Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Sample Preparation
2.2. Methods
2.2.1. Determination of the Enthalpy Relaxation
2.2.2. Heat Capacity Calculations
2.2.3. Determination of Fragility Parameter
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hancock, B.C.; Shamblin, S.L. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim. Acta 2001, 380, 95–107. [Google Scholar] [CrossRef]
- Craig, D.Q.M.; Royall, P.G.; Kett, V.L.; Hopton, M.L. The relevance of the amorphous state to pharmaceutical dosage forms: Glassy drugs and freeze dried systems. Int. J. Pharm. 1999, 179, 179–207. [Google Scholar] [CrossRef] [PubMed]
- Duncan, Q.M.; Craig, M.R. (Eds.) Thermal Analysis of Pharmaceuticals; CRC Press: Boca Raton, FL, USA, 2006; ISBN 1420014897/9781420014891. [Google Scholar]
- Zhou, D.; Zhang, G.G.Z.; Law, D.; Grant, D.J.W.; Schmitt, E.A. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 2002, 91, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, D.N. Solid dispersions, Part I: Recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2011, 8, 1501–1519. [Google Scholar] [CrossRef]
- Hancock, B.C.; Shamblin, S.L.; Zografi, G. Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures. Pharm. Sci. 1995, 12, 799–806. [Google Scholar] [CrossRef]
- Qian, F.; Huang, J.; Hussain, M.A. Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci. 2010, 99, 2941–2947. [Google Scholar] [CrossRef]
- Hancock, B.C.; Zografi, G. Characteristics and Significance of the Amorphous State in Pharmaceutical Systems. J. Pharm. Sci. 1997, 86, 1. [Google Scholar] [CrossRef]
- Guo, J.H.; Robertson, R.E.; Amidon, G.L. Influence of Physical Aging on Mechanical Properties of Polymer Free Films: The Prediction of Long-Term Aging Effects on the Water Permeability and Dissolution Rate of Polymer Film-Coated Tablets. Pharm. Res. 1991, 8, 1500–1504. [Google Scholar] [CrossRef]
- Jones, T.M. CHAPTER 1: Preformulation Studies. In RSC Drug Discovery Series; Royal Society of Chemistry: London, UK, 2018; Volume 2018-January, pp. 1–20. [Google Scholar]
- Yoshioka, M.; Hancock, B.C.; Zografi, G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 1994, 83, 1700–1705. [Google Scholar] [CrossRef]
- Kissi, E.O.; Grohganz, H.; Löbmann, K.; Ruggiero, M.T.; Zeitler, J.A.; Rades, T. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. J. Phys. Chem. B 2018, 122, 2803–2808. [Google Scholar] [CrossRef]
- Hancock, B.C.; Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000, 17, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Graeser, K.A.; Patterson, J.E.; Zeitler, J.A.; Gordon, K.C.; Rades, T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur. J. Pharm. Sci. 2009, 37, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Dinunzio, J.C.; Miller, D.A.; Yang, W.; McGinity, J.W.; Williams, R.O. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol. Pharm. 2008, 5, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, E.; Makita, M.; Yamamura, S. Some physicochemical properties of glassy indomethacin. Chem. Pharm. Bull. 1986, 34, 4314–4321. [Google Scholar] [CrossRef] [PubMed]
- Struik, L.C.E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1977; ISBN 0-444-41655-2. [Google Scholar]
- Tian, B.; Zhang, L.; Pan, Z.; Gou, J.; Zhang, Y.; Tang, X. A comparison of the effect of temperature and moisture on the solid dispersions: Aging and crystallization. Int. J. Pharm. 2014, 475, 385–392. [Google Scholar] [CrossRef]
- Nagai, K.; Sugawara, A.; Kazama, S.; Freeman, B.D. Effects of physical aging on solubility, diffusivity, and permeability of propane and n-butane in poly(4-methyl-2-pentyne). J. Polym. Sci. Part B Polym. Phys. 2004, 42, 2407–2418. [Google Scholar] [CrossRef]
- Qi, S.; Avalle, P.; Saklatvala, R.; Craig, D.Q.M. An investigation into the effects of thermal history on the crystallisation behaviour of amorphous paracetamol. Eur. J. Pharm. Biopharm. 2008, 69, 364–371. [Google Scholar] [CrossRef]
- Cui, L.; Imre, B.; Tátraaljai, D.; Pukánszky, B. Physical ageing of Poly(lactic acid): Factors and consequences for practice. Polymer 2020, 186, 122014. [Google Scholar] [CrossRef]
- Rawat, A.; Burgess, D.J. Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int. J. Pharm. 2011, 415, 164–168. [Google Scholar] [CrossRef]
- Luthra, S.A.; Hodge, I.M.; Utz, M.; Pikal, M.J. Correlation of annealing with chemical stability in lyophilized pharmaceutical glasses. J. Pharm. Sci. 2008, 97, 5240–5251. [Google Scholar] [CrossRef]
- Pölöskei, K.; Csézi, G.; Hajba, S.; Tábi, T. Investigation of the thermoformability of various D-Lactide content poly(lactic acid) films by ball burst test. Polym. Eng. Sci. 2020, 60, 1266–1277. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, B.; Bian, X.; Li, G.; Chen, Z.; Chen, X. Thermal Properties of Polylactides with Different Stereoisomers of Lactides Used as Comonomers. Macromolecules 2017, 50, 6064–6073. [Google Scholar] [CrossRef]
- Ahmed, J.; Varshney, S.K. Polylactides—Chemistry, Properties and Green Packaging Technology: A Review. Int. J. Food Prop. 2011, 14, 37–58. [Google Scholar] [CrossRef]
- Auras, R.; Lim, L.; Selke, S.; Tsuji, H. (Eds.) Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 978-1-118-08813-5. [Google Scholar]
- Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [Google Scholar] [CrossRef]
- Le Verger, M.L.; Fluckiger, L.; Kim, Y.I.; Hoffman, M.; Maincent, P. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur. J. Pharm. Biopharm. 1998, 46, 137–143. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, S. Study of Metoprolol Tartrate delivery from biodegradable polymeric in situ implants for parenteral administration. Int. J. Pharm. Pharm. Sci. 2011, 3, 147–151. [Google Scholar]
- Caruso, F.S.; Szabadi, R.R.; Vukovich, R.A. Pharmacokinetics and clinical pharmacology of indapamide. Am. Heart J. 1983, 106, 212–220. [Google Scholar] [CrossRef]
- Wojnarowska, Z.; Grzybowska, K.; Hawelek, L.; Dulski, M.; Wrzalik, R.; Gruszka, I.; Paluch, M.; Pienkowska, K.; Sawicki, W.; Bujak, P.; et al. Molecular dynamics, physical stability and solubility advantage from amorphous indapamide drug. Mol. Pharm. 2013, 10, 3612–3627. [Google Scholar] [CrossRef]
- FDA Approved Drug Product Lozol: Indapamide. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/018538s028lbl.pdf (accessed on 13 September 2023).
- Skotnicki, M.; Drogoń, A.; Calvin, J.J.; Rosen, P.F.; Woodfield, B.F.; Pyda, M. Heat capacity and enthalpy of indapamide. Thermochim. Acta 2019, 674, 36–43. [Google Scholar] [CrossRef]
- Drogoń, A.; Skotnicki, M.; Skotnicka, A.; Pyda, M. Physical ageing of amorphous indapamide characterised by differential scanning calorimetry. Pharmaceutics 2020, 12, 800. [Google Scholar] [CrossRef] [PubMed]
- Blaabjerg, L.I.; Lindenberg, E.; Löbmann, K.; Grohganz, H.; Rades, T. Glass forming ability of amorphous drugs investigated by continuous cooling and isothermal transformation. Mol. Pharm. 2016, 13, 3318–3325. [Google Scholar] [CrossRef] [PubMed]
- Baird, J.A.; Van Eerdenbrugh, B.; Taylor, L.S. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 2010, 99, 3787–3806. [Google Scholar] [CrossRef]
- McKenna, G.B. Glass Formation and Glassy Behavior. Compr. Polym. Sci. Suppl. 1989, 2, 311–362. [Google Scholar] [CrossRef]
- McKenna, G.B.; Simon, S.L. The Glass Transition: Its Measurement and Underlying Physics. 2002. Available online: https://www.nist.gov/publications/glass-transition-its-measurement-and-underlying-physics (accessed on 13 September 2023).
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; ISBN 3540236295. [Google Scholar]
- Monnier, X.; Saiter, A.; Dargent, E. Physical aging in PLA through standard DSC and fast scanning calorimetry investigations. Thermochim. Acta 2017, 648, 13–22. [Google Scholar] [CrossRef]
- Hutchinson, J.M. Physical aging of polymers. Prog. Polym. Sci. 1995, 20, 703–760. [Google Scholar] [CrossRef]
- Hodge, I.M. Enthalpy relaxation and recovery in amorphous materials. J. Non. Cryst. Solids 1994, 169, 211–266. [Google Scholar] [CrossRef]
- Kohlrausch, R. Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. 1854, 167, 179–214. [Google Scholar] [CrossRef]
- Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85. [Google Scholar] [CrossRef]
- Angell, C.A. Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems. J. Non-Cryst. Solids 1991, 131–133, 13–31. [Google Scholar] [CrossRef]
- Tanaka, H. Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J. Non. Cryst. Solids 2005, 351, 678–690. [Google Scholar] [CrossRef]
- Pyda, M.; Hu, X.; Cebe, P. Heat capacity of silk fibroin based on the vibrational motion of poly(amino acid)s in the presence and absence of water. Macromolecules 2008, 41, 4786–4793. [Google Scholar] [CrossRef]
- Pyda, M. Conformational contribution to the heat capacity of the starch and water system. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 3038–3054. [Google Scholar] [CrossRef]
- Pyda, M.; Zawada, P.; Drogon, A.; Skotnicki, M.; Cebe, P. Vibrational heat capacity of collagen and collagen–water. J. Therm. Anal. Calorim. 2019, 138, 3389–3401. [Google Scholar] [CrossRef]
- Malmgren, T.; Mays, J.; Pyda, M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J. Therm. Anal. Calorim. 2006, 83, 35–40. [Google Scholar] [CrossRef]
- Pionteck, J.; Pyda, M. Polymers·Part 2: Thermodynamic Properties—pVT-Data and Thermal Properties; Arndt, K.-F., Lechner, M.D., Eds.; Landolt-Boernstein-Polymer; Springer: Berlin/Heidelberg, Germany, 2014; Volume 6A2. [Google Scholar]
- Pyda, M.; Bopp, R.C.; Wunderlich, B. Heat capacity of poly(lactic acid). J. Chem. Thermodyn. 2004, 36, 731–742. [Google Scholar] [CrossRef]
- Lu, Q.; Zografi, G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm. Res. 1998, 15, 1202–1206. [Google Scholar] [CrossRef]
- Rumondor, A.C.F.; Ivanisevic, I.; Bates, S.; Alonzo, D.E.; Taylor, L.S. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm. Res. 2009, 26, 2523–2534. [Google Scholar] [CrossRef]
- Martínez, L.M.; Videa, M.; López Silva, T.; Castro, S.; Caballero, A.; Lara-Díaz, V.J.; Castorena-Torres, F. Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur. J. Pharm. Biopharm. 2017, 119, 243–252. [Google Scholar] [CrossRef]
- Drogoń, A.; Skotnicki, M.; Pyda, M. Physical aging of polylactide-valsartan system investigated by differential scanning calorimetry. Polimery 2020, 65, 533–541. [Google Scholar] [CrossRef]
- Shamblin, S.L.; Hancock, B.C.; Dupuis, Y.; Pikal, M.J. Interpretation of relaxation time constants for amorphous pharmaceutical systems. J. Pharm. Sci. 2000, 89, 417–427. [Google Scholar] [CrossRef]
- Tombari, E.; Ferrari, C.; Johari, G.P.; Shanker, R.M. Calorimetric relaxation in pharmaceutical molecular glasses and its utility in understanding their stability against crystallization. J. Phys. Chem. B 2008, 112, 10806–10814. [Google Scholar] [CrossRef] [PubMed]
Sample (w%/w%) | Tg ± SD/°C | Δcp at Tg ± SD/J·g–1·°C–1 |
---|---|---|
PLA (100/0) | 56.7 ± 0.8 | 0.56 ± 0.01 |
PLA–IND (50/50) | 64.1 ± 0.3/102.6 ± 1.1 | 0.35 ± 0.01/0.145 ± 0.01 |
IND (0/100) | 103.9 ± 1.1 | 0.44 ± 0.01 |
Sample | /J·g−1 | /– | /h |
---|---|---|---|
IND * | 7.92 | 0.33 | 28 |
IND in the PLA–IND (50/50) system | 2.56 | 0.46 | 4.75 |
Sample | Energy Activation, ΔEa ± SD/kJ/mol | Fragility Parameter, m ± SD/– |
---|---|---|
IND in the PLA–IND (50/50) system | 452.5 ± 18.5 | 63 ± 3 |
IND | 473 ± 51 | 66 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicki, M.; Drogoń, A.; Lulek, J.; Pyda, M. Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry. Pharmaceutics 2023, 15, 2341. https://doi.org/10.3390/pharmaceutics15092341
Skotnicki M, Drogoń A, Lulek J, Pyda M. Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry. Pharmaceutics. 2023; 15(9):2341. https://doi.org/10.3390/pharmaceutics15092341
Chicago/Turabian StyleSkotnicki, Marcin, Agata Drogoń, Janina Lulek, and Marek Pyda. 2023. "Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry" Pharmaceutics 15, no. 9: 2341. https://doi.org/10.3390/pharmaceutics15092341
APA StyleSkotnicki, M., Drogoń, A., Lulek, J., & Pyda, M. (2023). Physical Ageing of Amorphous Poly(lactic acid)-Indapamide System Studied by Differential Scanning Calorimetry. Pharmaceutics, 15(9), 2341. https://doi.org/10.3390/pharmaceutics15092341