Next Issue
Volume 15, October
Previous Issue
Volume 15, August
 
 

Pharmaceutics, Volume 15, Issue 9 (September 2023) – 194 articles

Cover Story (view full-size image): Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity remain to be addressed. This study aimed to compare the performances  of polyplex nanomicelles, an original cationic polymer-based carrier, and LNPs, in regard to various aspects including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain. The authors showed the distinct characteristics of nanomicelles and LNPs (SM-102), with the former demonstrating relatively sustained protein production and reduced inflammation, making them suitable for therapeutic purposes. Meanwhile, LNPs displayed desirable properties for vaccines, such as rapid mRNA expression and a potent immune response. These results support the further optimization of mRNA delivery systems tailored for specific purposes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 1003 KiB  
Article
Effect of the Similarity of Formulations and Excipients of Approved Generic Drug Products on In Vivo Bioequivalence for Putative Biopharmaceutics Classification System Class III Drugs
by Ping Ren, Theresa Chan, Wen-Cheng Yang, Mitchell Frost, Yan Wang, Markham Luke, Myong-Jin Kim, Robert Lionberger and Yi Zhang
Pharmaceutics 2023, 15(9), 2366; https://doi.org/10.3390/pharmaceutics15092366 - 21 Sep 2023
Cited by 1 | Viewed by 2597
Abstract
One of the potential essential factors that restricts generic industry from applying the Biopharmaceutics Classification System (BCS) Class III biowaiver is adherence to the stringent formulation criteria for formulation qualitative (Q1) sameness and quantitative (Q2) similarity. The present study has investigated formulations and [...] Read more.
One of the potential essential factors that restricts generic industry from applying the Biopharmaceutics Classification System (BCS) Class III biowaiver is adherence to the stringent formulation criteria for formulation qualitative (Q1) sameness and quantitative (Q2) similarity. The present study has investigated formulations and excipients from 16 putative BCS Class III drug substances in a total of 19 drug products via 133 approved abbreviated new drug applications (ANDAs) containing in vivo bioequivalence (BE) studies in human subjects during the time period from 2006 to 2022. We included the BCS Class III drugs in this study by referring to published literature, the World Health Organization (WHO) BCS Class I-IV list, FDA internal assessments, and physicochemical properties (high solubility and low permeability) of specific drug substances. Based upon all 133 approved generic formulations in this study, the highest amount of each different compendial excipient with a total of 40 is defined as its corresponding typical amount that has not shown any potential impact on in vivo drug absorption. In the present study, although only 30.08% of the investigated generic formulations met Q1 the same/Q2 similar formulation criteria for the BCS Class III biowaiver, and while approximately 69.92% failed to meet those criteria with non-Q1/Q2 similar formulations, all test/reference ratios (T/R) and 90% confidence intervals for all instrumental PK parameters (AUC0-t, AUC0-inf, and Cmax) met the bioequivalence (BE) criteria (80–125%). The results of formulation assessment suggest that the commonly used excipients without atypical amounts did not impact absorption of 16 putative BCS Class III drug substances. The rate and extent of absorption of drugs appears to be more dependent upon the biopharmaceutic and physiochemical properties of BCS Class III drug substance and less, or not dependent upon their formulations, excipients, and the excipients class. Our findings may lead to a more flexible formulation design space regarding the stringent BCS Class III formulation criteria. Full article
Show Figures

Figure 1

16 pages, 1832 KiB  
Review
Exosome Cargos as Biomarkers for Diagnosis and Prognosis of Hepatocellular Carcinoma
by Yulai Zeng, Shuyu Hu, Yi Luo and Kang He
Pharmaceutics 2023, 15(9), 2365; https://doi.org/10.3390/pharmaceutics15092365 - 21 Sep 2023
Cited by 11 | Viewed by 2306
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Due to the insidiousness of HCC onset and the lack of specific early-stage markers, the early diagnosis and treatment of HCC are still unsatisfactory, leading to a poor prognosis. Exosomes are a [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Due to the insidiousness of HCC onset and the lack of specific early-stage markers, the early diagnosis and treatment of HCC are still unsatisfactory, leading to a poor prognosis. Exosomes are a type of extracellular vesicle containing various components, which play an essential part in the development, progression, and metastasis of HCC. A large number of studies have demonstrated that exosomes could serve as novel biomarkers for the diagnosis of HCC. These diagnostic components mainly include proteins, microRNAs, long noncoding RNAs, and circular RNAs. The exosome biomarkers showed high sensitivity and high specificity in distinguishing HCC from health controls and other liver diseases, such as chronic HBV and liver cirrhosis. The expression of these biomarkers also exhibits correlations with various clinical factors such as tumor size, TMN stage, overall survival, and recurrence rate. In this review, we summarize the function of exosomes in the development of HCC and highlight their application as HCC biomarkers for diagnosis and prognosis prediction. Full article
(This article belongs to the Special Issue Extracellular Vesicles for Early Cancer Diagnosis and Therapy)
Show Figures

Figure 1

17 pages, 4563 KiB  
Article
Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice
by Meixiang Huang, Carolyn Tallon, Xiaolei Zhu, Kaitlyn D. J. Huizar, Silvia Picciolini, Ajit G. Thomas, Lukas Tenora, Wathsala Liyanage, Francesca Rodà, Alice Gualerzi, Rangaramanujam M. Kannan, Marzia Bedoni, Rana Rais and Barbara S. Slusher
Pharmaceutics 2023, 15(9), 2364; https://doi.org/10.3390/pharmaceutics15092364 - 21 Sep 2023
Cited by 2 | Viewed by 1966
Abstract
The progression of Alzheimer’s disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We [...] Read more.
The progression of Alzheimer’s disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D–DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP’s brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine)
Show Figures

Figure 1

38 pages, 2567 KiB  
Review
Advances in Pancreatic Cancer Treatment by Nano-Based Drug Delivery Systems
by Cláudia Viegas, Ana B. Patrício, João Prata, Leonor Fonseca, Ana S. Macedo, Sofia O. D. Duarte and Pedro Fonte
Pharmaceutics 2023, 15(9), 2363; https://doi.org/10.3390/pharmaceutics15092363 - 21 Sep 2023
Cited by 8 | Viewed by 3358
Abstract
Pancreatic cancer represents one of the most lethal cancer types worldwide, with a 5-year survival rate of less than 5%. Due to the inability to diagnose it promptly and the lack of efficacy of existing treatments, research and development of innovative therapies and [...] Read more.
Pancreatic cancer represents one of the most lethal cancer types worldwide, with a 5-year survival rate of less than 5%. Due to the inability to diagnose it promptly and the lack of efficacy of existing treatments, research and development of innovative therapies and new diagnostics are crucial to increase the survival rate and decrease mortality. Nanomedicine has been gaining importance as an innovative approach for drug delivery and diagnosis, opening new horizons through the implementation of smart nanocarrier systems, which can deliver drugs to the specific tissue or organ at an optimal concentration, enhancing treatment efficacy and reducing systemic toxicity. Varied materials such as lipids, polymers, and inorganic materials have been used to obtain nanoparticles and develop innovative drug delivery systems for pancreatic cancer treatment. In this review, it is discussed the main scientific advances in pancreatic cancer treatment by nano-based drug delivery systems. The advantages and disadvantages of such delivery systems in pancreatic cancer treatment are also addressed. More importantly, the different types of nanocarriers and therapeutic strategies developed so far are scrutinized. Full article
Show Figures

Figure 1

23 pages, 5779 KiB  
Article
Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery
by Fatemeh Shojaie, Carmen Ferrero and Isidoro Caraballo
Pharmaceutics 2023, 15(9), 2362; https://doi.org/10.3390/pharmaceutics15092362 - 21 Sep 2023
Cited by 10 | Viewed by 1833
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve [...] Read more.
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon. Full article
(This article belongs to the Special Issue 3D Printing Technology for Pharmaceutical and Biomedical Application)
Show Figures

Graphical abstract

23 pages, 3806 KiB  
Review
Chitosan in Oral Drug Delivery Formulations: A Review
by Tanikan Sangnim, Divya Dheer, Nitin Jangra, Kampanart Huanbutta, Vivek Puri and Ameya Sharma
Pharmaceutics 2023, 15(9), 2361; https://doi.org/10.3390/pharmaceutics15092361 - 21 Sep 2023
Cited by 13 | Viewed by 4275
Abstract
Nanoformulations have become increasingly useful as drug delivery technologies in recent decades. As therapeutics, oral administration is the most common delivery method, although it is not always the most effective route because of challenges with swallowing, gastrointestinal discomfort, low solubility, and poor absorption. [...] Read more.
Nanoformulations have become increasingly useful as drug delivery technologies in recent decades. As therapeutics, oral administration is the most common delivery method, although it is not always the most effective route because of challenges with swallowing, gastrointestinal discomfort, low solubility, and poor absorption. One of the most significant barriers that medications must overcome to exert a therapeutic effect is the impact of the first hepatic transit. Studies have shown that controlled-release systems using nanoparticles composed of biodegradable natural polymers significantly improve oral administration, which is why these materials have attracted significant attention. Chitosan possesses a wide variety of properties and functions in the pharmaceutical as well as healthcare industries. Drug encapsulation and transport within the body are two of its most important features. Moreover, chitosan can enhance drug efficacy by facilitating drug interaction with target cells. Based on its physicochemical properties, chitosan can potentially be synthesized into nanoparticles, and this review summarizes recent advances and applications of orally delivered chitosan nanoparticle interventions. Full article
Show Figures

Figure 1

20 pages, 2936 KiB  
Article
Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel
by Patrick Pan, Darren Svirskis, Geoffrey I. N. Waterhouse and Zimei Wu
Pharmaceutics 2023, 15(9), 2360; https://doi.org/10.3390/pharmaceutics15092360 - 21 Sep 2023
Cited by 8 | Viewed by 3760
Abstract
Hydrogels are homogeneous three-dimensional polymeric networks capable of holding large amounts of water and are widely used in topical formulations. Herein, the physicomechanical, rheological, bioadhesive, and drug-release properties of hydrogels containing hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined, and the intermolecular interactions [...] Read more.
Hydrogels are homogeneous three-dimensional polymeric networks capable of holding large amounts of water and are widely used in topical formulations. Herein, the physicomechanical, rheological, bioadhesive, and drug-release properties of hydrogels containing hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined, and the intermolecular interactions between the polymers were explored. A three-level factorial design was used to form HPMC–PVP binary hydrogels. The physicomechanical properties of the binary hydrogels alongside the homopolymeric HPMC hydrogels were characterized using a texture analyzer. Rheological properties of the gels were studied using a cone and plate rheometer. The bioadhesiveness of selected binary hydrogels was tested on porcine skin. Hydrophilic benzophenone-4 was loaded into both homopolymeric and binary gels, and drug-release profiles were investigated over 24 h at 33 °C. Fourier transform infrared spectroscopy (FTIR) was used to understand the inter-molecular drug–gel interactions. Factorial design analysis supported the dominant role of the HPMC in determining the gel properties, rather than the PVP, with the effect of both polymer concentrations being non-linear. The addition of PVP to the HPMC gels improved adhesiveness without significantly affecting other properties such as hardness, shear-thinning feature, and viscosity, thereby improving bioadhesiveness for sustained skin retention without negatively impacting cosmetic acceptability or ease of use. The release of benzophenone-4 in the HPMC hydrogels followed zero-order kinetics, with benzophenone-4 release being significantly retarded by the presence of PVP, likely due to intermolecular interactions between the drug and the PVP polymer, as confirmed by the FTIR. The HPMC–PVP binary hydrogels demonstrate strong bioadhesiveness resulting from the addition of PVP with desirable shear-thinning properties that allow the formulation to have extended skin-retention times. The developed HPMC–PVP binary hydrogel is a promising sustained-release platform for topical drug delivery. Full article
(This article belongs to the Special Issue Recent Advances in Long-Acting Drug Delivery and Formulations)
Show Figures

Figure 1

17 pages, 1406 KiB  
Review
Personalized and Precision Medicine in Asthma and Eosinophilic Esophagitis: The Role of T2 Target Therapy
by Diego Bagnasco, Edoardo Vincenzo Savarino, Mona-Rita Yacoub, Fulvio Braido, Maria Giulia Candeliere, Edoardo Giannini, Giovanni Passalacqua and Elisa Marabotto
Pharmaceutics 2023, 15(9), 2359; https://doi.org/10.3390/pharmaceutics15092359 - 21 Sep 2023
Viewed by 1625
Abstract
The role of type 2 inflammation has been progressively associated with many diseases, including severe asthma, atopic dermatitis, nasal polyposis, eosinophilic granulomatosis with polyangiitis, and, recently, eosinophilic esophagitis. Despite this, the association between asthma and esophagitis is still poorly known, and this is [...] Read more.
The role of type 2 inflammation has been progressively associated with many diseases, including severe asthma, atopic dermatitis, nasal polyposis, eosinophilic granulomatosis with polyangiitis, and, recently, eosinophilic esophagitis. Despite this, the association between asthma and esophagitis is still poorly known, and this is probably because of the low prevalence of each disease and the even lower association between them. Nonetheless, observations in clinical trials and, subsequently, in real life, have allowed researchers to observe how drugs acting on type 2 inflammation, initially developed and marketed for severe asthma, could be effective also in treating eosinophilic esophagitis. For this reason, clinical trials specifically designed for the use of drugs targeted to type 2 inflammation were also developed for eosinophilic esophagitis. The results of clinical trials are presently promising and envisage the use of biologicals that are also likely to be employed in the field of gastroenterology in the near future. This review focuses on the use of biologicals for type 2 inflammation in cases of combined severe asthma and eosinophilic esophagitis. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

14 pages, 4919 KiB  
Article
Thermo-Responsive Hydrogels Encapsulating Targeted Core–Shell Nanoparticles as Injectable Drug Delivery Systems
by Elif Gulin Ertugral-Samgar, Ali Murad Ozmen and Ozgul Gok
Pharmaceutics 2023, 15(9), 2358; https://doi.org/10.3390/pharmaceutics15092358 - 21 Sep 2023
Cited by 6 | Viewed by 2076
Abstract
As therapeutic agents that allow for minimally invasive administration, injectable biomaterials stand out as effective tools with tunable properties. Furthermore, hydrogels with responsive features present potential platforms for delivering therapeutics to desired sites in the body. Herein, temperature-responsive hydrogel scaffolds with embedded targeted [...] Read more.
As therapeutic agents that allow for minimally invasive administration, injectable biomaterials stand out as effective tools with tunable properties. Furthermore, hydrogels with responsive features present potential platforms for delivering therapeutics to desired sites in the body. Herein, temperature-responsive hydrogel scaffolds with embedded targeted nanoparticles were utilized to achieve controlled drug delivery via local drug administration. Poly(N-isopropylacrylamide) (pNIPAM) hydrogels, prepared with an ethylene-glycol-based cross-linker, demonstrated thermo-sensitive gelation ability upon injection into environments at body temperature. This hydrogel network was engineered to provide a slow and controlled drug release profile by being incorporated with curcumin-loaded nanoparticles bearing high encapsulation efficiency. A core (alginate)–shell (chitosan) nanoparticle design was preferred to ensure the stability of the drug molecules encapsulated in the core and to provide slower drug release. Nanoparticle-embedded hydrogels were shown to release curcumin at least four times slower compared to the free nanoparticle itself and to possess high water uptake capacity and more mechanically stable viscoelastic behavior. Moreover, this therapy has the potential to specifically address tumor tissues over-expressing folate receptors like ovaries, as the nanoparticles target the receptors by folic acid conjugation to the periphery. Together with its temperature-driven injectability, it can be concluded that this hydrogel scaffold with drug-loaded and embedded folate-targeting nanoparticles would provide effective therapy for tumor tissues accessible via minimally invasive routes and be beneficial for post-operative drug administration after tumor resection. Full article
Show Figures

Graphical abstract

12 pages, 4569 KiB  
Article
Safety Evaluation and Population Pharmacokinetics of Camostat Mesylate and Its Major Metabolites Using a Phase I Study
by Gwanyoung Kim, Hyun-ki Moon, Taeheon Kim, So-hye Yun, Hwi-yeol Yun, Jang Hee Hong and Dae-Duk Kim
Pharmaceutics 2023, 15(9), 2357; https://doi.org/10.3390/pharmaceutics15092357 - 21 Sep 2023
Viewed by 1405
Abstract
Camostat mesylate is expected to be promising as a treatment option for COVID-19, in addition to other indications for which it is currently used. Furthermore, in vitro experiments have confirmed the potential of camostat and its metabolites to be effective against COVID-19. Therefore, [...] Read more.
Camostat mesylate is expected to be promising as a treatment option for COVID-19, in addition to other indications for which it is currently used. Furthermore, in vitro experiments have confirmed the potential of camostat and its metabolites to be effective against COVID-19. Therefore, clinical trials were conducted to evaluate the safety and pharmacokinetic characteristics of camostat after single-dose administration. Additionally, we aim to predict the pharmacokinetics of repeated dosing through modeling and simulation based on clinical trials. Clinical trials were conducted on healthy Korean adults, and an analysis was carried out of the metabolites of camostat, GBPA, and GBA. Pharmacokinetic modeling and simulation were performed using Monolix. There were no safety issues (AEs, physical examinations, clinical laboratory tests, vital sign measurements, and ECG) during the clinical trial. The pharmacokinetic characteristics at various doses were identified. It was confirmed that AUC last and Cmax increased in proportion to dose in both GBPA and GBA, and linearity was also confirmed in log-transformed power model regression. Additionally, the accumulation index was predicted (1.12 and 1.08 for GBPA and GBA). The pharmacokinetics of camostat for various dose administrations and indications can be predicted prior to clinical trials using the developed camostat model. Furthermore, it can be used for various indications by connecting it with pharmacodynamic information. Full article
Show Figures

Figure 1

24 pages, 1442 KiB  
Review
Advantages and Prospective Implications of Smart Materials in Tissue Engineering: Piezoelectric, Shape Memory, and Hydrogels
by Keisheni Ganeson, Cindy Tan Xue May, Amirul Al Ashraf Abdullah, Seeram Ramakrishna and Sevakumaran Vigneswari
Pharmaceutics 2023, 15(9), 2356; https://doi.org/10.3390/pharmaceutics15092356 - 20 Sep 2023
Cited by 8 | Viewed by 5685
Abstract
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external [...] Read more.
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these “smart” behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality. Full article
Show Figures

Graphical abstract

14 pages, 2255 KiB  
Article
Camellia sinensis (L.) Kuntze Extract Attenuates Ovalbumin-Induced Allergic Asthma by Regulating Airway Inflammation and Mucus Hypersecretion
by Sohi Kang, Hyun-Yong Kim, A Yeong Lee, Hyo Seon Kim, Jun Hong Park, Byeong Cheol Moon, Hyeon Hwa Nam, Sung-Wook Chae, Bokyung Jung, Changjong Moon, In Sik Shin, Joong Sun Kim and Yun-Soo Seo
Pharmaceutics 2023, 15(9), 2355; https://doi.org/10.3390/pharmaceutics15092355 - 20 Sep 2023
Cited by 3 | Viewed by 1590
Abstract
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects [...] Read more.
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production. Full article
Show Figures

Figure 1

21 pages, 5928 KiB  
Article
Inhalable Combination Powder Formulations for Treating Latent and Multidrug-Resistant Tuberculosis: Formulation and In Vitro Characterization
by Basanth Babu Eedara, Claire Fan, Shubhra Sinha, Prakash Khadka and Shyamal C. Das
Pharmaceutics 2023, 15(9), 2354; https://doi.org/10.3390/pharmaceutics15092354 - 20 Sep 2023
Cited by 3 | Viewed by 1722
Abstract
Tuberculosis (TB) is an infectious disease resulting in millions of deaths annually worldwide. TB treatment is challenging due to a huge number of global latent infections and due to multidrug-resistant forms of TB. Inhaled administration of anti-TB drugs using dry powder inhalers has [...] Read more.
Tuberculosis (TB) is an infectious disease resulting in millions of deaths annually worldwide. TB treatment is challenging due to a huge number of global latent infections and due to multidrug-resistant forms of TB. Inhaled administration of anti-TB drugs using dry powder inhalers has various advantages over oral administration due to its direct drug delivery and minimization of systemic side effects. Pretomanid (PA-824, PA) is a relatively new drug with potent activity against both active and latent forms of Mycobacterium tuberculosis (Mtb). It is also known for its synergistic effects in combination with pyrazinamide (PYR) and moxifloxacin (MOX). Fixed-dose combination powder formulations of either PYR and PA or PYR and MOX were prepared for inhaled delivery to the deep lung regions where the Mtb habitats were located. Powder formulations were prepared by spray drying using L-leucine as the aerosolization enhancer and were characterized by their particle size, morphology and solid-state properties. In vitro aerosolization behaviour was studied using a Next Generation Impactor, and stability was assessed after storage at room temperature and 30% relative humidity for three months. Spray drying with L-leucine resulted in spherical dimpled particles, 1.9 and 2.4 µm in size for PYR-PA and PYR-MOX combinations, respectively. The powder formulations had an emitted dose of >83% and a fine particle fraction of >65%. PA and MOX showed better stability in the combination powders compared to PYR. Combination powder formulations with high aerosolization efficiency for direct delivery to the lungs were developed in this study for use in the treatment of latent and multidrug-resistant TB infections. Full article
(This article belongs to the Special Issue Recent Advances in Amorphous Drug)
Show Figures

Figure 1

29 pages, 19325 KiB  
Article
Mucosal Adhesive Chitosan Nanogel Formulations of Antibiotics and Adjuvants (Terpenoids, Flavonoids, etc.) and Their Potential for the Treatment of Infectious Diseases of the Gastrointestinal Tract
by Igor D. Zlotnikov, Natalya G. Belogurova, Irina V. Poddubnaya and Elena V. Kudryashova
Pharmaceutics 2023, 15(9), 2353; https://doi.org/10.3390/pharmaceutics15092353 - 20 Sep 2023
Cited by 2 | Viewed by 1698
Abstract
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, [...] Read more.
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited. Chitosan and nanogels based on chitosan presumably are not absorbed from the gastrointestinal tract and are known to adhere to the mucus. Therefore, they can serve as a basis for the local delivery of antibacterial drugs, increasing their exposure at the predominant location of therapeutic targets, thus improving the risk/benefit ratio. We have used E. coli ATCC 25922 (as a screening model of pathogenic bacteria) and Lactobacilli (as a model of a normal microbiome) to study the antibacterial activity of antibacterial drugs entrapped in a chitosan nanogel. Classical antibiotics were studied in a monotherapeutic regimen as well as in combination with individual terpenoids and flavonoids as adjuvants. It has been shown that levofloxacin (LF) in combination with zephirol demonstrate synergistic effects against E. coli (cell viability decreased by about 50%) and, surprisingly, a much weaker effect against Lactobacilli. A number of other combinations of antibiotic + adjuvant were also shown to be effective. Using FTIR and UV spectroscopy, it has been confirmed that chitosan nanogels with the drug are well adsorbed on the mucosal model, providing prolonged release at the target location. Using an ABTS assay, the antioxidant properties of flavonoids and other drugs are shown, which are potentially necessary to minimize the harmful effects of toxins and radicals produced by pathogens. In vivo experiments (on sturgeon fish) showed the effective action of antibacterial formulations developed based on LF in chitosan nanogels for up to 11 days. Thus, chitosan nanogels loaded with a combination of drugs and adjuvants can be considered as a new strategy for the treatment of infectious diseases of the gastrointestinal tract. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

15 pages, 3718 KiB  
Article
l-Asparaginase Type II from Fusarium proliferatum: Heterologous Expression and In Silico Analysis
by Samuel Leite Cardoso, Paula Monteiro Souza, Kelly Rodrigues, Isabella de Souza Mota, Edivaldo Ferreira Filho, Léia Cecilia de Lima Fávaro, Felipe Saldanha-Araujo, Mauricio Homem-de-Mello, Adalberto Pessoa, Dâmaris Silveira, Yris Maria Fonseca-Bazzo and Pérola Oliveira Magalhães
Pharmaceutics 2023, 15(9), 2352; https://doi.org/10.3390/pharmaceutics15092352 - 20 Sep 2023
Viewed by 1337
Abstract
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of [...] Read more.
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy. Full article
Show Figures

Figure 1

15 pages, 3721 KiB  
Article
Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study
by Soumalya Chakraborty, Rohit Y. Sathe, Jaydeep H. Chormale, Ashish Dangi, Prasad V. Bharatam and Arvind K. Bansal
Pharmaceutics 2023, 15(9), 2351; https://doi.org/10.3390/pharmaceutics15092351 - 20 Sep 2023
Cited by 2 | Viewed by 1629
Abstract
Different deep eutectic systems (DES) of choline chloride (CC)–urea (UA) (1:2), CC–glycerol (GLY) (1:2), CC–malonic acid (MA) (1:1), and CC–ascorbic acid (AA) (2:1) were generated and characterized by polarized light microscope (PLM) and Fourier transform infrared spectroscope (FTIR). The equilibrium solubility of celecoxib [...] Read more.
Different deep eutectic systems (DES) of choline chloride (CC)–urea (UA) (1:2), CC–glycerol (GLY) (1:2), CC–malonic acid (MA) (1:1), and CC–ascorbic acid (AA) (2:1) were generated and characterized by polarized light microscope (PLM) and Fourier transform infrared spectroscope (FTIR). The equilibrium solubility of celecoxib (CLX) in DES was compared to that in deionized water. The CC–MA (1:1) system provided ~10,000 times improvement in the solubility of CLX (13,114.75 µg/g) and was used for the generation of the CLX–DES system. The latter was characterized by PLM and FTIR to study the microstructure and intermolecular interaction between the CLX and CC–MA (1:1) DES. FTIR demonstrated the retention of the chemical structure of CLX. In vitro drug release studies in FaSSIF initially demonstrated high supersaturation, which decreased by ~2 fold after 2 h. Density functional theory (DFT)-based calculations provided a molecular-level understanding of enhanced solubility. Gibbs free energy calculations established the role of the strongest binding of CLX with CC and MA. A phase solubility study highlighted the role of hydrotropy-induced solubilization of the CLX–DES system. Animal pharmacokinetic studies established 2.76 times improvement in Cmax, 1.52 times reduction in tmax, and 1.81 times improvement in AUC0-∞. The overall results demonstrated the potential of developing a DES-based supersaturating drug-delivery system for pharmaceutical loading of drugs having solubility and dissolution rate-limited oral bioavailability. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

13 pages, 3656 KiB  
Article
Distinguishing the Concentration- vs. Bioaccumulation-Dependent Immunological and Metabolic Effects of Clofazimine
by Andrew R. Willmer, Jennifer Diaz-Espinosa, Austin Zhou, Kathleen A. Stringer and Gus R. Rosania
Pharmaceutics 2023, 15(9), 2350; https://doi.org/10.3390/pharmaceutics15092350 - 20 Sep 2023
Viewed by 1254
Abstract
The antimycobacterial drug clofazimine (CFZ) is used as a single agent at high doses, to suppress the exaggerated inflammation associated with leprosy. Paradoxically, increasing doses of CFZ leads to bioaccumulation of CFZ in the spleen and other organs under physiologically relevant dosing regimens, [...] Read more.
The antimycobacterial drug clofazimine (CFZ) is used as a single agent at high doses, to suppress the exaggerated inflammation associated with leprosy. Paradoxically, increasing doses of CFZ leads to bioaccumulation of CFZ in the spleen and other organs under physiologically relevant dosing regimens, without accompanying dose-dependent elevation in the concentrations of the circulating drug in the blood. In long-term oral dosing regimens, CFZ induces immunological and metabolic changes resulting in splenomegaly, while the mass of other organs decreases or remains unchanged. As an organ that extensively sequesters CFZ as insoluble drug precipitates, the spleen likely influences drug-induced inflammatory signaling. To probe the role of systemic drug concentrations vs. drug bioaccumulation in the spleen, healthy mice were treated with six different dosing regimens. A subgroup of these mice underwent surgical splenectomies prior to drug treatment to assess the bioaccumulation-dependent changes in immune system signaling and immune-system-mediated drug distribution. Under increasing drug loading, the spleen was observed to grow up to six times in size, sequestering over 10% of the total drug load. Interestingly, when the spleen was removed prior to CFZ administration, drug distribution in the rest of the organism was unaffected. However, there were profound cytokine elevations in the serum of asplenic CFZ-treated mice, indicating that the spleen is primarily involved in suppressing the inflammatory signaling mechanisms that are upregulated during CFZ bioaccumulation. Thus, beyond its role in drug sequestration, the spleen actively modulates the systemic effect of CFZ on the immune system, without impacting its blood concentrations or distribution to the rest of the organism. Full article
(This article belongs to the Special Issue Transport and Metabolism of Small-Molecule Drugs, 2nd Edition)
Show Figures

Figure 1

33 pages, 8301 KiB  
Review
Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics
by Panangattukara Prabhakaran Praveen Kumar and Dong-Kwon Lim
Pharmaceutics 2023, 15(9), 2349; https://doi.org/10.3390/pharmaceutics15092349 - 19 Sep 2023
Cited by 21 | Viewed by 3823
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo [...] Read more.
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies. Full article
Show Figures

Figure 1

18 pages, 2264 KiB  
Article
Predicting Volume of Distribution in Neonates: Performance of Physiologically Based Pharmacokinetic Modelling
by Pieter-Jan De Sutter, Phebe Rossignol, Lien Breëns, Elke Gasthuys and An Vermeulen
Pharmaceutics 2023, 15(9), 2348; https://doi.org/10.3390/pharmaceutics15092348 - 19 Sep 2023
Cited by 4 | Viewed by 2076
Abstract
The volume of distribution at steady state (Vss) in neonates is still often estimated through isometric scaling from adult values, disregarding developmental changes beyond body weight. This study aimed to compare the accuracy of two physiologically based pharmacokinetic (PBPK) Vss prediction methods in [...] Read more.
The volume of distribution at steady state (Vss) in neonates is still often estimated through isometric scaling from adult values, disregarding developmental changes beyond body weight. This study aimed to compare the accuracy of two physiologically based pharmacokinetic (PBPK) Vss prediction methods in neonates (Poulin & Theil with Berezhkovskiy correction (P&T+) and Rodgers & Rowland (R&R)) with isometrical scaling. PBPK models were developed for 24 drugs using in-vitro and in-silico data. Simulations were done in Simcyp (V22) using predefined populations. Clinical data from 86 studies in neonates (including preterms) were used for comparison, and accuracy was assessed using (absolute) average fold errors ((A)AFEs). Isometric scaling resulted in underestimated Vss values in neonates (AFE: 0.61), and both PBPK methods reduced the magnitude of underprediction (AFE: 0.82–0.83). The P&T+ method demonstrated superior overall accuracy compared to isometric scaling (AAFE of 1.68 and 1.77, respectively), while the R&R method exhibited lower overall accuracy (AAFE: 2.03). Drug characteristics (LogP and ionization type) and inclusion of preterm neonates did not significantly impact the magnitude of error associated with isometric scaling or PBPK modeling. These results highlight both the limitations and the applicability of PBPK methods for the prediction of Vss in the absence of clinical data. Full article
Show Figures

Figure 1

12 pages, 2460 KiB  
Article
Stability Study of Fosfomycin in Elastomeric Pumps at 4 °C and 34 °C: Technical Bases for a Continuous Infusion Use for Outpatient Parenteral Antibiotic Therapy
by Alessandra Manca, Alice Palermiti, Jacopo Mula, Jessica Cusato, Domenico Maiese, Marco Simiele, Amedeo De Nicolò and Antonio D’Avolio
Pharmaceutics 2023, 15(9), 2347; https://doi.org/10.3390/pharmaceutics15092347 - 19 Sep 2023
Cited by 1 | Viewed by 2085
Abstract
Background: Fosfomycin acts against aerobic Gram−/+ bacteria by blocking the synthesis of peptidoglycan. Its use has been currently re-evaluated for intravenous administration for the treatment of systemic infections by multidrug-resistant bacteria. Concentration-/time-dependent activity has been suggested, with potential clinical advantages from prolonged or [...] Read more.
Background: Fosfomycin acts against aerobic Gram−/+ bacteria by blocking the synthesis of peptidoglycan. Its use has been currently re-evaluated for intravenous administration for the treatment of systemic infections by multidrug-resistant bacteria. Concentration-/time-dependent activity has been suggested, with potential clinical advantages from prolonged or continuous infusion. Nevertheless, little is known about Fosfomycin stability in elastomeric pumps. The aim of the present work was stability investigation before administration at 4 °C and during administration at 34 °C. Methods: InfectoFos® (InfectoPharm s.r.l., Milan, Italy) preparation for intravenous use in elastomeric pumps at 4 °C and 34 °C was analyzed following EMA guidelines for drug stability. Samples were analyzed with an ultra-high performance liquid chromatography coupled with tandem mass spectrometry method on a LX50® UHPLC system equipped with a QSight 220® (Perkin Elmer, Milan, Italy) tandem mass spectrometer. Results: Fosfomycin in elastomeric preparation is stable for at least 5 days at a storage temperature of 4 °C and 34 °C. Conclusions: The results suggest Fosfomycin eligibility for continuous infusion even in the context of outpatient parenteral antibiotic therapy. Therefore, this approach should be tested in clinical and pharmacokinetic studies, in order to evaluate the possible gains in the pharmacokinetic profile and the clinical effectiveness. Full article
Show Figures

Figure 1

24 pages, 11689 KiB  
Article
LC-MS Fingerprinting Development for Standardized Precipitate from Agastache mexicana, Which Induces Antihypertensive Effect through NO Production and Calcium Channel Blockade
by Karla Catalina Cruz-Torres, Samuel Estrada-Soto, Luis Arias-Durán, Gabriel Navarrete-Vázquez, Julio César Almanza-Pérez, Beatriz Mora-Ramiro, Irene Perea-Arango, Emanuel Hernández-Núñez, Rafael Villalobos-Molina, Gabriela Carmona-Castro, Irma-Martha Medina-Díaz and Gabriela Ávila-Villarreal
Pharmaceutics 2023, 15(9), 2346; https://doi.org/10.3390/pharmaceutics15092346 - 19 Sep 2023
Cited by 2 | Viewed by 1996
Abstract
The aim of this work was to evaluate the vasorelaxant and antihypertensive effects of a standardized precipitate of the hydroalcoholic extract from Agastache mexicana (PPAm), comprising ursolic acid, oleanolic acid, acacetin, luteolin and tilianin, among others. In the ex vivo experiments, [...] Read more.
The aim of this work was to evaluate the vasorelaxant and antihypertensive effects of a standardized precipitate of the hydroalcoholic extract from Agastache mexicana (PPAm), comprising ursolic acid, oleanolic acid, acacetin, luteolin and tilianin, among others. In the ex vivo experiments, preincubation with L-NAME (nonspecific inhibitor of nitric oxide synthases) reduced the relaxation induced by PPAm; nevertheless, preincubation with indomethacin (nonspecific inhibitor of cyclooxygenases) did not generate any change in the vasorelaxation, and an opposed effect was observed to the contraction generated by CaCl2 addition. Oral administration of 100 mg/kg of PPAm induced a significant acute decrease in diastolic (DBP) and systolic (SBP) blood pressure in spontaneously hypertensive rats, without changes in heart rate. Additionally, PPAm showed a sustained antihypertensive subacute effect on both DBP and SBP for 10 days compared to the control group. On the other hand, human umbilical vein cells treated with 10 µg/mL of PPAm showed a significant reduction (p < 0.05) in intracellular adhesion molecule-1, compared to the control, but not on vascular cell adhesion molecule-1. In conclusion, PPAm induces a significant antihypertensive effect in acute- and subacute-period treatments, due to its direct vasorelaxant action on rat aortic rings through NO production and Ca2+ channel blockade. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Graphical abstract

53 pages, 8211 KiB  
Review
Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects
by Álvaro Sarabia-Vallejo, María del Mar Caja, Ana I. Olives, M. Antonia Martín and J. Carlos Menéndez
Pharmaceutics 2023, 15(9), 2345; https://doi.org/10.3390/pharmaceutics15092345 - 19 Sep 2023
Cited by 41 | Viewed by 5292
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral [...] Read more.
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state. Full article
(This article belongs to the Special Issue Development of Chitosan/Cyclodextrins in Drug Delivery Field)
Show Figures

Graphical abstract

18 pages, 1897 KiB  
Article
Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform
by Weizhen (Jenny) Wang and Nonna Snider
Pharmaceutics 2023, 15(9), 2344; https://doi.org/10.3390/pharmaceutics15092344 - 19 Sep 2023
Cited by 1 | Viewed by 1662
Abstract
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse [...] Read more.
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse effects and a high burden on the healthcare system. Here, the authors report a novel topical non-invasive ocular delivery platform (NIODP) through the periorbital skin for high-efficiency anterior and posterior ocular delivery in a non-human primate model (NHP). A single dose of about 7 mg JV-MD2 (omega 3 DHA) was delivered via the NIODP and reached the retina at a Cmax of 111 µg/g and the cornea at a Cmax of 66 µg/g. The NIODP also delivered JV-DE1, an anti-inflammatory agent in development for dry eye diseases, as efficiently as eye drops did to the anterior segments of the NHP. The topical NIODP seems to transport drug candidates through the corneal pathway to the anterior and via the conjunctiva/sclera pathway to the posterior segments of the eye. The novel NIODP method has the potential to reshape the landscape of ocular drug delivery. This is especially the case for oily eye drops and retinal delivery, where the success of the treatment lies in the ocular tolerability and bioavailability of drugs in the target tissue. Full article
(This article belongs to the Topic New Challenges in Ocular Drug Delivery)
Show Figures

Figure 1

13 pages, 4058 KiB  
Article
Eflornithine Hydrochloride-Loaded Electrospun Nanofibers as a Potential Face Mask for Hirsutism Application
by Shuruq S. Almuwallad, Dunia A. Alzahrani, Walaa S. Aburayan, Ahmed J. Alfahad, Khulud A. Alsulami, Alhassan H. Aodah, Samar A. Alsudir, Sulaiman S. Alhudaithi and Essam A. Tawfik
Pharmaceutics 2023, 15(9), 2343; https://doi.org/10.3390/pharmaceutics15092343 - 19 Sep 2023
Cited by 2 | Viewed by 1771
Abstract
Hirsutism is a distressing condition that can affect women’s self-esteem due to the excessive amount of hair growth in different body parts, including the face. A temporary managing option is to develop a self-care routine to remove unwanted hair through shaving or waxing. [...] Read more.
Hirsutism is a distressing condition that can affect women’s self-esteem due to the excessive amount of hair growth in different body parts, including the face. A temporary managing option is to develop a self-care routine to remove unwanted hair through shaving or waxing. Laser or electrolysis are alternative methods, but in some cases, the use of medications, such as the topical cream Vaniqa®, can help in reducing the growth of unwanted hair. Electrospun fibers have been used in several drug delivery applications, including skin care products, owing to their biocompatibility, biodegradability, high surface area-to-volume ratio, and dry nature that can release the encapsulated drugs with maximum skin penetration. Therefore, polyvinyl pyrrolidone (PVP) fibers were fabricated in combination with hyaluronic acid to deliver the active compound of Vaniqa®, i.e., Eflornithine hydrochloride (EFH), as a face mask to inhibit excess facial hair growth. The prepared drug-loaded fibers showed a diameter of 490 ± 140 nm, with an encapsulation efficiency of 88 ± 7% and a drug loading capacity of 92 ± 7 μg/mg. The in vitro drug release of EFH-loaded fibers exhibited an initial burst release of 80% in the first 5 min, followed by a complete release after 360 min, owing to the rapid disintegration of the fibrous mat (2 s). The in vitro cytotoxicity indicated a high safety profile of EFH at all tested concentrations (500–15.625 μg/mL) after 24-h exposure to human dermal fibroblast (HFF-1) cells. Therefore, this drug-loaded nanofibrous system can be considered a potentially medicated face mask for the management of hirsutism, along with the moisturizing effect that it possesses. Topical applications of the developed system showed reduced hair growth in mice to a certain extent. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

19 pages, 12959 KiB  
Article
Development and Optimization of a Novel Lozenge Containing a Metronidazole-Peppermint Oil-Tranexamic Acid Self-Nanoemulsified Delivery System to Be Used after Dental Extraction: In Vitro Evaluation and In Vivo Appraisal
by Mohammed Alissa, Ahmed Hjazi, Ghadah S. Abusalim, Ghfren S. Aloraini, Suad A. Alghamdi, Waleed Y. Rizg, Khaled M. Hosny, Jazia A. Alblowi and Hanaa Alkharobi
Pharmaceutics 2023, 15(9), 2342; https://doi.org/10.3390/pharmaceutics15092342 - 19 Sep 2023
Viewed by 2053
Abstract
In-depth studies on essential oil–based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems [...] Read more.
In-depth studies on essential oil–based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems (MZ-PO-TX-SNEDDS) were created and loaded into novel lozenges to act as antifungal, hemostatic, antimicrobial, and analgesic dosage forms after dental extractions. The design-of-experiments approach was used in creating them. To generate the NEs, different concentrations of MZ-PO (240, 180, and 120 mg), 2% TX (600, 450, and 300 mg), and Smix1:1 (600, 400, and 200 mg) were used. The ideal formulation had serum levels of 1530 U/mL of interleukin-6, a minimal inhibitory concentration against bacteria of 1.5 µg/mL, a droplet size of 96 nm, and a blood coagulation time of 16.5 min. Moreover, the produced NE offered better MZ release. The adopted design was used to produce the ideal formulation; it contained 240 mg of MZ-PO, 600 mg of 2% TX, and 600 mg of Smix1:1. It was incorporated into lozenges with acceptable characteristics and an improved capability for drug release. These lozenges had reasonable coagulation times, IL-6 serum levels, and MIC values. All of these characteristics are desirable for managing symptoms following tooth extractions. Therefore, these lozenges loaded with MZ-PO-TX-SNEDDs might be considered a beneficial paradigm for relieving complications encountered after tooth extractions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

14 pages, 2494 KiB  
Article
Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry
by Marcin Skotnicki, Agata Drogoń, Janina Lulek and Marek Pyda
Pharmaceutics 2023, 15(9), 2341; https://doi.org/10.3390/pharmaceutics15092341 - 19 Sep 2023
Viewed by 1101
Abstract
The process of isothermal and non-isothermal physical ageing of amorphous polylactide (PLA) with the active pharmaceutical ingredient, indapamide (IND), was investigated. A PLA–IND system with a 50/50 weight ratio was obtained and characterized using differential scanning calorimetry (DSC). In the 50/50 (w [...] Read more.
The process of isothermal and non-isothermal physical ageing of amorphous polylactide (PLA) with the active pharmaceutical ingredient, indapamide (IND), was investigated. A PLA–IND system with a 50/50 weight ratio was obtained and characterized using differential scanning calorimetry (DSC). In the 50/50 (w/w) mixture, two glass transitions were observed: the first at 64.1 ± 0.3 °C corresponding to the glass transition temperature (Tg) of PLA, and the second at 102.6 ± 1.1 °C corresponding to the Tg of IND, indicating a lack of molecular mixing between the two ingredients. The PLA–IND system was subjected to the isothermal physical ageing process at different ageing temperatures (Ta) for 2 h. It was observed that the highest effect of physical ageing (enthalpy relaxation change) on IND in the PLA–IND system occurred at Ta = 85 °C. Furthermore, the system was annealed for various ageing times at 85 °C. The relaxation enthalpies were estimated for each experiment and fitted to the Kohlrausch–Williams–Watts (KWW) equation. The KWW equation allowed for the estimation of the relaxation time and the parameter describing the distribution of relaxation times of the isothermal physical ageing process of IND in the PLA–IND system. The physical ageing of the PLA–IND mixture (50/50) was also discussed in the context of heat capacity. Moreover, the activation energy and fragility parameters were determined for the PLA–IND (50/50) system. Full article
Show Figures

Figure 1

12 pages, 2232 KiB  
Article
A New Paclitaxel Formulation Based on Secretome Isolated from Mesenchymal Stem Cells Shows a Significant Cytotoxic Effect on Osteosarcoma Cell Lines
by Alessia Giovanna Santa Banche Niclot, Elena Marini, Ivana Ferrero, Francesco Barbero, Elena Rosso, Ivana Fenoglio, Alessandro Barge, Augusto Pessina, Valentina Coccè, Francesca Paino, Katia Mareschi and Franca Fagioli
Pharmaceutics 2023, 15(9), 2340; https://doi.org/10.3390/pharmaceutics15092340 - 19 Sep 2023
Cited by 2 | Viewed by 1404
Abstract
Background: Osteosarcoma (OS) represents a rare cancer with an unfavorable prognosis that needs innovative treatment. The aim was to isolate a secretome from mesenchymal stem cells (MSCs) that are treated with paclitaxel (PTX)-containing microvesicles as a drug delivery system and analyze its cytotoxic [...] Read more.
Background: Osteosarcoma (OS) represents a rare cancer with an unfavorable prognosis that needs innovative treatment. The aim was to isolate a secretome from mesenchymal stem cells (MSCs) that are treated with paclitaxel (PTX)-containing microvesicles as a drug delivery system and analyze its cytotoxic effects on OS cell lines (SJSA, MG63, and HOS). Methods: Three batches of secretome (SECR-1, SECR-2, and SECR-3) were produced from three bone marrow (BM) MSCs samples treated for 24 h with 15 µg/mL of PTX or with a standard medium. The viability of the OS cell lines after 5 days of exposure to SECR-1-2-3 (pure and diluted to 1:2 and 1:4) was analyzed with an MTT assay. The same SECR batches were analyzed with high-performance liquid chromatography (HPLC) and with a nanoparticle tracking assay (NTA). Results: A statistically significant decrease in the viability of all OS cell lines was observed after treatment with SECR-PTX 1-2-3 in a dose–response manner. The NTA analyses showed the presence of nanoparticles (NPs) with a mean size comparable to that of extracellular vesicles (EVs). The HPLC analyses detected the presence of PTX in minimal doses in all SECR batches. Conclusions: This proof-of-concept study showed that the conditioned medium isolated from MSCs loaded with PTX had a strong cytotoxic effect on OS cell lines, due to the presence of EV and PTX. Full article
Show Figures

Figure 1

21 pages, 9606 KiB  
Article
Enhancing Osteoporosis Treatment through Targeted Nanoparticle Delivery of Risedronate: In Vivo Evaluation and Bioavailability Enhancement
by Zoya Saifi, Sadat Shafi, Tanya Ralli, Shreshta Jain, Divya Vohora, Showkat Rasool Mir, Abdulsalam Alhalmi, Omar M. Noman, Ahmad Alahdab and Saima Amin
Pharmaceutics 2023, 15(9), 2339; https://doi.org/10.3390/pharmaceutics15092339 - 18 Sep 2023
Viewed by 1786
Abstract
Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium [...] Read more.
Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium phosphate). In vivo pharmacokinetic and pharmacodynamic studies were performed on osteoporotic rat models treated with different formulations. The osteoporotic model treated with the prepared nanoparticles indicated a significant effect on bone. The relative bioavailability was enhanced for RIS-HA-TCS-mPEG nanoparticles given orally compared to RIS-HA-TCS, marketed, and API suspension. Biochemical investigations also showed a significant change in biomarker levels, ultimately leading to bone formation/resorption. Micro-CT analysis of bone samples also demonstrated that the RIS-HA-TCS-mPEG-treated group showed the best results compared to other treatment groups. Moreover, the histology of bone treated with RIS-HA-TCS-mPEG showed a marked restoration of the architecture of trabecular bone along with a well-connected bone matrix and narrow inter-trabecular spaces compared to the toxic group. A stability analysis was also carried out according to ICH guidelines (Q1AR2), and it was found that RIS-HA-TCS-mPEG was more stable than RIS-HA-TCS at 25 °C. Thus, the results of present study indicated that mPEG-RIS-HA-TCS has excellent potential for sustained delivery of RIS for the treatment and prevention of osteoporosis, and for minimizing the adverse effects of RIS typically induced via oral administration. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 3158 KiB  
Article
Caco-2 Cell Sheet Partially Laminated with HT29-MTX Cells as a Novel In Vitro Model of Gut Epithelium Drug Permeability
by Yi Cheng, Chie Watanabe, Yusuke Ando, Satoshi Kitaoka, Yuya Egawa, Tomoya Takashima, Akihiro Matsumoto and Masahiro Murakami
Pharmaceutics 2023, 15(9), 2338; https://doi.org/10.3390/pharmaceutics15092338 - 18 Sep 2023
Cited by 3 | Viewed by 2517
Abstract
The intestinal epithelial Caco-2 cell monolayer is a well-established in vitro model useful for predicting intestinal drug absorption in humans. Coculture models of Caco-2 and goblet-cell-like HT29-MTX cells have been developed to overcome the lack of a mucus layer; however, those models are [...] Read more.
The intestinal epithelial Caco-2 cell monolayer is a well-established in vitro model useful for predicting intestinal drug absorption in humans. Coculture models of Caco-2 and goblet-cell-like HT29-MTX cells have been developed to overcome the lack of a mucus layer; however, those models are much leakier compared to the intestinal epithelium. Here, we developed a partially laminated culture model where HT29-MTX cells were superimposed onto a Caco-2 monolayer to overcome this issue. A morphological study showed that the piled HT29-MTX cells were voluntarily incorporated into the Caco-2 monolayer, and mucus production was confirmed via periodic acid-Schiff and mucin protein 2 staining. Permeability was evaluated in terms of transepithelial electrical resistance (TEER) and the apparent permeability of paracellular markers with different molecular sizes. The partially laminated model maintained the high barrier function of the Caco-2 monolayer, whose permeability appeared adjustable according to the HT29-MTX/Caco-2 cell ratio. In contrast, the coculture models showed abnormally high permeability of those markers, correlated with low TEER. Thus, the partially laminated model enabled in vitro recapitulation of effective mucosal barrier function. Consequently, this novel model may be useful as an in vitro high-throughput evaluation system for enteral mucosal permeability and mucus-penetrating efficiency of drugs and nanocarriers. Full article
Show Figures

Figure 1

28 pages, 9979 KiB  
Review
Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment
by Rile Ou, Gerile Aodeng and Jun Ai
Pharmaceutics 2023, 15(9), 2337; https://doi.org/10.3390/pharmaceutics15092337 - 18 Sep 2023
Cited by 6 | Viewed by 2321
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global [...] Read more.
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment. Full article
(This article belongs to the Special Issue New Properties of Supramolecular Complexes and Drug Nanoparticles)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop