.A.; Abdalla, M.A.; Al-Otibi, A.A. Spectrophotometric Determination of Norfloxacin Using Bromophenol Blue. Pharm. Res. 2015, 12, 413–420. [Google Scholar] [CrossRef]
- Kamble, R.; Sumeet, S.; Piyush, M. Norfloxacin mixed solvency based solid dispersions: An in-vitro and in-vivo investigation. Integr. Med. Res. 2017, 11, 512–522. [Google Scholar] [CrossRef]
- Al-Rashood, K.A.; Al-Khamis, K.I.; El-Sayed, Y.M.; Al-Bella, S.; Al-Yamani, M.A.; Alam, S.M.; Dham, R. Bioequivalence Evaluation of Norfloxacin 400 mg Tablets (Uroxin® and Noroxin®) in Healthy Human Volunteers. Biopharm. Drug Dispos. 2000, 21, 175–179. [Google Scholar] [CrossRef]
- Dhaneshwar, S.; Tewari, K.; Joshi, S.; Godbole, D.; Ghosh, P. Diglyceride prodrug strategy for enhancing the bioavailability of norfloxacin. Chem. Phys. Lipids 2011, 164, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Gadebusch, H.H.; Shungu, D.L. Norfloxacin, the first of a new class of fluoroquinolone antimicrobials, revisited. Int. J. Antimicrob. Agents 1991, 1, 3–28. [Google Scholar] [CrossRef]
- Basavoju, S.; Boström, D.; Velaga, S.P. Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6, 2699–2708. [Google Scholar] [CrossRef]
- Velaga, S.P.; Basavoju, S.; Boström, D. Norfloxacin saccharinate–saccharin dihydrate cocrystal—A new pharmaceutical cocrystal with an organic counter ion. J. Mol. Struct. 2008, 889, 150–153. [Google Scholar] [CrossRef]
- Vitorino, G.P.; Sperandeo, N.R.; Caira, M.R.; Mazzieri, M.R. A Supramolecular assembly formed by heteroassociation of ciprofloxacin and norfloxacin in the solid state: Co-crystal synthesis and characterization. Cryst. Growth Des. 2013, 13, 1050–1058. [Google Scholar] [CrossRef]
- Ferreira, L.T.; Alarcon, R.T.; Perpétuo, G.L.; Bannach, G. Investigation and characterization by TG/DTG–DTA and DSC of the fusion of Riboflavin, and its interaction with the antibiotic norfloxacin in the screening of cocrystal. J. Therm. Anal. Calorim. 2019, 136, 581–588. [Google Scholar] [CrossRef]
- Fael, H.; Barbas, R.; Prohens, R.; Ràfols, C.; Fuguet, E. Synthesis and characterization of a new norfloxacin/resorcinol cocrystal with enhanced solubility and dissolution profile. Pharmaceutics 2022, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.O.; de Almeida, A.C.; Costa, G.d.P.; Torquetti, C.; Baptista, J.A.; Eusébio, M.S.; Caires, F.J.; Castro, R.A. Norfloxacin Cocrystals: Mechanochemical Synthesis and Scale-up Viability Through Solubility Studies. J. Pharm. Sci. 2023, 112, 2230–2239. [Google Scholar] [CrossRef]
- Prashar, M.; Mehta, V.; Singh, P.; Mangal, S.; Arora, P.; Harjai, K.; Chadha, R.; Dhingra, N. Structural and Biopharmaceutical Evaluatio of Newly Synthesized Norfloxacin Co-crystals Using Crystal Engineering Approach. J. Mol. Struct. 2023, 1292, 136–175. [Google Scholar] [CrossRef]
- Levy, S.B. Antibiotic and antiseptic resistance: Impact on public health. Pediatr. Infect. Dis. J. 2000, 19, S120–S122. [Google Scholar] [CrossRef]
- White, D.G.; McDermott, P.F. Biocides, drug resistance and microbial evolution. Curr. Opin. Microbiol. 2001, 4, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.E.; Larson, E. Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect. Dis. 2003, 3, 501–506. [Google Scholar] [CrossRef]
- Hawkey, P.M.; Jones, A.M. The changing epidemiology of resistance. J. Antimicrob. Chemother. 2009, 64, i3–i10. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef]
- Valgas, C.; De Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef]
- Berge, S.M.; Bighley, L.D.; Monkhouse, D.C. Pharmaceutical Salts. J. Pharm. Sci. 1977, 66, 1–19. [Google Scholar] [CrossRef]
- Alrasheedy, A.A.; Alsalloum, M.A.; Almuqbil, F.A.; Almuzaini, M.A.; Alkhayl, B.S.A.; Albishri, A.S.; Alharbi, F.F.; Alharbi, S.R.; Alodhayb, A.K.; Alfadl, A.A.; et al. The impact of law enforcement on dispensing antibiotics without prescription: A multi-methods study from Saudi Arabia. Expert Rev. Anti-Infect. Ther. 2020, 18, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Veiga, A.; Toledo, M.d.G.T.; Rossa, L.S.; Mengarda, M.; Stofella, N.C.; Oliveira, L.J.; Gonçalves, A.G.; Murakami, F.S. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J. Microbiol. Methods 2019, 162, 50–61. [Google Scholar] [CrossRef]
- Kuper, K.M.; Boles, D.M.; Mohr, J.F.; Wanger, A. Antimicrobial Susceptibility Testing: A Primer for Clinicians. Pharmacotherapy 2009, 29, 1326–1343. [Google Scholar] [CrossRef]
- Eloff, J.N. A Sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar]
- Gabrielson, J.; Hart, M.; Jarelöv, A.; Kühn, I.; McKenzie, D.; Möllby, R. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 2002, 50, 63–73. [Google Scholar] [CrossRef]
- Rahman, M.; Kuhn, I.; Rahman, M.; Olsson-Liljequist, B.; Mollby, R. Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. Appl. Environ. Microbiol. 2004, 70, 2398–2403. [Google Scholar] [CrossRef]
- Ayres, M.C.; Brandão, M.S.; Vieira-Júnior, G.M.; Menor, J.C.; Silva, H.B.; Soares, M.J.; Chaves, M.H. Antibacterial activity of useful plants and chemical constituents of the root of Copernicia prunifera. Rev. Bras. Farmacogn. 2008, 18, 90–97. [Google Scholar]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. Essential Oils from Different Plant Parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a Source of 1,8-Cineole and Their Bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef]
- Bona, E.A.; Pinto, F.G.; Fruet, T.K.; Jorge, T.C.; Moura, A.C. Comparison of methods for the evaluation of antimicrobial activity and determination of the minimum inhibitory concentration (cim) of aqueous and ethanolic plant extracts. Arch. Inst. Biol. 2014, 81, 218–225. [Google Scholar] [CrossRef]
- Morjan, R.Y.; Al-Attar, N.H.; Abu-Teim, O.S.; Ulrich, M.; Awadallah, A.M.; Mkadmh, A.M.; Elmanama, A.A.; Raftery, J.; Abu-Awwad, F.M.; Yaseen, Z.J.; et al. Synthesis, antibacterial and QSAR evaluation of 5-oxo and 5-thio derivatives of 1,4-disubstituted tetrazoles. Bioorganic Med. Chem. Lett. 2015, 25, 4024–4028. [Google Scholar] [CrossRef]
- Sugandha, K.; Kaity, S.; Mukherjee, S.; Isaac, J.; Ghosh, A. Solubility Enhancement of Ezetimibe by a Cocrystal Engineering Technique. Cryst. Growth Des. 2014, 14, 4475–4486. [Google Scholar] [CrossRef]
- Martin, F.A.; Pop, M.M.; Borodi, G.; Filip, X.; Kacso, I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst. Growth Des. 2013, 13, 4295–4304. [Google Scholar] [CrossRef]
- Kuminek, G.; Cao, F.; de Oliveira da Rocha, A.B.; Cardoso, S.G.; Rodríguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev. 2016, 101, 143–166. [Google Scholar] [CrossRef]
- Roy, L.; Lipert, M.; Rodríguez-Hornedo, N. Co-crystal Solubility and Thermodynamic Stability. RSC Drug Discov Ser. 2011, 16, 247–279. [Google Scholar]
- Marques, M. Dissolution media simulating fasted and fed states. Dissolut. Technol. 2004, 11, 16–19. [Google Scholar] [CrossRef]
- Oliveira, P.R.; Bernardi, L.S.; Mendes, C.; Cardoso, S.G.; Sangoi, M.S.; Silva, M.A.S. Liquid Chromatographic Determination of Norfloxacin in Extended-Release Tablets. J. Chromatogr. Sci. 2009, 47, 739–744. [Google Scholar] [CrossRef]
- Good, D.J.; Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009, 9, 2252–2264. [Google Scholar] [CrossRef]
- Rocha, A.B.; Kuminek, G.; Machado, T.C.; Rosa, J.; Rauber, G.S.; Borba, P.A.; Siedler, S.; Stulzer, H.K.; Cuffini, S.L.; Rodríguez-Hornedo, N.; et al. Cocrystals: A Promising strategy in pharmaceuticals. Chem. Nova 2016, 39, 1112–1125. [Google Scholar]
- Barbas, R.; Martí, F.; Prohens, R.; Puigjaner, C. Polymorphism of norfloxacin: Evidence of the enantiotropic relationship between polymorphs A and B. Cryst. Growth Des. 2006, 6, 1463–1467. [Google Scholar] [CrossRef]
- Nunes, W.D.G.; Nascimento, A.L.C.S.D.; Moura, A.; Gaglieri, C.; Vallim, G.B.; Nascimento, L.C.; Mendes, R.A.; Ionashiro, M.; Caires, F.J. Thermal, spectroscopic and antimicrobial activity characterization of some norfloxacin complexes. J. Therm. Anal. Calorim. 2018, 132, 1077–1088. [Google Scholar] [CrossRef]
- Holanda, B.B.C.; Alarcon, R.T.; Gaglieri, C.; de Souza, A.R.; Castro, R.A.E.; Rosa, P.C.P.; Tangerino, D.J.A.; Bannach, G. Thermal studies, degradation kinetic, equilibrium solubility, DFT, MIR, and XRPD analyses of a new cocrystal of gemfibrozil and isonicotinamide. J. Therm. Anal. Calorim. 2018, 136, 2049–2062. [Google Scholar] [CrossRef]
- Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9, 2950–2967. [Google Scholar] [CrossRef] [PubMed]
Coformer | Cocrystallization Technique | Specificities | Improvement in Solubility (mg mL−1) | Solubility Assessment Technique | Stability * | Reference |
---|---|---|---|---|---|---|
Isonicotinamide | Solvent evaporation | Solvated cocrystal (CHCl3) | 0.59 ± 0.01(water) | Apparent aqueous solubility | Less stable | Basavoju et al. 2006 [14] |
Saccharin | Solvent-assisted mechanochemistry | Cocrystal with an organic counter ion | - | - | - | Velaga et al. 2008 [15] |
- | Heteroassociation in the solid state | Heteroassociation with Ciprofloxacin | - | - | More stable | Vitorino et al. 2013 [16] |
Riboflavin | Solvent-assisted mechanochemistry | Chloroform as a solvent | - | - | - | Ferreira et al. 2019 [17] |
Resorcinol | Solvent-assisted mechanochemistry | Uses Toluene as a solvent | 2.64 ± 0.39 (pH 7.5) | Shake-flask method | Less stable | Fael et al. 2022 [18] |
Picolinic Acid | Mechanochemistry in mill | - | 2.57 ± 0.01 (water); 1.91 ± 0.7 (pH 3); 0.7 ± 0.09 (pH 6.1); 0.6 ± 0.01 (pH 8.5) | Shake-flask method | More stable | Ferreira et al. 2023 [19] |
Isonicotinic Acid | Mechanochemistry in mill | - | 28.98 ± 0.02 (water); 0.73 ± 0.02 (pH 3); 1.62 ± 0.08 (pH 6.1); 0.59 ± 0.1 (pH 8.5) | Shake-flask method | More stable | Ferreira et al. 2023 [19] |
Nicotinamide | Solvent-assisted mechanochemistry | Ethanol as a solvent | 28.59 ± 0.2 (pH 1.2); 14.39 ± 0.3 (pH 6.8) | Apparent solubility analysis | Less stable | Prashar et al. 2023 [20] |
Cinnamic acid | Solvent-assisted mechanochemistry | Ethanol as a solvent | 15.50 ± 0.2 (pH 1.2); 10.05 ± 0.2 (pH 6.8) | Apparent solubility analysis | Less stable | Prashar et al. 2023 [20] |
Sorbic acid | Solvent-assisted mechanochemistry | Ethanol as a solvent | 13.25 ± 0.2 (pH 1.2); 9.21 ± 0.2 (pH 6.8) | Apparent solubility analysis | Less stable | Prashar et al. 2023 [20] |
[NFX]me (mM) | [INA]me (mM) | Cocrystal Solubility (mM) | Solubility Advantage | pH | ||
---|---|---|---|---|---|---|
Water | 48 h | 1.72 ± 0.09 | 120.77 ± 3.23 | 14.41 | 8.38 | 7.05 |
72 h | 1.79 ± 0.20 | 124.48 ± 2.15 | 14.91 | 8.35 | 7.05 | |
FaSSIF | 48 h | 4.92 ± 0.02 | 202.34 ± 7.63 | 31.56 | 6.41 | 6.61 |
72 h | 4.93 ± 0.14 | 196.31 ± 5.18 | 31.10 | 6.31 | 6.56 |
Microorganisms | MIC Norfloxacin (µg mL−1) | MIC Cocrystal (µg mL−1) | MIC Physical Mixture (µg mL−1) |
---|---|---|---|
Escherichia coli (ATCC 8738) | 0.156 | 0.078 | 0.156 |
Staphylococcus aureus (ATCC 6538) | 2.500 | 1.250 | 2.500 |
Pseudomonas aeruginosa (ATCC 9027) | 1.250 | 0.156 | 1.250 |
Microorganisms | Inhibitory Concentration | Norfloxacin (µg mL−1) | Cocrystal (µg mL−1) | Physical Mixture (µg mL−1) |
---|---|---|---|---|
Escherichia coli (ATCC 8738) | CI50% | 0.182 | 0.064 | 0.082 |
CI90% | 0.703 | 0.210 | 0.345 | |
Staphylococcus aureus (ATCC 6538) | CI50% | 0.648 | 0.269 | 0.746 |
CI90% | 1.649 | 0.738 | 1.934 | |
Pseudomonas aeruginosa (ATCC 9027) | CI50% | 0.659 | 0.090 | 0.318 |
CI90% | 1.718 | 0.166 | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, S.N.; Biscaia, I.F.B.; Lopes, D.S.; Mengarda, M.; Murakami, F.S.; Oliveira, P.R.; Bernardi, L.S. Cocrystals Enhance Biopharmaceutical and Antimicrobial Properties of Norfloxacin. Pharmaceutics 2023, 15, 2211. https://doi.org/10.3390/pharmaceutics15092211
Gomes SN, Biscaia IFB, Lopes DS, Mengarda M, Murakami FS, Oliveira PR, Bernardi LS. Cocrystals Enhance Biopharmaceutical and Antimicrobial Properties of Norfloxacin. Pharmaceutics. 2023; 15(9):2211. https://doi.org/10.3390/pharmaceutics15092211
Chicago/Turabian StyleGomes, Samantha Nascimento, Isabela Fanelli Barreto Biscaia, Diana Schon Lopes, Mariana Mengarda, Fábio Seigi Murakami, Paulo Renato Oliveira, and Larissa Sakis Bernardi. 2023. "Cocrystals Enhance Biopharmaceutical and Antimicrobial Properties of Norfloxacin" Pharmaceutics 15, no. 9: 2211. https://doi.org/10.3390/pharmaceutics15092211
APA StyleGomes, S. N., Biscaia, I. F. B., Lopes, D. S., Mengarda, M., Murakami, F. S., Oliveira, P. R., & Bernardi, L. S. (2023). Cocrystals Enhance Biopharmaceutical and Antimicrobial Properties of Norfloxacin. Pharmaceutics, 15(9), 2211. https://doi.org/10.3390/pharmaceutics15092211