Bioactive Composite Cryogels Based on Poly (Vinyl Alcohol) and a Polymacrolactone as Tissue Engineering Scaffolds: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cryogels
2.3. Characterization
2.3.1. Atomic Force Microscopy (AFM)
2.3.2. Water Contact Angle (WCA)
2.3.3. In Vitro Interaction with Simulated Body Fluids
2.3.4. In Vitro Cytocompatibility
MTT Assay
Live/Dead Cell Staining
2.3.5. Cryogel Subcutaneous Implantation in Rat Model
2.3.6. In Vivo Evaluation of Wound Healing
2.3.7. Interleukin-8 Determination by Enzyme-Linked Immunosorbent Assay (ELISA)
3. Results and Discussion
3.1. Atomic Force Microscopy (AFM)
3.2. Water Contact Angle (WCA)
3.3. In Vitro Interaction with Simulated Body Fluids
3.4. In Vitro Cytocompatibility
3.5. Cryogel Subcutaneous Implantation in Rat Model
3.6. In Vivo Evaluation of Wound Healing
3.7. Inflammatory Cytokine Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Zhou, L.; Chiao, M.; Yang, W. Antibacterial Hydrogel Coating: Strategies in Surface Chemistry. Adv. Colloid Interface Sci. 2020, 285, 102280. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Rao, G.K.; Kiran, V.; Hasnain, M.S.; Nayak, A.K. Alginate-Based Hydrogel Systems for Drug Releasing in Wound Healing. In Alginates in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 323–358. ISBN 978-0-12-817640-5. [Google Scholar]
- Xiong, S.; Li, R.; Ye, S.; Ni, P.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. Vanillin Enhances the Antibacterial and Antioxidant Properties of Polyvinyl Alcohol-Chitosan Hydrogel Dressings. Int. J. Biol. Macromol. 2022, 220, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, 2100475. [Google Scholar] [CrossRef] [PubMed]
- Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/Thawed Polyvinyl Alcohol Hydrogels: Present, Past and Future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Haleem, A.; Chen, S.-Q.; Ullah, M.; Siddiq, M.; He, W.-D. Highly Porous Cryogels Loaded with Bimetallic Nanoparticles as an Efficient Antimicrobial Agent and Catalyst for Rapid Reduction of Water-Soluble Organic Contaminants. J. Environ. Chem. Eng. 2021, 9, 106510. [Google Scholar] [CrossRef]
- Păduraru, O.M.; Ciolacu, D.; Darie, R.N.; Vasile, C. Synthesis and Characterization of Polyvinyl Alcohol/Cellulose Cryogels and Their Testing as Carriers for a Bioactive Component. Mater. Sci. Eng. C 2012, 32, 2508–2515. [Google Scholar] [CrossRef]
- Sadykov, R.; Lytkina, D.; Stepanova, K.; Kurzina, I. Synthesis of Biocompatible Composite Material Based on Cryogels of Polyvinyl Alcohol and Calcium Phosphates. Polymers 2022, 14, 3420. [Google Scholar] [CrossRef]
- Aslanli, A.; Stepanov, N.; Razheva, T.; Podorozhko, E.A.; Lyagin, I.; Lozinsky, V.I.; Efremenko, E. Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity. Materials 2019, 12, 3619. [Google Scholar] [CrossRef]
- Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(Vinyl Alcohol) Hydrogels: The Old and New Functional Materials. Int. J. Polym. Sci. 2021, 2021, e2225426. [Google Scholar] [CrossRef]
- Kurakula, M.; Koteswara Rao, G.S.N. Moving Polyvinyl Pyrrolidone Electrospun Nanofibers and Bioprinted Scaffolds toward Multidisciplinary Biomedical Applications. Eur. Polym. J. 2020, 136, 109919. [Google Scholar] [CrossRef]
- Nita, L.E.; Crețu, B.-E.-B.; Șerban, A.-M.; Rusu, A.G.; Rosca, I.; Pamfil, D.; Chiriac, A.P. New Cryogels Based on Poly (Vinyl Alcohol) and a Copolymacrolactone System. II. Antibacterial Properties of the Network Embedded with Thymol Bioactive Agent. React. Funct. Polym. 2023, 182, 105461. [Google Scholar] [CrossRef]
- Pan, Z.; Ye, H.; Wu, D. Recent Advances on Polymeric Hydrogels as Wound Dressings. APL Bioeng. 2021, 5, 011504. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, P.; Koupaei, N. Physically Crosslinked Polyvinyl Alcohol/Chitosan/Gum Tragacanth Hydrogels Loaded with Vitamin E for Wound Healing Applications. Vinyl Addit. Technol. 2023, 29, 268–282. [Google Scholar] [CrossRef]
- Crețu, B.-E.-B.; Rusu, A.G.; Ghilan, A.; Rosca, I.; Nita, L.E.; Chiriac, A.P. Cryogel System Based on Poly(Vinyl Alcohol)/Poly(Ethylene Brassylate-Co-Squaric Acid) Platform with Dual Bioactive Activity. Gels 2023, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Crețu, B.-E.-B.; Nita, L.E.; Șerban, A.-M.; Rusu, A.G.; Doroftei, F.; Chiriac, A.P. New Cryogels Based on Poly(Vinyl Alcohol) and a Copolymacrolactone System: I-Synthesis and Characterization. Nanomaterials 2022, 12, 2420. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, A.P.; Rusu, A.G.; Nita, L.E.; Macsim, A.-M.; Tudorachi, N.; Rosca, I.; Stoica, I.; Tampu, D.; Aflori, M.; Doroftei, F. Synthesis of Poly(Ethylene Brassylate-Co-Squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics 2021, 13, 477. [Google Scholar] [CrossRef]
- Cojocaru, F.D.; Balan, V.; Popa, M.I.; Lobiuc, A.; Antoniac, A.; Antoniac, I.V.; Verestiuc, L. Biopolymers—Calcium Phosphates Composites with Inclusions of Magnetic Nanoparticles for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 125, 612–620. [Google Scholar] [CrossRef]
- MyAssays—Data Analysis Tools and Services for Bioassays. Available online: https://www.myassays.com/ (accessed on 8 September 2023).
- Yamaguchi, T.; Yamazaki, K.; Namatsu, H. Influence of Molecular Weight of Resist Polymers on Surface Roughness and Line-Edge Roughness. J. Vac. Sci. Technol. B 2004, 22, 2604. [Google Scholar] [CrossRef]
- Masruroh; Zahirah, T.N.; Aulanni’am; Sakti, S.P.; Santjojo, D.J.D.H. The Effect of Molecular Weight on the Surface Wettability of Polystyrene Treated with Nitrogen Plasma. IOP Conf. Ser. Mater. Sci. Eng. 2018, 432, 012036. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Asandulesa, M.; Stoica, I.; Tudorachi, N.; Rusu, A.G.; Nita, L.E.; Chiriac, V.M.; Timpu, D. Comparative Study on the Properties of a Bio-Based Copolymacrolactone System. Polym. Test. 2022, 109, 107555. [Google Scholar] [CrossRef]
- Stoica, I.; Barzic, A.I.; Hulubei, C.; Timpu, D. Statistical Analysis on Morphology Development of Some Semialicyclic Polyimides Using Atomic Force Microscopy: AFM Statistical Analysis of Some Polyimides. Microsc. Res. Tech. 2013, 76, 503–513. [Google Scholar] [CrossRef] [PubMed]
- ISO 25178-2:2012; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. Available online: https://www.iso.org/standard/42785.html (accessed on 27 July 2023).
- Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J. Chitosan/PVA Hydrogels Incorporated with Green Synthesized Cerium Oxide Nanoparticles for Wound Healing Applications. Eur. Polym. J. 2020, 134, 109853. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Stoleru, E.; Rosca, I.; Serban, A.; Nita, L.E.; Rusu, A.G.; Ghilan, A.; Macsim, A.-M.; Mititelu-Tartau, L. Development of a New Polymer Network System Carrier of Essential Oils. Biomed. Pharmacother. 2022, 149, 112919. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, E.; Vasile, C.; Irimia, A.; Brebu, M. Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils. Molecules 2021, 26, 4500. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Ngoc Le, T.T.; Nguyen, A.T.; Thien Le, H.N.; Pham, T.T. Biomedical Materials for Wound Dressing: Recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The Effects of pH on Wound Healing, Biofilms, and Antimicrobial Efficacy: pH and Wound Repair. Wound Repair Regen 2014, 22, 174–186. [Google Scholar] [CrossRef]
- Nommeots-Nomm, A.; Hupa, L.; Rohanová, D.; Brauer, D.S. A Review of Acellular Immersion Tests on Bioactive Glasses––Influence of Medium on Ion Release and Apatite Formation. Int. J. Appl. Glass Sci. 2020, 11, 537–551. [Google Scholar] [CrossRef]
- Gull, N.; Khan, S.M.; Zahid Butt, M.T.; Khalid, S.; Shafiq, M.; Islam, A.; Asim, S.; Hafeez, S.; Khan, R.U. In Vitro Study of Chitosan-Based Multi-Responsive Hydrogels as Drug Release Vehicles: A Preclinical Study. RSC Adv. 2019, 9, 31078–31091. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Wang, T.; Chai, C. Swelling of pH-Sensitive Chitosan–Poly(Vinyl Alcohol) Hydrogels. J. Appl. Polym. Sci. 2006, 102, 4665–4671. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, W.; Li, X.; Ling, G.; Zhang, P. Tunicate-Mimetic Antibacterial Hydrogel Based on Metal Ion Crosslinking and Chitosan Functionalization for Wound Healing. Int. J. Biol. Macromol. 2023, 244, 125062. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Liu, B.; Wang, J.; Zhang, S.; Lin, Q.; Gong, P.; Ma, L.; Yang, S. A Novel Wound Dressing Based on Ag/Graphene Polymer Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing. Adv. Funct. Mater. 2014, 24, 3933–3943. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, X.; Li, X.; Cai, P. Cai Green-Based Antimicrobial Hydrogels Prepared from Bagasse Cellulose as 3D-Scaffolds for Wound Dressing. Polymers 2019, 11, 1846. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhang, Y.; Zhang, J.; Chen, X.; Pan, J.; Zhu, X.; Pan, G. Dynamically Crosslinked Protien Hydrogel Composite as Multifunctional Wound Dressing for Cutaneous Infection. Colloid Interface Sci. Commun. 2022, 50, 100654. [Google Scholar] [CrossRef]
- Bai, Q.; Gao, Q.; Hu, F.; Zheng, C.; Chen, W.; Sun, N.; Liu, J.; Zhang, Y.; Wu, X.; Lu, T. Chitosan and Hyaluronic-Based Hydrogels Could Promote the Infected Wound Healing. Int. J. Biol. Macromol. 2023, 232, 123271. [Google Scholar] [CrossRef]
- Celik, N.; Askın, S.; Gul, M.A.; Seven, N. The Effect of Restorative Materials on Cytokines in Gingival Crevicular Fluid. Arch. Oral Biol. 2017, 84, 139–144. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
Sample | PVA:PEBSA Ratio | Composition for a Sample Volume of 5 mL | |||
---|---|---|---|---|---|
PVA (g) | PEBSA (g) | Thy (g) | α-Tcp (g) | ||
PVA72000_PEBSA25/75 | 2:1 | 0.132 | 0.066 | – | – |
PVA72000_PEBSA50/50 | 2:1 | 0.132 | 0.066 | – | – |
PVA72000_PEBSA75/25 | 2:1 | 0.132 | 0.066 | – | – |
PVA145000_PEBSA25/75 | 2:1 | 0.132 | 0.066 | – | – |
PVA145000_PEBSA50/50 | 2:1 | 0.132 | 0.066 | – | – |
PVA145000_PEBSA75/25 | 2:1 | 0.132 | 0.066 | – | – |
PVA72000_PEBSA25/75_Thy_α-Tcp | 2:1 | 0.132 | 0.066 | 0.066 | 0.066 |
PVA72000_PEBSA50/50_Thy_α-Tcp | 2:1 | 0.132 | 0.066 | 0.066 | 0.066 |
PVA72000_PEBSA75/25_Thy_α-Tcp | 2:1 | 0.132 | 0.066 | 0.066 | 0.066 |
Sample | Sq (nm) | Sent | Stdi |
---|---|---|---|
PVA72000 | 15.1 | 10.788 | 0.277 |
PVA72000_PEBSA25/75 | 62.6 | 12.743 | 0.716 |
PVA72000_PEBSA50/50 | 68.5 | 12.847 | 0.556 |
PVA72000_PEBSA75/25 | 41.9 | 12.183 | 0.529 |
PVA72000_PEBSA25/75_Thy_α-Tcp | 37.7 | 12.052 | 0.756 |
PVA72000_PEBSA50/50_Thy_α-Tcp | 46.7 | 12.324 | 0.578 |
PVA72000_PEBSA75/25_Thy_α-Tcp | 31.3 | 12.272 | 0.643 |
PVA145000 | 57.9 | 12.620 | 0.291 |
PVA145000_PEBSA25/75 | 82.5 | 13.091 | 0.530 |
PVA145000_PEBSA50/50 | 158.8 | 13.886 | 0.576 |
PVA145000_PEBSA75/25 | 80.7 | 13.030 | 0.549 |
PVA145000_PEBSA25/75_Thy_α-Tcp | 47.5 | 13.263 | 0.575 |
PVA145000_PEBSA50/50_Thy_α-Tcp | 96.73 | 13.279 | 0.627 |
PVA145000_PEBSA75/25_Thy_α-Tcp | 43.55 | 13.266 | 0.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crețu, B.-E.-B.; Dodi, G.; Gardikiotis, I.; Balan, V.; Nacu, I.; Stoica, I.; Stoleru, E.; Rusu, A.G.; Ghilan, A.; Nita, L.E.; et al. Bioactive Composite Cryogels Based on Poly (Vinyl Alcohol) and a Polymacrolactone as Tissue Engineering Scaffolds: In Vitro and In Vivo Studies. Pharmaceutics 2023, 15, 2730. https://doi.org/10.3390/pharmaceutics15122730
Crețu B-E-B, Dodi G, Gardikiotis I, Balan V, Nacu I, Stoica I, Stoleru E, Rusu AG, Ghilan A, Nita LE, et al. Bioactive Composite Cryogels Based on Poly (Vinyl Alcohol) and a Polymacrolactone as Tissue Engineering Scaffolds: In Vitro and In Vivo Studies. Pharmaceutics. 2023; 15(12):2730. https://doi.org/10.3390/pharmaceutics15122730
Chicago/Turabian StyleCrețu, Bianca-Elena-Beatrice, Gianina Dodi, Ioannis Gardikiotis, Vera Balan, Isabella Nacu, Iuliana Stoica, Elena Stoleru, Alina Gabriela Rusu, Alina Ghilan, Loredana Elena Nita, and et al. 2023. "Bioactive Composite Cryogels Based on Poly (Vinyl Alcohol) and a Polymacrolactone as Tissue Engineering Scaffolds: In Vitro and In Vivo Studies" Pharmaceutics 15, no. 12: 2730. https://doi.org/10.3390/pharmaceutics15122730
APA StyleCrețu, B. -E. -B., Dodi, G., Gardikiotis, I., Balan, V., Nacu, I., Stoica, I., Stoleru, E., Rusu, A. G., Ghilan, A., Nita, L. E., & Chiriac, A. P. (2023). Bioactive Composite Cryogels Based on Poly (Vinyl Alcohol) and a Polymacrolactone as Tissue Engineering Scaffolds: In Vitro and In Vivo Studies. Pharmaceutics, 15(12), 2730. https://doi.org/10.3390/pharmaceutics15122730