Investigation of the Storage and Stability as Well as the Dissolution Rate of Novel Ilaprazole/Xylitol Cocrystal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ila/Xyl Cocrystal Preparation Using the Slurry Technique
2.3. Differential Scanning Calorimetry (DSC)
2.4. Thermogravimetric Analysis (TGA)
2.5. Powder X-ray Diffraction (PXRD)
2.6. Solution-State Nuclear Magnetic Resonance Spectroscopy (Solution-State NMR)
2.7. Solid-State Nuclear Magnetic Resonance Spectroscopy (Solid-State CP/MAS 13C-NMR(SSCNMR))
2.8. Stability Test at 25 ± 2 °C and Relative Humidity (RH) 60 ± 5%
2.9. Variable-Temperature Powder X-ray Diffraction (VT-PXRD)
2.10. Comparison of Dissolution Rates between Formulated Ila/Xyl Cocrystal and Ila
3. Result and Discussion
3.1. Cocrystal Screening of Ila Using DSC
3.2. Co-Crystallization of Ila Using the Slurry Technique
3.3. Prediction of Intermolecular Interaction in Ila/Xyl Cocrystal Using Solid-State CP/MAS 13C-NMR (SSCNMR)
3.4. Thermal Analysis of Ila/Xyl Cocrystal
3.5. Stability Evaluation for Room Temperature Storage at 25 ± 2 °C and RH 60 ± 5% of Ila/Xyl Cocrystal
3.6. Comparison of Dissolution Rates between Ila/Xyl Cocrystal Formulation and Ila Noltec Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathisaran, I.; Dalvi, S.V. Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Nanjwade, V.K.; Manvi, F.V.; Nanjwade, B.K.; Maste, M.M. New trends in the co-crystallization of active pharmaceutical ingredients. J. Appl. Pharm. Sci. 2011, 8, 1–5. [Google Scholar]
- Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst. Growth Des. 2022, 22, 6323–6337. [Google Scholar] [CrossRef]
- Steed, J.W. The role of co-crystals in pharmaceutical design. Trends Pharmacol. Sci. 2013, 34, 185–193. [Google Scholar] [CrossRef]
- Sugden, I.J.; Braun, D.E.; Bowskill, D.H.; Adjiman, C.S.; Pantelides, C.C. Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization. Cryst. Growth Des. 2022, 22, 4513–4527. [Google Scholar] [CrossRef]
- Arafa, M.F.; El-Gizawy, S.A.; Osman, M.A.; El Maghraby, G.M. Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: Preparation and evaluation of sublingual tablets. Pharm. Dev. Technol. 2018, 23, 454–463. [Google Scholar] [CrossRef]
- Tomaszewska, I. In Vitro and Physiologically Based Pharmacokinetic Models for Pharmaceutical Cocrystals. Ph.D. Thesis, University of Bath, Bath, UK, 31 December 2013. Available online: https://researchportal.bath.ac.uk/en/studentTheses/in-vitro-and-physiologically-based-pharmacokinetic-modelsfor-phar (accessed on 31 December 2013).
- Chow, S.F.; Chen, M.; Shi, L.; Chow, A.H.; Sun, C.C. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm. Res. 2012, 29, 1854–1865. [Google Scholar] [CrossRef]
- Kim, S.; Li, Z.; Tseng, Y.C.; Nar, H.; Spinelli, E.; Varsolona, R.; Senanayake, C. Development and characterization of a cocrystal as a viable solid form for an active pharmaceutical ingredient. Org. Process Res. Dev. 2013, 17, 540–548. [Google Scholar] [CrossRef]
- Saganowska, P.; Wesolowski, M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J. Therm. Anal. Calorim. 2018, 133, 785–795. [Google Scholar] [CrossRef]
- Harris, R.K. Application of solid-state NMR to pharmaceutical polymorphism and related matters. J. Pharm. Pharmacol. 2007, 59, 225–239. [Google Scholar] [CrossRef]
- Vogt, F.G.; Clawson, J.S.; Strohmeier, M.; Edwards, A.J.; Pham, T.N.; Watsom, S.A. Solid-State NMR analysis of organic cocrystals and complexes. Cryst. Growth Des. 2009, 9, 921–937. [Google Scholar] [CrossRef]
- An, J.H.; Lim, C.; Ryu, H.C.; Kim, J.S.; Kim, H.M.; Kiyonga, A.N.; Park, M.; Suh, Y.G.; Park, G.H.; Jung, K. Structural Characterization of Febuxostat/L-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility. Crystals 2017, 7, 365. [Google Scholar] [CrossRef]
- Brackett, J.M.; Jonaitis, D.T.; Lai, W.; Liu, J.H.; Parent, S.D.; Shen, J. Solid State Forms of Racemic Ilaprazole. PCT WO/2008/083333, 10 July 2008. [Google Scholar]
- Liu, J.H.; Brackett, J.M.; Jonaitis, D.T.; Lai, W.; Parent, S.D. Crystalline Forms of Solvated Ilaprazole. PCT WO/2008/083341, 10 July 2008. [Google Scholar]
- Kim, J.W.; Suh, K.H.; Choi, Y.J.; Kwon, D.G.; Chae, S.Y. Crystalline Form of Ilaprazole Sodium and Its New Process. K.R. Patent 1020210014900 A1, 2 February 2021. [Google Scholar]
- Wang, S.; Zhang, D.; Wang, Y.; Liu, X.; Liu, Y.; Xu, L. Gradient high performance liquid chromatography method for simultaneous determination of ilaprazole and its related impurities in commercial tablets. Asian J. Pharm. Sci. 2015, 10, 146–151. [Google Scholar] [CrossRef]
- Rathore, S.B.S.; Sharma, A.; Garg, A.; Sisodiya, S. Formulation and evaluation of enteric coated tablet of Ilaprazole. Int. Curr. Pharm. J. 2013, 2, 126–130. [Google Scholar] [CrossRef]
- An, J.H.; Nam, S. Novel Co-Crystal of Ilaprazole/Xylitol. K.R. Patent 102250509 B1, 11 May 2021. [Google Scholar]
- Geng, L.; Han, L.; Huang, L.; Wu, Z.; Wu, Z.; Qi, X. High anti-acid omeprazole lightweight capsule for gastro-enteric system acid-related disorders treatment. J. Clin. Gastroenterol. Treat. 2019, 5, 1–11. [Google Scholar]
- Kan, S.-L.; Lu, J.; Liu, J.-P.; Zhao, Y. Preparation and in vitro/in vivo evaluation of esomeprazole magnesium-modified release pellets. Drug. Deliv. 2016, 23, 866–873. [Google Scholar] [CrossRef]
- He, W.; Yang, M.; Fan, J.H.; Feng, C.X.; Zhang, S.J.; Wang, J.X.; Guan, P.P.; Wu, W. Influences of sodium carbonate on physicochemical properties of lansoprazole in designed multiple coating pellets. AAPS Pharm. Sci. Tech. 2010, 11, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, L.; Sun, J.; Yang, Y.; Ren, C.; Ai, X.; Lian, H.; He, Z. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology. Int. J. Pharm. 2013, 453, 300–306. [Google Scholar] [CrossRef]
- Quercia, R.A.; Fan, C.; Liu, X.; Chow, M.S.S. Stability of omeprazole in an extemporaneously prepared oral liquid. Am. J. Health-Syst. Pharm. 1997, 54, 1833–1836. [Google Scholar] [CrossRef]
- El-Badry, M.; Taha, E.I.; Alanazi, F.K.; Alsarra, I.A. Study of omeprazole stability in aqueous solution: Influence of cyclodextrins. J. Drug Deliv. Sci. Technol. 2009, 19, 347–351. [Google Scholar] [CrossRef]
- Horst, J.H.; Cains, P.W. Co-crystal Polymorphs from a Solvent-Mediated Transformation. Cryst. Growth Des. 2008, 8, 2537–2542. [Google Scholar] [CrossRef]
- Srebro, J.; Brniak, W.; Mendyk, A. Formulation of Dosage Forms with Proton Pump Inhibitors: State of the Art, Challenges and Future Perspectives. Pharmaceutics 2022, 14, 2043. [Google Scholar] [CrossRef] [PubMed]
- Stahl, P.H.; Wermuth, C.G. Handbook of Pharmaceutical Salt Properties, Selection, and Use; Wiley: Weinheim, Germany, 2002; pp. 272–320. [Google Scholar]
- Elbagerma, M.A.; Edwards, H.G.M.; Munshi, T.; Scowen, I.J. Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance. CrystEngComm 2011, 13, 1877–1884. [Google Scholar] [CrossRef]
- Zhou, Z.; Tong, H.H.Y.; Li, L.; Shek, F.L.Y.; Lv, Y.; Zheng, Y. Synthesis, characterization and thermal analysis of ursolic acid solid forms. Cryst. Res. Technol. 2015, 50, 538–548. [Google Scholar] [CrossRef]
Coformer (Equivalent) | pKa (Ref. [28]) |
---|---|
L-Aspartic acid (Asp) (1 eq.) | 1.88 3.65 |
L-Glutamic acid (Glu) (1 eq.) | 2.19 4.25 |
Meglumine (Meg) (1 eq.) | 9.52 |
Nicotinic acid (Nic) (1 eq.) | 4.85 |
Xylitol (Xyl) (1 eq.) | 12.76 |
Month | Ila | Ila/Xyl Cocrystal |
---|---|---|
0 | 0.032% | 0.004% |
1 | 0.82% | 0.023% |
3 | 2.28% | 0.030% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Lim, C.; Kim, Y.; Yoon, B.; Park, T.; Kim, W.-S.; An, J.-H. Investigation of the Storage and Stability as Well as the Dissolution Rate of Novel Ilaprazole/Xylitol Cocrystal. Pharmaceutics 2024, 16, 122. https://doi.org/10.3390/pharmaceutics16010122
Nam S, Lim C, Kim Y, Yoon B, Park T, Kim W-S, An J-H. Investigation of the Storage and Stability as Well as the Dissolution Rate of Novel Ilaprazole/Xylitol Cocrystal. Pharmaceutics. 2024; 16(1):122. https://doi.org/10.3390/pharmaceutics16010122
Chicago/Turabian StyleNam, Sihyun, Changjin Lim, Yongdae Kim, Bokyoung Yoon, Taewoo Park, Woo-Sik Kim, and Ji-Hun An. 2024. "Investigation of the Storage and Stability as Well as the Dissolution Rate of Novel Ilaprazole/Xylitol Cocrystal" Pharmaceutics 16, no. 1: 122. https://doi.org/10.3390/pharmaceutics16010122
APA StyleNam, S., Lim, C., Kim, Y., Yoon, B., Park, T., Kim, W. -S., & An, J. -H. (2024). Investigation of the Storage and Stability as Well as the Dissolution Rate of Novel Ilaprazole/Xylitol Cocrystal. Pharmaceutics, 16(1), 122. https://doi.org/10.3390/pharmaceutics16010122