Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and PBMCs from Healthy Volunteers
2.2. Isolation of PBMCs
2.3. Extraction of TAC and MPA from PBMCs in Clinical Samples
2.4. Preparation of Standards and QC Samples
2.5. LC-MS/MS System
3. LC-MS/MS Assay Validation
3.1. Calibration Curve
3.2. Selectivity and Specificity
3.3. Lower Limit of Quantification
3.4. Precision and Accuracy
3.5. Matrix and Carryover Effects
3.6. Stability
3.7. Clinical Application
3.8. Follow-Up Endpoint
3.9. Statistical Analyses
4. Results
4.1. Selectivity and Specificity
4.2. Precision, Accuracy, and LLOQ
4.3. Matrix and Carryover Effects
4.4. Stability
4.5. Clinical Application
4.6. Follow-Up Outcome
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, C.Y.; Tang, S.C.W. Personalized immunosuppression after kidney transplantation. Nephrology 2022, 27, 475–483. [Google Scholar] [CrossRef]
- Allison, A.C.; Eugui, E.M. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005, 80, S181–S190. [Google Scholar] [CrossRef]
- Allison, A.C. Mechanisms of action of mycophenolate mofetil. Lupus 2005, 14 (Suppl. S1), s2–s8. [Google Scholar] [CrossRef]
- Dumont, F.J. FK506, an immunosuppressant targeting calcineurin function. Curr. Med. Chem. 2000, 7, 731–748. [Google Scholar] [CrossRef]
- Li, H.; Rao, A.; Hogan, P.G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 2011, 21, 91–103. [Google Scholar] [CrossRef]
- Mercè Brunet, P. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- Bouamar, R.; Shuker, N.; Hesselink, D.A.; Weimar, W.; Ekberg, H.; Kaplan, B.; Bernasconi, C.; van Gelder, T. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: A pooled analysis from three randomized-controlled clinical trials. Am. J. Transplant. 2013, 13, 1253–1261. [Google Scholar] [CrossRef]
- Daher Abdi, Z.; Prémaud, A.; Essig, M.; Alain, S.; Munteanu, E.; Garnier, F.; Le Meur, Y.; Marquet, P.; Rousseau, A. Exposure to mycophenolic acid better predicts immunosuppressive efficacy than exposure to calcineurin inhibitors in renal transplant patients. Clin. Pharmacol. Ther. 2014, 96, 508–515. [Google Scholar] [CrossRef]
- Zahir, H.; Nand, R.A.; Brown, K.F.; Tattam, B.N.; McLachlan, A.J. Validation of methods to study the distribution and protein binding of tacrolimus in human blood. J. Pharmacol. Toxicol. Methods 2001, 46, 27–35. [Google Scholar] [CrossRef]
- Capron, A.; Lerut, J.; Verbaandert, C.; Mathys, J.; Ciccarelli, O.; Vanbinst, R.; Roggen, F.; De Reyck, C.; Lemaire, J.; Wallemacq, P.E. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in liver biopsies after hepatic transplantation: Correlation with histopathologic staging of rejection. Ther. Drug Monit. 2007, 29, 340–348. [Google Scholar] [CrossRef]
- Capron, A.; Lerut, J.; Latinne, D.; Rahier, J.; Haufroid, V.; Wallemacq, P. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: Preliminary results of a prospective study. Transpl. Int. 2012, 25, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Md Dom, Z.I.; Coller, J.K.; Carroll, R.P.; Tuke, J.; McWhinney, B.C.; Somogyi, A.A.; Sallustio, B.C. Mycophenolic acid concentrations in peripheral blood mononuclear cells are associated with the incidence of rejection in renal transplant recipients. Br. J. Clin. Pharmacol. 2018, 84, 2433–2442. [Google Scholar] [CrossRef] [PubMed]
- Riglet, F.; Bertrand, J.; Barrail-Tran, A.; Verstuyft, C.; Michelon, H.; Benech, H.; Durrbach, A.; Furlan, V.; Barau, C. Population Pharmacokinetic Model of Plasma and Cellular Mycophenolic Acid in Kidney Transplant Patients from the CIMTRE Study. Drugs R D 2020, 20, 331–342. [Google Scholar] [CrossRef]
- Francke, M.I.; Hesselink, D.A.; Li, Y.; Koch, B.C.P.; de Wit, L.E.A.; van Schaik, R.H.N.; Yang, L.; Baan, C.C.; van Gelder, T.; de Winter, B.C.M. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br. J. Clin. Pharmacol. 2020, 87, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Fontova, P.; Rigo-Bonnin, R.; Vidal-Alabro, A.; Cerezo, G.; Bestard, O.; Cruzado, J.M.; Torras, J.; Grinyo, J.M.; Lloberas, N. Measurement of calcineurin activity in peripheral blood mononuclear cells by ultra-high performance liquid chromatography-tandem mass spectrometry. Renal transplant recipients application (pharmacodynamic monitoring). Clin. Chim. Acta 2019, 495, 287–293. [Google Scholar] [CrossRef]
- Ansermot, N.; Fathi, M.; Veuthey, J.L.; Desmeules, J.; Hochstrasser, D.; Rudaz, S. Quantification of cyclosporine A in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry using a column-switching approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 857, 92–99. [Google Scholar] [CrossRef]
- Metz, D.K.; Holford, N.; Kausman, J.Y.; Walker, A.; Cranswick, N.; Staatz, C.E.; Barraclough, K.A.; Ierino, F. Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention. Transplantation 2019, 103, 2012–2030. [Google Scholar] [CrossRef]
- Capron, A.; Musuamba, F.; Latinne, D.; Mourad, M.; Lerut, J.; Haufroid, V.; Wallemacq, P.E. Validation of a Liquid Chromatography–Mass Spectrometric Assay for Tacrolimus in Peripheral Blood Mononuclear Cells. Ther. Drug Monit. 2009, 31, 178–186. [Google Scholar] [CrossRef]
- Bénech, H.; Hascoët, S.; Furlan, V.; Pruvost, A.; Durrbach, A. Development and validation of an LC/MS/MS assay for mycophenolic acid in human peripheral blood mononuclear cells. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2007, 853, 168–174. [Google Scholar] [CrossRef]
- Taibon, J.; van Rooij, M.; Schmid, R.; Singh, N.; Albrecht, E.; Anne Wright, J.; Geletneky, C.; Schuster, C.; Mörlein, S.; Vogeser, M.; et al. An isotope dilution LC-MS/MS based candidate reference method for the quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human whole blood. Clin. Biochem. 2020, 82, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Chen, C.; Liu, B.; Ma, Z.; Hu, F.; Li, H.; Gu, H.; Xu, H. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Acta Biomater. 2021, 124, 336–347. [Google Scholar] [CrossRef]
- Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 10 September 2022).
- Sellarés, J.; de Freitas, D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the causes of kidney transplant failure: The dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 2012, 12, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Herrera, S.; Pinto Ramirez, J.L.; García-Lopez, A.; Amaya-Nieto, J.; Girón-Luque, F. Acute Rejection in Kidney Transplantation and Early Beginning of Tacrolimus. Transplant. Proc. 2019, 51, 1758–1762. [Google Scholar] [CrossRef] [PubMed]
- Bahmany, S.; de Wit, L.E.A.; Hesselink, D.A.; van Gelder, T.; Shuker, N.M.; Baan, C.; van der Nagel, B.C.H.; Koch, B.C.P.; de Winter, B.C.M. Highly sensitive and rapid determination of tacrolimus in peripheral blood mononuclear cells by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2019, 33, e4416. [Google Scholar] [CrossRef] [PubMed]
- Capron, A.; Haufroid, V.; Wallemacq, P. Intra-cellular immunosuppressive drugs monitoring: A step forward towards better therapeutic efficacy after organ transplantation? Pharmacol. Res. 2016, 111, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Yang, S.H.; Kim, M.C.; Cho, J.Y.; Min, S.I.; Lee, J.P.; Kim, D.K.; Ha, J.; Kim, Y.S. Monitoring the Intracellular Tacrolimus Concentration in Kidney Transplant Recipients with Stable Graft Function. PLoS ONE 2016, 11, e0153491. [Google Scholar] [CrossRef]
- Kuypers, D.R.; Claes, K.; Evenepoel, P.; Maes, B.; Vanrenterghem, Y. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin. Pharmacol. Ther. 2004, 75, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, R.A.; Bergan, S.; Bremer, S.; Daleq, L.; Andersen, A.M.; Midtvedt, K.; Skauby, M.H.; Vethe, N.T. Longitudinal Study of Tacrolimus in Lymphocytes During the First Year After Kidney Transplantation. Ther. Drug Monit. 2018, 40, 558–566. [Google Scholar] [CrossRef]
- Capron, A.; Mourad, M.; De Meyer, M.; De Pauw, L.; Eddour, D.C.; Latinne, D.; Elens, L.; Haufroid, V.; Wallemacq, P. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics 2010, 11, 703–714. [Google Scholar] [CrossRef]
- Vafadari, R.; Bouamar, R.; Hesselink, D.A.; Kraaijeveld, R.; van Schaik, R.H.; Weimar, W.; Baan, C.C.; van Gelder, T. Genetic polymorphisms in ABCB1 influence the pharmacodynamics of tacrolimus. Ther. Drug Monit. 2013, 35, 459–465. [Google Scholar] [CrossRef]
- van Hest, R.M.; Mathot, R.A.; Pescovitz, M.D.; Gordon, R.; Mamelok, R.D.; van Gelder, T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: A population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J. Am. Soc. Nephrol. 2006, 17, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.T.; Mourad, M.; Capron, A.; Tshinanu, F.M.; Vincent, M.F.; Wallemacq, P. Plasma and intracellular pharmacokinetic-pharmacodynamic analysis of mycophenolic acid in de novo kidney transplant patients. Clin. Biochem. 2015, 48, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, R.A.; Bergan, S.; Bremer, S.; Hole, K.; Nordahl, C.B.; Andersen, A.M.; Midtvedt, K.; Skauby, M.H.; Vethe, N.T. Pharmacodynamic assessment of mycophenolic acid in resting and activated target cell population during the first year after renal transplantation. Br. J. Clin. Pharmacol. 2020, 86, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Flow (mL/min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|---|
Initial | 0.30 | 50.00 | 50.00 |
0.50 | 0.30 | 50.00 | 50.00 |
3.00 | 0.30 | 5.00 | 95.00 |
4.50 | 0.30 | 50.00 | 50.00 |
Analyte | ESI Mode | Parent Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|
TAC | + | 821.57 | 768.55 | 24.00 | 18.00 |
[13C, 2H4]-tacrolimus | + | 826.61 | 773.51 | 14.00 | 18.00 |
MPA | + | 321.27 | 207.15 | 10.00 | 22.00 |
MPA-d3 | + | 324.26 | 210.15 | 8.00 | 22.00 |
Concentration (ng/mL) | Intra-Batch | Inter-Batch | |||||
---|---|---|---|---|---|---|---|
Found (ng/mL) | Imprecision CV (%) | Accuracy (%) | Found (ng/mL) | Imprecision CV (%) | Accuracy (%) | ||
TAC * | 0.10 | 0.09 | 2.13 | 90.00 | |||
0.50 | 0.46 | 2.19 | 92.00 | 0.45 | 3.00 | 90.00 | |
10.00 | 8.55 | 0.44 | 85.50 | 8.46 | 0.95 | 84.60 | |
20.00 | 17.78 | 0.84 | 88.90 | 17.71 | 1.23 | 88.55 | |
MPA * | 0.20 | 0.20 | 7.06 | 100.00 | |||
1.00 | 0.96 | 1.63 | 96.00 | 0.94 | 1.84 | 94.00 | |
20.00 | 19.09 | 0.53 | 94.45 | 18.96 | 1.35 | 94.80 | |
40.00 | 44.39 | 0.78 | 110.98 | 43.60 | 1.05 | 109.00 |
Concentration (ng/mL) | Groups | Found (ng/mL) | CV (%) | Accuracy (%) | Matrix Effect (B/A, %) | Recovery (C/B, %) | Extraction Effect (C/A, %) | |
---|---|---|---|---|---|---|---|---|
TAC | 0.50 | A | 0.42 | 0.73 | 84.00 | 130.95 | 85.45 | 111.90 |
B | 0.55 | 4.21 | 110.00 | |||||
C | 0.47 | 10.05 | 94.00 | |||||
20.00 | A | 16.49 | 2.14 | 82.45 | 124.20 | 80.03 | 99.39 | |
B | 20.48 | 1.77 | 102.40 | |||||
C | 16.39 | 3.71 | 81.95 | |||||
MPA | 1.00 | A | 1.20 | 1.68 | 120.00 | 105.00 | 92.86 | 97.50 |
B | 1.26 | 3.18 | 126.00 | |||||
C | 1.17 | 5.44 | 117.00 | |||||
40.00 | A | 38.87 | 8.83 | 97.18 | 116.72 | 83.93 | 97.97 | |
B | 45.37 | 1.44 | 113.43 | |||||
C | 38.08 | 3.28 | 95.20 |
Concentration (ng/mL) | 10 h before Sample Processing | 48 h after Sample Processing | Long-Term Stability | Freeze–Thaw Stability | |||||
---|---|---|---|---|---|---|---|---|---|
CV (%) | Accuracy (%) | CV (%) | Accuracy (%) | CV (%) | Accuracy (%) | CV (%) | Accuracy (%) | ||
TAC | 0.50 | 9.25 | 96.00 | 4.69 | 90.00 | 2.22 | 64.00 | 4.59 | 66.00 |
10.00 | 0.64 | 84.40 | 0.70 | 84.60 | 0.66 | 71.50 | 1.64 | 81.50 | |
20.00 | 0.73 | 87.55 | 0.73 | 87.90 | 0.64 | 68.75 | 0.65 | 81.30 | |
MPA | 1.00 | 1.07 | 95.00 | 1.95 | 94.00 | 1.59 | 90.00 | 2.72 | 98.00 |
20.00 | 0.56 | 93.15 | 0.83 | 93.70 | 0.50 | 82.65 | 0.92 | 101.35 | |
40.00 | 0.54 | 108.45 | 0.73 | 108.28 | 0.76 | 104.53 | 0.35 | 99.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liu, Y.; Zhang, Y.; Dai, X.; Wang, X.; Chen, H.; Yan, L.; Gong, X.; Yue, J.; Wan, Z.; et al. Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS. Pharmaceutics 2023, 15, 2318. https://doi.org/10.3390/pharmaceutics15092318
Xu H, Liu Y, Zhang Y, Dai X, Wang X, Chen H, Yan L, Gong X, Yue J, Wan Z, et al. Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS. Pharmaceutics. 2023; 15(9):2318. https://doi.org/10.3390/pharmaceutics15092318
Chicago/Turabian StyleXu, Huan, Yingying Liu, Yinan Zhang, Xinhua Dai, Xueqiao Wang, Haojun Chen, Lin Yan, Xingxin Gong, Jiaxi Yue, Zhengli Wan, and et al. 2023. "Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS" Pharmaceutics 15, no. 9: 2318. https://doi.org/10.3390/pharmaceutics15092318
APA StyleXu, H., Liu, Y., Zhang, Y., Dai, X., Wang, X., Chen, H., Yan, L., Gong, X., Yue, J., Wan, Z., Fan, J., Bai, Y., Luo, Y., & Li, Y. (2023). Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS. Pharmaceutics, 15(9), 2318. https://doi.org/10.3390/pharmaceutics15092318