Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation and Characterization of Prototype DES
2.2.2. Equilibrium Solubility Determination of CLX in DESs
2.2.3. Preparation and Characterization of Prototype CLX–DES System
2.2.4. Accelerated Stability Study
2.2.5. In Vitro Drug Release Study
2.2.6. Solid State Characterization of Precipitate
2.2.7. Phase Solubility Determination of CLX in Mixtures of DES and FaSSIF at Varying Proportions
2.2.8. Quantum Chemical (In Silico) Study
2.2.9. In Vivo Pharmacokinetic Study
3. Results and Discussion
3.1. Characterization of DES
3.2. Equilibrium Solubility of CLX in DES
3.3. Characterization of CLX–DES System
3.4. Accelerated Stability Study
3.5. In Vitro Drug Release Study
3.6. Mechanistic Investigation of Enhanced Solubility of CLX in the CC–MA (1:1) DES
3.7. Mechanistic Investigation of Improved Drug Release of the CLX–DES Formulation
3.8. In Vivo Pharmacokinetic Study
4. Insights on DES-Based Formulation Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M. Dissolution Enhancement of Active Pharmaceutical Ingredients by Therapeutic Deep Eutectic Systems. Eur. J. Pharm. Biopharm. 2016, 98, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation Design for Poorly Water-Soluble Drugs Based on Biopharmaceutics Classification System: Basic Approaches and Practical Applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aroso, I.M.; Craveiro, R.; Rocha, Â.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Paiva, A.; Rita, A.; Duarte, C. Design of Controlled Release Systems for THEDES—Therapeutic Deep Eutectic Solvents, Using Supercritical Fluid Technology. Int. J. Pharm. 2015, 492, 73–79. [Google Scholar] [CrossRef]
- Jeliński, T.; Przybylek, M.; Cysewski, P. Natural Deep Eutectic Solvents as Agents for Improving Solubility, Stability and Delivery of Curcumin. Pharm. Res. 2019, 36, 116. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Reis, R.L.; Sa, I.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ibsen, K.; Iwao, Y.; Zakrewsky, M.; Mitragotri, S. Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Adv. Healthc. Mater. 2017, 6, 1601411. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chormale, J.; Bansal, A. Deep Eutectic Systems: An Overview of Fundamental Aspects, Current Understandings and Drug Delivery Applications. Int. J. Pharm. 2021, 610, 121203. [Google Scholar] [CrossRef]
- Emami, S.; Shayanfar, A. Deep Eutectic Solvents for Pharmaceutical Formulation and Drug Delivery Applications. Pharm. Dev. Technol. 2020, 27, 779–796. [Google Scholar] [CrossRef]
- Palmelund, H.; Eriksen, J.B.; Bauer-Brandl, A.; Rantanen, J.; Löbmann, K. Enabling Formulations of Aprepitant: In Vitro and in Vivo Comparison of Nanocrystalline, Amorphous and Deep Eutectic Solvent Based Formulations. Int. J. Pharm. X 2021, 3, 10083. [Google Scholar] [CrossRef]
- Faggian, M.; Sut, S.; Perissutti, B.; Baldan, V.; Grabnar, I.; Acqua, S.D. Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals. Molecules 2016, 21, 1531. [Google Scholar] [CrossRef]
- Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Id, F.M.; Voinovich, D.; et al. Natural Deep Eutectic Solvents (NADES) to Enhance Berberine Absorption: An In Vivo Pharmacokinetic Study. Molecules 2017, 22, 1921. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Q.; Liu, M.; Zhang, L. The Effect of Deep Eutectic Solvent on the Pharmacokinetics of Salvianolic Acid B in Rats and Its Acute Toxicity Test. J. Chromatogr. B 2017, 1063, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Dangre, P.V.; Korekar, P.P.; Borkar, M.R.; Chaturvedi, K.K.; Borikar, S.P.; Pethe, A.M. Tailoring Deep Eutectic Solvents to Provoke Solubility and Bioavailability of Naringin: Implications of a Computational Approach. ACS Omega 2023, 8, 12820–12829. [Google Scholar] [CrossRef] [PubMed]
- Bolla, G.; Mittapalli, S.; Nangia, A. Celecoxib Cocrystal Polymorphs with Cyclic Amides: Synthons of a Sulfonamide Drug with Carboxamide Coformers. Cryst. Eng. Commun. 2014, 16, 24–27. [Google Scholar] [CrossRef]
- Gupta, P.; Kakumanu, V.K.; Bansal, A.K. Stability and Solubility of Celecoxib-PVP Amorphous Dispersions: A Molecular Perspective. Pharm. Res. 2004, 21, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M. In Vitro and In Vivo Evaluation of Proniosomes Containing Celecoxib for Oral Administration. AAPS PharmSciTech 2010, 11, 85–89. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 32, 70–71. [Google Scholar] [CrossRef]
- Gurkan, B.; Squire, H.; Pentzer, E. Metal-Free Deep Eutectic Solvents: Preparation, Physical Properties, and Significance. J. Phys. Chem. Lett. 2019, 10, 7956–7964. [Google Scholar] [CrossRef]
- Glomme, A.; Marz, J.; Dressman, J. Comparison of a Miniaturized Shake-Flask Solubility Method with Automated Potentiometric Acid/Base Titrations and Calculated Solubilities. J. Pharm. Sci. 2005, 94, 1–16. [Google Scholar] [CrossRef]
- Soares, B.; Tavares, D.; Amaral, J.; Silvestre, A.; Freire, C.; Coutinho, J. Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 4056–4065. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, L.; Xing, Y.; Zhao, Y.; Wang, Z.; Han, J. Enhanced Oral Bioavailability of Celecoxib Nanocrystalline Solid Dispersion Based on Wet Media Milling Technique: Formulation, Optimization and in Vitro/In Vivo Evaluation. Pharmaceutics 2019, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Ferreira, A.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A Comparison between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Siciliano, C.; Procopio, D.; Curcio, F.; Laganà, A.; Di Gioia, M.; Cassano, R. Deep Eutectic Solvents for Improving the Solubilization and Delivery of Dapsone. Pharmaceutics 2022, 14, 333. [Google Scholar] [CrossRef] [PubMed]
- Delgado-mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J. Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Thorat, G.; Jadhav, H.S.; Roy, A.; Seo, J.G. Dual Role of Deep Eutectic Solvent as a Solvent and Template for the Synthesis of Octahedral Cobalt Vanadate for Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2018, 20, 210–234. [Google Scholar] [CrossRef]
- Hossain, M.; Rahman, M.; Yelle, D.; Shang, H.; Sun, Z.; Renneckar, S.; Dong, J.; Tulaphol, S.; Sathisukanoh, S. Effects of Polyol-Based Deep Eutectic Solvents on the Efficiency of Rice Straw Enzymatic Hydrolysis. Ind. Crop. Prod. 2021, 167, 113480. [Google Scholar] [CrossRef]
- Ahmedi, R.; Hemmateenejad, B.; Safavi, A.; Sojaeiferd, Z.; Shahsavar, A.; Mohajeri, A.; Heydari-Dokoohaki, M.; Zolghadr, A. Deep Eutectic-Water Binary Solvent Associations Investigated by Vibrational Spectroscopy and Chemometrics. Phys. Chem. Chem. Phys. 2018, 20, 18463–18473. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, K.; Chen, J.; Yu, J. Ascorbic Acid and Choline Chloride: A New Natural Deep Eutectic Solvent for Extracting Tert-Tertbutylhydroquinone Antioxidant. J. Mol. Liq. 2018, 260, 173–179. [Google Scholar] [CrossRef]
- Kale, D.P.; Puri, V.; Kumar, A.; Kumar, N.; Bansal, A.K. The Role of Cocrystallization-Mediated Altered Crystallographic Properties on the Tabletability of Rivaroxaban and Malonic Acid. Pharmaceutics 2020, 12, 546. [Google Scholar] [CrossRef]
- Srivastava, D.; Fatima, F.; Kaur, C.; Mishra, A.; Nashik, S.; Rizvi, D.; Prasad, R. Glibenclamide–Malonic Acid Cocrystal with an Enhanced Solubility and Bioavailability. Drug Dev. Ind. Pharm. 2022, 48, 417–424. [Google Scholar] [CrossRef]
- Shimpi, M.; Alhayali, A.; Cavanagh, K.; Rodríguez-Hornedo, N.; Velaga, S. Tadalafil–Malonic Acid Cocrystal: Physicochemical Characterization, PH-Solubility, and Supersaturation Studies. Cryst. Growth Des. 2018, 18, 4378–4387. [Google Scholar] [CrossRef]
- Alsirawan, M.; Lai, X.; Prohens, R.; Vangala, C.; Pagire, S.; Shelley, P.; Bannan, T.; Topping, T.; Paradkar, A. Solid-State Competitive Destabilization of Caffeine Malonic Acid Cocrystal: Mechanistic and Kinetic Investigations. Cryst. Growth Des. 2020, 20, 7598–7608. [Google Scholar] [CrossRef]
- Limwikrant, W.; Nagai, A.; Hagiwara, Y.; Higashi, K.; Yamamoto, K.; Moribe, K. Formation Mechanism of a New Carbamazepine/Malonic Acid Cocrystal Polymorph. Int. J. Pharm. 2012, 431, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Chawla, G.; Gupta, P.; Thilagavathi, R.; Chakraborti, A.K.; Bansal, A.K. Characterization of Solid-State Forms of Celecoxib. Eur. J. Pharm. Sci. 2003, 20, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.; Silvestre, A.J.D.; Rodrigues Pinto, P.C.; Freire, C.S.R.; Coutinho, J.A.P. Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 12485–12493. [Google Scholar] [CrossRef]
- Silva, J.M.M.; Reis, R.L.; Paiva, A.; Rita, A.; Duarte, C. Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustain. Chem. Eng. 2018, 6, 10355–10366. [Google Scholar] [CrossRef]
- Cláudio, A.F.M.; Neves, M.C.; Shimizu, K.; Canongia Lopes, J.N.; Freire, M.G.; Coutinho, J.A.P. The Magic of Aqueous Solutions of Ionic Liquids: Ionic Liquids as a Powerful Class of Catanionic Hydrotropes. Green Chem. 2015, 17, 3948–3963. [Google Scholar] [CrossRef]
- Mukesh, S.; Joshi, P.; Bansal, A.K.; Kashyap, M.; Mandal, S.; Sathe, V.; Sangamwar, A.T. Amorphous Salts Solid Dispersions of Celecoxib: Enhanced Biopharmaceutical Performance and Physical Stability. Mol. Pharm. 2021, 18, 2334–2348. [Google Scholar] [CrossRef]
- Rozas, S.; Benito, C.; Alcalde, R.; Atilhan, M.; Aparicio, S. Insights on the Water Effect on Deep Eutectic Solvents Properties and Structuring: The Archetypical Case of Choline Chloride + Ethylene Glycol. J. Mol. Liq. 2021, 344, 117717. [Google Scholar] [CrossRef]
- Paul, R.; Mitra, A.; Paul, S. Phase Separation Property of a Hydrophobic Deep Eutectic Solvent-Water Binary Mixture: A Molecular Dynamics Simulation Study. J. Chem. Phys. 2021, 154, 244504. [Google Scholar] [CrossRef]
- Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J. Phys. Chem. B 2022, 126, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chemie-Int. Ed. 2017, 56, 9782–9785. [Google Scholar] [CrossRef] [PubMed]
- Barani pour, S.; JahanbinSardroodi, J.; RastkarEbrahimzadeh, A.; Pazuki, G. Investigation the Effect of Water Addition on Intermolecular Interactions of Fatty Acids-Based Deep Eutectic Solvents by Molecular Dynamics Simulations. Sci. Rep. 2023, 13, 7433. [Google Scholar] [CrossRef]
- Scheff, J.D.; Almon, R.R.; Dubois, D.C.; Jusko, W.J.; Androulakis, I.P. Assessment of Pharmacologic Area under the Curve When Baselines Are Variable. Pharm. Res. 2011, 28, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Chavan, R.B.; Modi, S.R.; Bansal, A.K. Role of Solid Carriers in Pharmaceutical Performance of Solid Supersaturable SEDDS of Celecoxib. Int. J. Pharm. 2015, 495, 374–384. [Google Scholar] [CrossRef]
Excipient Combination | Molar Ratio | Temperature (°C) | Mixing Rate (rpm) | |
---|---|---|---|---|
Hydrogen Bond Acceptor (HBA) | Hydrogen Bond Donor (HBD) | |||
Choline chloride (CC) Molar Mass= 139.62 g/mole | Urea (UA) Molar Mass= 60.06 g/mole | 1:2 | 80 | 500 |
Glycerol (GLY) Molar Mass= 92.09 g/mole | 1:2 | 80 | 500 | |
Malonic acid (MA) Molar Mass= 104.06 g/mole | 1:1 | 60 | 500 | |
Ascorbic acid (AA) Molar Mass= 176.12 g/mole | 2:1 | 80 | 500 |
DES | Equilibrium Solubility; SDES(µg/g) (Swater = 1.21 ± 0.02 µg/g) | Enhancement Factor (S = SDES/SWater) |
---|---|---|
CC–UA (1:2) | 1562.50 ± 7.16 | 1291 |
CC–GLY (1:2) | 5383.90 ± 5.95 | 4449 |
CC–MA (1:1) | 13,114.8 ± 6.03 | 10,838 |
CC–AA (2:1) | 2364.73 ± 2.48 | 1954 |
Pharmacokinetic Parameter | Crystalline CLX | CLX–DES System | Order of Change in CLX–DES System |
---|---|---|---|
Cmax (ng/mL) | 195.39 | 540.41 | 2.76 |
Tmax (h) | 4.1 | 2.7 | 1.52 |
AUC0–∞ (ng/mL.h) | 5708.04 | 10,354.8 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Sathe, R.Y.; Chormale, J.H.; Dangi, A.; Bharatam, P.V.; Bansal, A.K. Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study. Pharmaceutics 2023, 15, 2351. https://doi.org/10.3390/pharmaceutics15092351
Chakraborty S, Sathe RY, Chormale JH, Dangi A, Bharatam PV, Bansal AK. Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study. Pharmaceutics. 2023; 15(9):2351. https://doi.org/10.3390/pharmaceutics15092351
Chicago/Turabian StyleChakraborty, Soumalya, Rohit Y. Sathe, Jaydeep H. Chormale, Ashish Dangi, Prasad V. Bharatam, and Arvind K. Bansal. 2023. "Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study" Pharmaceutics 15, no. 9: 2351. https://doi.org/10.3390/pharmaceutics15092351
APA StyleChakraborty, S., Sathe, R. Y., Chormale, J. H., Dangi, A., Bharatam, P. V., & Bansal, A. K. (2023). Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study. Pharmaceutics, 15(9), 2351. https://doi.org/10.3390/pharmaceutics15092351