Effect of Phase-Change Nanodroplets and Ultrasound on Blood–Brain Barrier Permeability In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanodroplet Fabrication
2.2. Dynamic Light Scattering (DLS)
2.3. Fourier–Transform Infrared Spectroscopy (FTIR)
2.4. HIFU-Induced Gas Evolution and Cavitation Monitoring with High-Speed Camera (HSC)
2.5. Blood–Brain Barrier (BBB) In Vitro Model
3. Results and Discussion
3.1. Nanodroplet Preparation and Size Characterisation
3.2. Using FTIR to Quantify PFC Content
3.3. High-Speed Camera Capture of ADV and Cavitation Nanodroplets
3.4. Effect of US and NDs on Blood–Brain Barrier (BBB) Permeability In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; et al. The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro Oncol. 2014, 16, 896–913. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Wang, L.; Chen, Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv. 2019, 26, 551–565. [Google Scholar] [CrossRef]
- Gorick, C.M.; Breza, V.R.; Nowak, K.M.; Cheng, V.W.T.; Fisher, D.G.; Debski, A.C.; Hoch, M.R.; Demir, Z.E.; Tran, N.M.; Schwartz, M.R.; et al. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv. Drug Deliv. Rev. 2022, 191, 114583. [Google Scholar] [CrossRef]
- Gedroyc, W.M.W.; Anstee, A. MR-guided focused ultrasound. Expert. Rev. Med. Devices 2007, 4, 539–547. [Google Scholar] [CrossRef]
- Mannaris, C.; Bau, L.; Grundy, M.; Gray, M.; Lea-Banks, H.; Seth, A.; Teo, B.; Carlisle, R.; Stride, E.; Coussios, C.C. Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Ultrasound Med. Biol. 2019, 45, 954–967. [Google Scholar] [CrossRef]
- Meng, Y.; Suppiah, S.; Surendrakumar, S.; Bigioni, L.; Lipsman, N. Low-Intensity MR-Guided Focused Ultrasound Mediated Disruption of the Blood-Brain Barrier for Intracranial Metastatic Diseases. Front. Oncol. 2018, 8, 338. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Abd Shukor, S.; Vijayakumaran, A.; Vlatakis, S.; Wright, M.; Thanou, M. Phase-Shift Nanodroplets as an Emerging Sonoresponsive Nanomaterial for Imaging and Drug Delivery Applications. Nanoscale 2022, 14, 2943–2965. Available online: https://pubmed.ncbi.nlm.nih.gov/35166273/ (accessed on 7 October 2023). [CrossRef]
- Rapoport, N.; Gao, Z.; Kennedy, A. Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy. J. Natl. Cancer Inst. 2007, 99, 1095–1106. [Google Scholar] [CrossRef]
- Kee, A.L.Y.; Teo, B.M. Biomedical applications of acoustically responsive phase shift nanodroplets: Current status and future directions. Ultrason. Sonochem. 2019, 56, 37–45. [Google Scholar] [CrossRef]
- Sheeran, P.S.; Matsunaga, T.O.; Dayton, P.A. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy. Phys. Med. Biol. 2013, 58, 4513–4534. [Google Scholar] [CrossRef]
- Melich, R.; Bussat, P.; Morici, L.; Vivien, A.; Gaud, E.; Bettinger, T.; Cherkaoui, S. Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold. Int. J. Pharm. 2020, 587, 119651. [Google Scholar] [CrossRef]
- Lacour, T.; Guédra, M.; Valier-Brasier, T.; Coulouvrat, F. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell. J. Acoust. Soc. Am. 2018, 143, 23–37. [Google Scholar] [CrossRef]
- Sheeran, P.S.; Dayton, P.A. Improving the Performance of Phase-Change Perfluorocarbon Droplets for Medical Ultrasonography: Current Progress, Challenges, and Prospects. Scientifica 2014, 2014, 579684. [Google Scholar] [CrossRef]
- Zhang, W.; Metzger, H.; Vlatakis, S.; Claxton, A.; Carbajal, M.A.; Fung, L.F.; Mason, J.; Chan, K.A.; Pouliopoulos, A.N.; Fleck, R.A.; et al. Characterising the chemical and physical properties of phase-change nanodroplets. Ultrason. Sonochem. 2023, 97, 106445. [Google Scholar] [CrossRef]
- Melich, R.; Zorgani, A.; Padilla, F.; Charcosset, C. Preparation of perfluorocarbon emulsions by premix membrane emulsification for Acoustic Droplet Vaporization (ADV) in biomedical applications. Biomed. Microdevices 2020, 22, 62. [Google Scholar] [CrossRef]
- Xu, X.; Song, R.; He, M.; Peng, C.; Yu, M.; Hou, Y.; Qiu, H.; Zou, R.; Yao, S. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. Lab Chip 2017, 17, 3504–3513. [Google Scholar] [CrossRef]
- Lea-Banks, H.; O’Reilly, M.A.; Hynynen, K. Ultrasound-responsive droplets for therapy: A review. J. Control. Release 2019, 293, 144–154. [Google Scholar] [CrossRef]
- Ferri, S.; Wu, Q.; De Grazia, A.; Polydorou, A.; May, J.P.; Stride, E.; Evans, N.D.; Carugo, D. Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions. Ultrason. Sonochem. 2021, 73, 105482. [Google Scholar] [CrossRef]
- Fabiilli, M.L.; Haworth, K.J.; Fakhri, N.H.; Kripfgans, O.D.; Carson, P.L.; Fowlkes, J.B. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1006–1017. [Google Scholar] [CrossRef]
- Loskutova, K.; Grishenkov, D.; Ghorbani, M. Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics. Biomed. Res. Int. 2019, 2019, 9480193. [Google Scholar] [CrossRef]
- Mitcham, T.M.; Nevozhay, D.; Chen, Y.; Nguyen, L.D.; Pinton, G.F.; Lai, S.Y.; Sokolov, K.V.; Bouchard, R.R. Effect of perfluorocarbon composition on activation of phase-changing ultrasound contrast agents. Med. Phys. 2022, 49, 2212–2219. [Google Scholar] [CrossRef]
- Choi, H.; Choi, W.; Kim, J.; Kong, W.H.; Kim, K.S.; Kim, C.; Hahn, S.K. Multifunctional Nanodroplets Encapsulating Naphthalocyanine and Perfluorohexane for Bimodal Image-Guided Therapy. Biomacromolecules 2019, 20, 3767–3777. [Google Scholar] [CrossRef]
- Zhao, X.; Wright, A.; Goertz, D.E. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. Ultrason. Sonochem. 2023, 93, 106291. [Google Scholar] [CrossRef]
- Song, J.H.; Moldovan, A.; Prentice, P. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles. Ultrasound Med. Biol. 2019, 45, 2188–2204. [Google Scholar] [CrossRef]
- Dong, F.; An, J.; Zhang, J.; Yin, J.; Guo, W.; Wang, D.; Feng, F.; Huang, S.; Zhang, J.; Cheng, H. Blinking Acoustic Nanodroplets Enable Fast Super-resolution Ultrasound Imaging. ACS Nano. 2021, 15, 16913–16923. [Google Scholar] [CrossRef]
- Wu, Q.; Mannaris, C.; May, J.P.; Bau, L.; Polydorou, A.; Ferri, S.; Carugo, D.; Evans, N.D.; Stride, E. Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods. Ultrasound Med. Biol. 2021, 47, 1826–1843. [Google Scholar] [CrossRef]
- Brighi, C.; Salimova, E.; de Veer, M.; Puttick, S.; Egan, G. Translation of Focused Ultrasound for Blood-Brain Barrier Opening in Glioma. J. Control Release 2022, 345, 443–463. Available online: https://pubmed.ncbi.nlm.nih.gov/35337938/ (accessed on 8 October 2023). [CrossRef]
- Blackmore, D.G.; Razansky, D.; Götz, J. Ultrasound as a versatile tool for short-and long-term improvement and monitoring of brain function. Neuron 2023, 111, 1174–1190. [Google Scholar] [CrossRef]
- Lea-Banks, H.; Hynynen, K. Sub-millimetre precision of drug delivery in the brain from ultrasound-triggered nanodroplets. J. Control Release 2021, 338, 731–741. [Google Scholar] [CrossRef]
- Chen, C.C.; Sheeran, P.S.; Wu, S.Y.; Olumolade, O.O.; Dayton, P.A.; Konofagou, E.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J. Control Release 2013, 172, 795–804. [Google Scholar] [CrossRef]
- Wu, S.Y.; Fix, S.M.; Arena, C.B.; Chen, C.C.; Zheng, W.; Olumolade, O.O.; Papadopoulou, V.; Novell, A.; Dayton, P.A.; Konofagou, E.E. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: Vaporization efficiency dictates large molecular delivery. Phys. Med. Biol. 2018, 63, 035002. [Google Scholar] [CrossRef]
- Shen, Y.; Pi, Z.; Yan, F.; Yeh, C.K.; Zeng, X.; Diao, X.; Hu, Y.; Chen, S.; Chen, X.; Zheng, H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int. J. Nanomed. 2017, 12, 5613–5629. [Google Scholar] [CrossRef]
- Fix, S.M.; Koppolu, B.P.; Novell, A.; Hopkins, J.; Kierski, T.M.; Zaharoff, D.A.; Dayton, P.A.; Papadopoulou, V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. Ultrasound Med. Biol. 2019, 45, 1762–1776. [Google Scholar] [CrossRef]
- Lee, W.; Weisholtz, D.S.; Strangman, G.E.; Yoo, S.S. Safety Review and Perspectives of Transcranial Focused Ultrasound Brain Stimulation. Brain Neurorehabilit. 2021, 14, e4. [Google Scholar] [CrossRef]
Perfluorocarbon (PFC) Core | Size (nm) | Polydispersity Index (PDI) | Size (nm) 7 Days After | PDI 7 Days After |
---|---|---|---|---|
Perfluoropentane (PFP) | 121.3 ± 2.4 | 0.23 ± 0.0 | 112.5 ± 2.1 | 0.21 ± 0.0 |
Perfluorohexane (PFH) | 123.3 ± 0.95 | 0.2 ± 0.0 | 106.0 ± 1.58 | 0.24 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlatakis, S.; Zhang, W.; Thomas, S.; Cressey, P.; Moldovan, A.C.; Metzger, H.; Prentice, P.; Cochran, S.; Thanou, M. Effect of Phase-Change Nanodroplets and Ultrasound on Blood–Brain Barrier Permeability In Vitro. Pharmaceutics 2024, 16, 51. https://doi.org/10.3390/pharmaceutics16010051
Vlatakis S, Zhang W, Thomas S, Cressey P, Moldovan AC, Metzger H, Prentice P, Cochran S, Thanou M. Effect of Phase-Change Nanodroplets and Ultrasound on Blood–Brain Barrier Permeability In Vitro. Pharmaceutics. 2024; 16(1):51. https://doi.org/10.3390/pharmaceutics16010051
Chicago/Turabian StyleVlatakis, Stavros, Weiqi Zhang, Sarah Thomas, Paul Cressey, Alexandru Corneliu Moldovan, Hilde Metzger, Paul Prentice, Sandy Cochran, and Maya Thanou. 2024. "Effect of Phase-Change Nanodroplets and Ultrasound on Blood–Brain Barrier Permeability In Vitro" Pharmaceutics 16, no. 1: 51. https://doi.org/10.3390/pharmaceutics16010051
APA StyleVlatakis, S., Zhang, W., Thomas, S., Cressey, P., Moldovan, A. C., Metzger, H., Prentice, P., Cochran, S., & Thanou, M. (2024). Effect of Phase-Change Nanodroplets and Ultrasound on Blood–Brain Barrier Permeability In Vitro. Pharmaceutics, 16(1), 51. https://doi.org/10.3390/pharmaceutics16010051