Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoemulsion Preparation
2.3. Physicochemical Characterization of Nanoemulsions
2.3.1. Droplet Size and Size Distribution
2.3.2. Determination of ζ-Potential
2.3.3. Optical Properties of Nanoemulsions
2.4. Chemical Analyses
2.5. Bacteria Strains and Culture Conditions
2.6. Determination of Antibacterial Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Nanoemulsion Properties
3.2. HS-GC/MS Analyses
3.3. Nanoemulsion Biocidal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between Natural Products and Antibiotics against Infectious Diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.M.; Elnesr, S.S.; Abd El-Hack, M.E. Using Essential Oils to Overcome Bacterial Biofilm Formation and Their Antimicrobial Resistance. Saudi J. Biol. Sci. 2021, 28, 5145–5156. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The Alarming Antimicrobial Resistance in ESKAPEE Pathogens: Can Essential Oils Come to the Rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Griensven, L.J.L.D.V. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The Progress of Essential Oils as Potential Therapeutic Agents: A Review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Singh, I.R.; Pulikkal, A.K. Preparation, Stability and Biological Activity of Essential Oil-Based Nano Emulsions: A Comprehensive Review. OpenNano 2022, 8, 100066. [Google Scholar] [CrossRef]
- Ghaderi, L.; Aliahmadi, A.; Ebrahimi, S.N.; Rafati, H. Effective Inhibition and Eradication of Pseudomonas Aeruginosa Biofilms by Satureja Khuzistanica Essential Oil Nanoemulsion. J. Drug Deliv. Sci. Technol. 2021, 61, 102260. [Google Scholar] [CrossRef]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N.; Hussain, T. Nano-Technology Platforms to Increase the Antibacterial Drug Suitability of Essential Oils: A Drug Prospective Assessment. OpenNano 2023, 9, 100115. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of Essential Oils to Enhance Their Antimicrobial Activity in Foods. LWT-Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Zhang, Z.; McClements, D.J. Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. In Nanoemulsions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 21–49. ISBN 978-0-12-811838-2. [Google Scholar]
- Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of Nanoemulsion-Based Delivery Systems of Natural Antimicrobials: Effect of the Emulsifier. J. Biotechnol. 2012, 159, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and Stability of Nano-Emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [PubMed]
- Asua, J.M. Miniemulsion Polymerization. Prog. Polym. Sci. 2002, 27, 1283–1346. [Google Scholar] [CrossRef]
- Tadros, T. Polymeric Surfactants in Disperse Systems. Adv. Colloid Interface Sci. 2009, 147–148, 281–299. [Google Scholar] [CrossRef]
- Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Formulation and Stability Mechanisms of Polymerizable Miniemulsions. Macromolecules 1999, 32, 5222–5228. [Google Scholar] [CrossRef]
- Chern, C.S.; Chen, T.J. Effect of Ostwald Ripening on Styrene Miniemulsion Stabilized by Reactive Cosurfactants. Colloids Surf. A Physicochem. Eng. Asp. 1998, 138, 65–74. [Google Scholar] [CrossRef]
- Blythe, P.J.; Klein, A.; Sudol, E.D.; El-Aasser, M.S. Enhanced Droplet Nucleation in Styrene Miniemulsion Polymerization. 2. Polymerization Kinetics of Homogenized Emulsions Containing Predissolved Polystyrene. Macromolecules 1999, 32, 6952–6957. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. J. Agric. Food Chem. 2012, 60, 12056–12063. [Google Scholar] [CrossRef]
- Prakash, A.; Vadivel, V. Citral and Linalool Nanoemulsions: Impact of Synergism and Ripening Inhibitors on the Stability and Antibacterial Activity against Listeria Monocytogenes. J. Food Sci. Technol. 2020, 57, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Capek, I. Degradation of Kinetically-Stable o/w Emulsions. Adv. Colloid Interface Sci. 2004, 107, 125–155. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Ostwald Ripening in Emulsions. Adv. Colloid Interface Sci. 1998, 75, 107–163. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro-Rodríguez, M.; Muñoz, J. Strategies for Reducing Ostwald Ripening Phenomenon in Nanoemulsions Based on Thyme Essential Oil. J. Sci. Food Agric. 2020, 100, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.M.; Gumus, C.E.; Decker, E.A.; McClements, D.J. Improvements in the Formation and Stability of Fish Oil-in-Water Nanoemulsions Using Carrier Oils: MCT, Thyme Oil, & Lemon Oil. J. Food Eng. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Qian, C.; Martín-Belloso, O.; McClements, D.J. Modulating β-Carotene Bioaccessibility by Controlling Oil Composition and Concentration in Edible Nanoemulsions. Food Chem. 2013, 139, 878–884. [Google Scholar] [CrossRef]
- Kabalnov, A. Ostwald Ripening and Related Phenomena. J. Dispers. Sci. Technol. 2001, 22, 1–12. [Google Scholar] [CrossRef]
- Ryu, V.; McClements, D.J.; Corradini, M.G.; McLandsborough, L. Effect of Ripening Inhibitor Type on Formation, Stability, and Antimicrobial Activity of Thyme Oil Nanoemulsion. Food Chem. 2018, 245, 104–111. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Xiao, H.; McClements, D.J. Nanoemulsion-Based Delivery Systems for Poorly Water-Soluble Bioactive Compounds: Influence of Formulation Parameters on Polymethoxyflavone Crystallization. Food Hydrocoll. 2012, 27, 517–528. [Google Scholar] [CrossRef]
- Santamaría, E.; Maestro, A.; Vilchez, S.; González, C. Study of Nanoemulsions Using Carvacrol/MCT-(Oleic Acid-Potassium Oleate)/ Tween 80 ®- Water System by Low Energy Method. Heliyon 2023, 9, e16967. [Google Scholar] [CrossRef]
- Ryu, V.; Corradini, M.G.; McClements, D.J.; McLandsborough, L. Impact of Ripening Inhibitors on Molecular Transport of Antimicrobial Components from Essential Oil Nanoemulsions. J. Colloid Interface Sci. 2019, 556, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Petralito, S.; Ovidi, E.; Turchetti, G.; Laghezza Masci, V.; Tiezzi, A.; Trilli, J.; Cesa, S.; Casadei, M.A.; Giacomello, P.; et al. Lavandula x Intermedia Essential Oil and Hydrolate: Evaluation of Chemical Composition and Antibacterial Activity before and after Formulation in Nanoemulsion. Ind. Crops Prod. 2020, 145, 112068. [Google Scholar] [CrossRef]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Zhang, J.; Bing, L.; Reineccius, G.A. Formation, Optical Property and Stability of Orange Oil Nanoemulsions Stabilized by Quallija Saponins. LWT-Food Sci. Technol. 2015, 64, 1063–1070. [Google Scholar] [CrossRef]
- Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008, 24, 12758–12765. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Awasthi, S.K. Initial Droplet Size Distribution in Miniemulsion Polymerization. J. Appl. Polym. Sci. 2003, 88, 3058–3065. [Google Scholar] [CrossRef]
- Garzoli, S.; Turchetti, G.; Giacomello, P.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Liquid and Vapour Phase of Lavandin (Lavandula × Intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules 2019, 24, 2701. [Google Scholar] [CrossRef]
- Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D.J. Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. J. Agric. Food Chem. 2011, 59, 6247–6255. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. J. Agric. Food Chem. 2013, 61, 8906–8913. [Google Scholar] [CrossRef]
- Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula x Intermedia and Lavandula Angustifolia Essential Oils: Phytochemical Composition and Antimicrobial Activity against Foodborne Pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
- Piskernik, S.; Jeršek, M.; Klančnik, A.; Smole Možina, S.; Bucar, F.; Jeršek, B. Chemical Composition and Antimicrobial Activity of Essential Oils Made from Lavandula x Intermedia from Hvar (Croatia). Nat. Prod. Res. 2023, 37, 4018–4022. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.M.; Badawy, M.E.I.; Taktak, N.E.M. Characterization, Antimicrobial Activity, and Antioxidant Activity of the Nanoemulsions of Lavandula Spica Essential Oil and Its Main Monoterpenes. J. Drug Deliv. Sci. Technol. 2021, 65, 102732. [Google Scholar] [CrossRef]
SAMPLE | LEO:MCTs Volume Ratio (v/v) | Hydrodynamic Diameter (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
Sample 1 | 4:0 | 323 ± 3 | 0.103 ± 0.016 | +38.1 ± 0.2 |
Sample 2 | 3:1 | 324 ± 2 | 0.100 ± 0.017 | +39.6 ± 3.0 |
Sample 3 | 1:3 | 244 ± 3 | 0.112 ± 0.010 | +44.8 ± 0.8 |
COMPONENT 1 | LRI 2 | LRI 3 | T0% | T1% | T2% | T3% | T4% | T5% | T6% |
---|---|---|---|---|---|---|---|---|---|
1-octen-3-ol | 962 | 964 | - | - | 0.2 a ± 0.02 | 0.1 b ± 0.00 | 0.1 b ± 0.01 | - | - |
β-myrcene | 971 | 978 | 3.5 a ± 0.03 | 2.8 b ± 0.04 | 3.8 c ± 0.03 | 3.5 a ± 0.03 | 3.3 d ± 0.04 | 4.0 e ± 0.02 | 5.6 f ± 0.03 |
acetic acid, hexyl ester | 1000 | 1002 | - | - | 0.3 a ± 0.02 | tr | 0.1 bc ± 0.02 | 0.1 c ± 0.00 | 0.2 d ± 0.01 |
α-phellandrene | 1003 | 1005 | - | - | tr | tr | tr | - | 0.1 ± 0.00 |
α-terpinene | 1021 | 1019 | - | - | tr | tr | tr | - | - |
p-cymene | 1019 | 1023 | - | - | 0.1 a ± 0.00 | 0.1 a ± 0.00 | 0.1 a ± 0.00 | 0.2 bc ± 0.01 | 0.2 c ± 0.01 |
1,8-cineole | 1027 | 1025 | 7.6 a ± 0.05 | 9.9 b ± 0.06 | 8.4 c ± 0.04 | 9.5 d ± 0.05 | 9.2 e ± 0.05 | 10.8 f ± 0.07 | 11.4 g ± 0.08 |
cis-β-ocimene | 1032 | 1032 | 2.2 a ± 0.03 | 1.7 b ± 0.02 | 2.1 a ± 0.03 | 2.2 a ± 0.04 | 2.1 a ± 0.04 | 2.5 c ± 0.03 | 2.8 d ± 0.05 |
trans-β-ocimene | 1048 | 1043 | 1.5 a ± 0.04 | 0.9 b ± 0.03 | 1.2 cde ± 0.04 | 1.3 de ± 0.03 | 1.2 e ± 0.04 | 1.5 a ± 0.02 | 1.8 f ± 0.05 |
trans-linalol oxide | 1061 | 1056 | 0.7 a ± 0.02 | 0.7 a ± 0.02 | 0.9 a ± 0.03 | 0.7 a ± 0.02 | 0.8 a ± 0.02 | 1.0 a ± 0.03 | 1.1 a ± 0.04 |
cis-linalol oxide | 1070 | 1066 | 1.2 a ± 0.02 | 1.2 a ± 0.03 | 1.3 b ± 0.04 | 1.0 c ± 002 | 1.2 a ± 0.02 | 1.7 d ± 0.03 | 1.9 e ± 0.04 |
Linalol | 1099 | 1092 | 53.3 a ± 5.90 | 52.0 bca ± 6.01 | 51.5 ca ± 5.62 | 52.5 a ± 5.74 | 54.0 ad ± 6.01 | 55.2 d ± 5.81 | 57.6 e ± 6.52 |
propanoic acid, 2-methyl-, hexyl ester | 1134 | 1132 | - | - | 0.2 a ± 0.01 | 0.1 b ± 0.01 | - | - | - |
Camphor | 1141 | 1139 | 21.1 a ± 0.09 | 22.7 b ± 0.10 | 9.1 ce ± 0.07 | 9.8 de ± 0.08 | 9.9 e ± 0.06 | 9.0 f ± 0.06 | 8.2 g ± 0.05 |
Lavandulol | 1152 | 1148 | 2.4 a* ± 0.03 | 2.3 b ± 0.03 | 0.3 cg* ± 0.02 | 0.2 def* ± 0.01 | 0.2 ef* ± 0.01 | 0.2 f ± 0.02 | 0.3 g ± 0.02 |
terpinen-4-ol | 1173 | 1168 | - | - | 2.7 a ± 0.03 | 3.0 bcd ± 0.02 | 3.1 cd ± 0.04 | 3.0 d ± 0.02 | 2.7 a ± 0.04 |
Borneol | 1175 | 1169 | 1.1 a ± 0.01 | 1.1 a ± 0.01 | 0.2 b ± 0.01 | 2.3 ce ± 0.02 | 2.4 d ± 0.02 | 2.2 e ± 0.01 | 1.1 a ± 0.02 |
α-terpineol | 1186 | 1183 | 2.7 a ± 0.03 | 2.7 a ± 0.04 | 0.9 bcd ± 0.04 | 0.9 cd ± 0.03 | 0.9 d ± 0.03 | 0.5 e ± 0.02 | 0.1 f ± 0.00 |
linalyl acetate | 1256 | 1252 | 2.1 a ± 0.02 | 1.4 b ± 0.03 | 10.9 c ± 0.07 | 8.4 d ± 0.05 | 7.2 e ± 0.04 | 2.5 f ± 0.03 | 0.2 g ± 0.02 |
lavandulyl acetate | 1269 | 1271 | - | - | 2.8 a ± 0.02 | 2.2 b ± 0.03 | 2.0 cd ± 0.02 | 1.9 de ± 0.02 | 1.8 e ± 0.03 |
nerol acetate | 1364 | 1363 | - | - | 2.6 a ± 0.05 | 2.0 bc ± 0.03 | 1.9 cd ± 0.03 | 1.8 d ± 0.03 | 0.9 e ± 0.02 |
(-)-β-bourbonene | 1392 | 1390 | - | - | - | tr | tr | 1.5 a ± 0.03 | 1.9 b ± 0.04 |
cis-β-farnesene | 1455 | 1451 | - | - | 0.3 a ± 0.02 | 0.2 b ± 0.02 | 0.2 c ± 0.02 | 0.1 de ± 0.00 | 0.1 e ± 0.00 |
SUM | 99.4 | 99.4 | 99.8 | 100.0 | 99.9 | 99.7 | 100.0 | ||
Monoterpene hydrocarbons | 7.2 | 5.4 | 7.2 | 7.1 | 6.7 | 8.2 | 10.5 | ||
Monoterpenes oxygenated | 92.2 | 94.0 | 91.6 | 92.5 | 92.8 | 89.8 | 87.3 | ||
Sesquiterpene hydrocarbons | - | - | 0.3 | 0.2 | 0.2 | 1.6 | 2.0 | ||
Other | - | - | 0.7 | 0.2 | 0.2 | 0.1 | 0.2 |
Time Points | T0 | T1 | T2 | T3 | T4 | T5 | T6 | |
---|---|---|---|---|---|---|---|---|
B. cereus | MIC (%) | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 |
MBC (%) | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | |
E. coli | MIC (%) | >0.313 | >0.313 | >0.313 | >0.313 | >0.313 | >0.313 | >0.313 |
MBC (%) | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petralito, S.; Garzoli, S.; Ovidi, E.; Laghezza Masci, V.; Trilli, J.; Bigi, B.; Di Muzio, L.; Carriero, V.C.; Casadei, M.A.; Paolicelli, P. Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations? Pharmaceutics 2024, 16, 108. https://doi.org/10.3390/pharmaceutics16010108
Petralito S, Garzoli S, Ovidi E, Laghezza Masci V, Trilli J, Bigi B, Di Muzio L, Carriero VC, Casadei MA, Paolicelli P. Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations? Pharmaceutics. 2024; 16(1):108. https://doi.org/10.3390/pharmaceutics16010108
Chicago/Turabian StylePetralito, Stefania, Stefania Garzoli, Elisa Ovidi, Valentina Laghezza Masci, Jordan Trilli, Barbara Bigi, Laura Di Muzio, Vito Cosimo Carriero, Maria Antonietta Casadei, and Patrizia Paolicelli. 2024. "Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations?" Pharmaceutics 16, no. 1: 108. https://doi.org/10.3390/pharmaceutics16010108
APA StylePetralito, S., Garzoli, S., Ovidi, E., Laghezza Masci, V., Trilli, J., Bigi, B., Di Muzio, L., Carriero, V. C., Casadei, M. A., & Paolicelli, P. (2024). Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations? Pharmaceutics, 16(1), 108. https://doi.org/10.3390/pharmaceutics16010108