Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Extraction
2.4. Analysis
2.4.1. Determination of the Total Polyphenolic Content (TPC)
2.4.2. Determination of the DPPH• Radical Scavenging Assay (RSA)
2.4.3. Determination of the Ferric-Reducing Antioxidant Power (FRAP)
2.4.4. Determination of the ABTS•+ Radical Cation Scavenging Assay (ABTS)
2.4.5. Determination of Phenolic Compounds by HPLC-UV Assay
2.4.6. Determination of Antimicrobial Activity
- Determination of the Minimal Inhibition Concentration
- Antibacterial activity
- Antifungal activity
2.4.7. Statistical Analysis
3. Results
3.1. Phytochemical Content and Antioxidant Activity
3.2. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent Advances in the Valorization of Plant Biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef]
- Pavlić, B.; Aćimović, M.; Sknepnek, A.; Miletić, D.; Mrkonjić, Ž.; Kljakić, A.C.; Jerković, J.; Mišan, A.; Pojić, M.; Stupar, A.; et al. Sustainable Raw Materials for Efficient Valorization and Recovery of Bioactive Compounds. Ind. Crops Prod. 2023, 193, 116167. [Google Scholar] [CrossRef]
- Pavel, M.; Voştinaru, O.; Mogoşan, C.; Ghibu, S. Phytochemical and Pharmacological Research on Some Extracts Obtained from Serpylli herba. Farmacia 2011, 59, 77–84. [Google Scholar]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Quiñones, M.; Miguel, M.; Aleixandre, A. Beneficial Effects of Polyphenols on Cardiovascular Disease. Pharmacol. Res. 2013, 68, 125–131. [Google Scholar] [CrossRef]
- Sathya, S.; Devi, K.P. The Use of Polyphenols for the Treatment of Alzheimer’s Disease. In Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 239–252. [Google Scholar] [CrossRef]
- Singh, A.; Tripathi, P.; Yadawa, A.K.; Singh, S. Promising Polyphenols in Parkinson’s Disease Therapeutics. Neurochem. Res. 2020, 45, 1731–1745. [Google Scholar] [CrossRef]
- Olszowy, M. What Is Responsible for Antioxidant Properties of Polyphenolic Compounds from Plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-Oxidant Activity of Polyphenols and Its Implication on Cancer Chemoprevention and Chemotherapy. Biochem. Pharmacol. 2015, 98, 371–380. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A. Polyphenols Effect on Circulating Lipids and Lipoproteins: From Biochemistry to Clinical Evidence. Curr. Pharm. Des. 2018, 24, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H. Bin Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Silva, A.S.; Atanassova, M.; Sharma, R.; Nepovimova, E.; Musilek, K.; Sharma, R.; Alghuthaymi, M.A.; Dhanjal, D.S.; Nicoletti, M.; et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021, 26, 3005. [Google Scholar] [CrossRef]
- Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022, 10, 1121. [Google Scholar] [CrossRef]
- Rafał, I.G.; Króliczewski, B.J.; Górniak, I.; Bartoszewski, R.; Króliczewski, Á.J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2018, 18, 241–272. [Google Scholar] [CrossRef]
- Wagner, K.; Roth, C.; Willför, S.; Musso, M.; Petutschnigg, A.; Oostingh, G.J.; Schnabel, T. Identification of Antimicrobial Compounds in Different Hydrophilic Larch Bark Extracts. BioResources 2019, 14, 5807–5815. [Google Scholar] [CrossRef]
- Ćurković-Perica, M.; Hrenović, J.; Kugler, N.; Goić-Barišić, I.; Tkalec, M. Antibacterial Activity of Pinus pinaster Bark Extract and Its Components against Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii. Croat. Chem. Acta 2015, 88, 133–137. [Google Scholar] [CrossRef]
- Laireiter, C.M.; Schnabel, T.; Köck, A.; Stalzer, P.; Petutschnigg, A.; Oostingh, G.J.; Hell, M. Active Anti-Microbial Effects of Larch and Pine Wood on Four Bacterial Strains. BioResources 2013, 9, 273–281. [Google Scholar] [CrossRef]
- Albanese, L.; Bonetti, A.; D’Acqui, L.P.; Meneguzzo, F.; Zabini, F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir (Abies alba Mill.) Needles. Foods 2019, 8, 65. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A.; Chrzescijanska, E.; Podsędek, A.; Kajszczak, D. Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants 2021, 10, 1723. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Sienkiewicz, M.; Stobiecka, A.; Maciąg, A.; Szoka, Ł.; Karna, E. Chemical Composition and Biological Activity of Abies alba and A. koreana Seed and Cone Essential Oils and Characterization of Their Seed Hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef]
- Schoss, K.; Benedetič, R.; Kreft, S. The Phenolic Content, Antioxidative Properties and Extractable Substances in Silver Fir (Abies alba Mill.) Branches Decrease with Distance from the Trunk. Plants 2022, 11, 333. [Google Scholar] [CrossRef]
- Dziedzinski, M.; Kobus-Cisowska, J.; Szymanowska, D.; Stuper-Szablewska, K.; Baranowska, M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules 2020, 25, 3527. [Google Scholar] [CrossRef]
- Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Rogozí Nski, T.; Stuper-Szablewska, K. Phenolic Compounds in Trees and Shrubs of Central Europe. Appl. Sci. 2020, 10, 6907. [Google Scholar] [CrossRef]
- Chmelová, D.; Škulcová, D.; Legerská, B.; Horník, M.; Ondrejovič, M. Ultrasonic-Assisted Extraction of Polyphenols and Antioxidants from Picea abies Bark. J. Biotechnol. 2020, 314–315, 25–33. [Google Scholar] [CrossRef]
- Benković, E.T.; Grohar, T.; Žigon, D.; Švajger, U.; Janeš, D.; Kreft, S.; Štrukelj, B. Chemical Composition of the Silver Fir (Abies alba) Bark Extract Abigenol® and Its Antioxidant Activity. Ind. Crops Prod. 2014, 52, 23–28. [Google Scholar] [CrossRef]
- Georgescu, C.; Frum, A.; Virchea, L.I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.G.; Olah, N.K.; Mathe, E.; Mironescu, M. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef]
- Frum, A.; Dobrea, C.M.; Rus, L.L.; Virchea, L.I.; Morgovan, C.; Chis, A.A.; Arseniu, A.M.; Butuca, A.; Gligor, F.G.; Vicas, L.G.; et al. Valorization of Grape Pomace and Berries as a New and Sustainable Dietary Supplement: Development, Characterization, and Antioxidant Activity Testing. Nutrients 2022, 14, 3065. [Google Scholar] [CrossRef]
- Tița, O.; Constantinescu, M.A.; Tița, M.A.; Georgescu, C. Use of Yoghurt Enhanced with Volatile Plant Oils Encapsulated in Sodium Alginate to Increase the Human Body’s Immunity in the Present Fight against Stress. Int. J. Environ. Res. Public Health 2020, 17, 7588. [Google Scholar] [CrossRef]
- Vicaș, L.; Teușdea, A.; Vicaș, S.; Marian, E.; Tunde, J.; Mureșan, M.; Gligor, F. Assessment of Antioxidant Capacity of Some Extracts for Further Use in Therapy. Farmacia 2015, 63, 267–274. [Google Scholar]
- Craciun, V.I.; Gligor, F.G.; Juncan, A.M.; Chis, A.A.; Rus, L.L. A New, Rapid and Efficient HPLC Method to Assay Resveratrol in Food Supplements. Rev. Chim. 2019, 70, 3202–3205. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H. Bin Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef]
- Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.V.; Gkentzi, D.; Assimakopoulos, S.F.; Panos, G.; Marangos, M. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiotics 2020, 9, 107. [Google Scholar] [CrossRef]
- Silva, N.C.C.; Fernandes Júnior, A. Biological Properties of Medicinal Plants: A Review of Their Antimicrobial Activity. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 402–413. [Google Scholar] [CrossRef]
- Sipponen, A.; Laitinen, K. Antimicrobial Properties of Natural Coniferous Rosin in the European Pharmacopoeia Challenge Test. Apmis 2011, 119, 720–724. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Stromsnes, K.; Lagzdina, R.; Olaso-gonzalez, G.; Gimeno-Mallench, L.; Gambini, J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action and Biological Effects in In Vitro Studies, Animal Models and Humans. Biomedicines 2021, 9, 1074. [Google Scholar] [CrossRef]
- Mureşan, M.; Olteanu, D.; Filip, G.A.; Clichici, S.; Baldea, I.; Jurca, T.; Pallag, A.; Marian, E.; Frum, A.; Gligor, F.G.; et al. Comparative Study of the Pharmacological Properties and Biological Effects of Polygonum aviculare L. Herba Extract-Entrapped Liposomes versus Quercetin-Entrapped Liposomes on Doxorubicin-Induced Toxicity on Huvecs. Pharmaceutics 2021, 13, 1418. [Google Scholar] [CrossRef]
- Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. Oxid. Med. Cell. Longev. 2015, 2015, 340520. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.; Park, H.R.; Lee, K.A. A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants 2021, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic Potential through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92. [Google Scholar] [CrossRef] [PubMed]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic Acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef]
- Apetrei, C.L.; Tuchilus, C.; Aprotosoaie, A.C.; Oprea, A.; Malterud, K.E.; Miron, A. Chemical, Antioxidant and Antimicrobial Investigations of Pinus cembra L. Bark and Needles. Molecules 2011, 16, 7773–7788. [Google Scholar] [CrossRef]
- Faggian, M.; Bernabè, G.; Ferrari, S.; Francescato, S.; Baratto, G.; Castagliuolo, I.; Dall’acqua, S.; Peron, G. Polyphenol-Rich Larix Decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics 2021, 10, 789. [Google Scholar] [CrossRef]
Sample | TPC mg GAE/g d.w. | RSA % | FRAP µmol TE/g d.w. | ABTS µmol TE/g d.w. |
---|---|---|---|---|
SP1N | 109.80 ± 1.39 a | 98.07 ± 1.38 a | 34.93 ± 1.42 a,b | 50.83 ± 0.55 a,f |
SP2N | 102.59 ± 1.54 a,d | 96.50 ± 1.90 a,h | 31.94 ± 1.35 a,l | 48.99 ± 1.05 c–h,k |
SP1B | 103.61 ± 1.01 a,c,e | 97.65 ± 1.23 a,c | 34.49 ± 1.31 a,f | 50.71 ± 0.90 a,g |
SP2B | 101.38 ± 10.02 b–e | 92.43 ± 1.93 c–i | 31.71 ± 2.02 a,m | 42.58 ± 0.95 m |
FI1N | 81.56 ± 1.05 i–k | 98.90 ± 1.69 a | 34.13 ± 1.33 a,g | 52.91 ± 1.56 a,b |
FI2N | 85.92 ± 1.41 j,k | 99.32 ± 1.94 a | 35.74 ± 1.20 a | 53.57 ± 1.27 a |
FI1B | 88.11 ± 1.32 i,h | 95.46 ± 1.86 a,i | 33.14 ± 1.05 a,i | 46.52 ± 0.66 i–l |
FI2B | 93.28 ± 1.12 f–h | 98.59 ± 2.04 a | 34.69 ± 1.28 a,d | 51.73 ± 1.06 a,d |
DO1N | 103.64 ± 1.17 a,b | 97.75 ± 1.55 a,b | 32.87 ± 0.94 a,k | 50.33 ± 0.91 a,h |
DO2N | 100.76 ± 1.22 b–d,f | 97.44 ± 1.88 a,d | 33.06 ± 1.62 a,j | 50.19 ± 1.01 b–h |
DO1B | 75.25 ± 1.13 k,l | 91.80 ± 1.93 h,i | 29.46 ± 1.01 h–m | 39.80 ± 0.73 m,o |
DO2B | 84.26 ± 1.20 i,j | 92.74 ± 1.62 b–i | 29.64 ± 1.03 h–m | 41.36 ± 1.02 m,n |
PI1N | 99.40 ± 0.80 b–d,g | 98.90 ± 1.51 a | 34.66 ± 0.90 a,e | 51.99 ± 1.87 a,c |
PI2N | 87.60 ± 1.05 h,j | 99.22 ± 1.58 a | 33.49 ± 1.27 a,h | 51.65 ± 0.89 a,e |
PI1B | 68.49 ± 1.47 l,m | 97.44 ± 1.88 a,e | 30.61 ± 1.83 d–g,i–m | 50.16 ± 0.88 b–h |
PI2B | 67.12 ± 1.19 m | 97.44 ± 1.87 a,f | 29.16 ± 1.64 i–m | 49.17 ± 1.33 c–i,l |
LA1N | 66.80 ± 0.79 m | 97.23 ± 1.13 a,g | 34.77 ± 1.06 a,c | 49.08 ± 0.90 c–h,j,l |
LA1B | 62.45 ± 1.19 m | 91.18 ± 1.85 i | 31.29 ± 1.15 b–m | 38.23 ± 1.13 o,n |
Ascorbic acid | - | 100.00 ± 0.53% * | 20.17 ± 1.10 mmol TE/g d.w. | 22.59 ± 1.39 mmol TE/g d.w. |
Phytochemical Compound µg/g d.w. | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Phenolic Acids and Derivatives | Flavonoids | Stilbenes | ||||||
Cinnamic Acid | Syringic Acid | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | (+)-Catechin | Rutin | Quercetin | Resveratrol | |
SP1N | 40.29 ± 0.87 d | 169.47 ± 1.06 f | n.d. | 102.78 ± 1.03 d | 153.90 ± 0.83 e | 5343.27 ± 0.89 a | 133.51 ± 1.18 e | 279.45 ± 1.22 e | 33.40 ± 0.76 e |
SP2N | 12.49 ± 0.93 g | 554.40 ± 0.80 c | n.d. | 467.89 ± 1.55 c | 272.12 ± 1.20 d | 1248.80 ± 1.29 g | 86.86 ± 1.17 h | 90.23 ± 1.27 m | 8.75 ± 0.79 i |
SP1B | n.d. | 1498.90 ± 1.20 a | n.d. | 1331.76 ± 1.54 a | n.d. | 981.35 ± 1.77 i | n.d. | 135.69 ± 1.28 i | n.d. |
SP2B | n.d. | 809.56 ± 0.90b | n.d. | 729.88 ± 1.99 b | n.d. | 2174.86 ± 1.21 c | n.d. | 158.09 ± 1.29 g | n.d. |
FI1N | 54.93 ± 1.02 c | 154.71 ± 1.38 g | 79.58 ± 1.47 a | 8.38 ± 0.59 f | 88.38 ± 1.39 g | 3735.62 ± 1.41 b | 79.70 ± 1.82 i | 132.75 ± 1.41 i | 26.51 ± 0.91 f |
FI2N | 22.22 ± 0.66 f | 257.28 ± 1.33 e | 141.76 ± 1.64 b | 37.53 ± 1.28 e | 123.42 ± 1.12 f | 1910.48 ± 1.38 d | 134.02 ± 1.46 e | 167.29 ± 1.78 f | 21.80 ± 1.07 g |
FI1B | n.d. | 66.79 ± 1.51 j | n.d. | n.d. | n.d. | 852.91 ± 1.22 j | 114.92 ± 1.10 f | 127.34 ± 1.75 j | 26.62 ± 0.72 f |
FI2B | n.d. | 74.12 ± 1.02 i | n.d. | n.d. | n.d. | 259.61 ± 0.87 m | 112.08 ± 1.29 f | 32.90 ± 0.83 o | 27.05 ± 1.08 f |
DO1N | 25.96 ± 1.14 e | 27.60 ± 1.07 n | n.d. | n.d. | 59.05 ± 0.75 h | 491.01 ± 1.65 l | 576.90 ± 0.99 c | 39.62 ± 1.46 n | 89.78 ± 1.29 c |
DO2N | 94.59 ± 0.99 b | 439.46 ± 1.07 d | n.d. | n.d. | 581.13 ± 1.59 c | 1094.17 ± 1.60 h | 927.90 ± 0.92 a | 428.11 ± 0.51 c | 279.92 ± 1.35 a |
DO1B | n.d. | 102.89 ± 1.46 h | n.d. | n.d. | 2946.50 ± 1.06 a | n.d. | 57.72 ± 1.03 m | 315.35 ± 0.87 d | 16.94 ± 1.49 h |
DO2B | n.d. | 35.68 ± 0.85 m | n.d. | n.d. | 40.60 ± 0.84 i | 165.79 ± 1.40 o | 105.43 ± 1.05 g | 122.26 ± 1.10 k | 27.43 ± 1.01 f |
PI1N | 9.30 ± 0.94 h | 50.53 ± 0.65 l | n.d. | 4.10 ± 0.42 g | 42.23 ± 1.59 i | 1461.85 ± 1.26 e | 823.18 ± 1.48 b | 127.27 ± 1.18 j | 133.66 ± 1.91 b |
PI2N | 8.56 ± 0.49 h | 61.49 ± 0.77 k | n.d. | 4.07 ± 0.36 g | 1.49 ± 0.39 j | 110.63 ± 0.60 p | 63.34 ± 1.32 k,l | 109.02 ± 1.42 l | 21.95 ± 0.83 g |
PI1B | n.d. | n.d. | n.d. | n.d. | n.d. | 1378.05 ± 1.50 f | 76.58 ± 0.86 i | 151.72 ± 1.24 n | 10.17 ± 1.25 i |
PI2B | n.d. | n.d. | n.d. | n.d. | n.d. | 240.15 ± 0.91 n | 60.43 ± 0.67 l,m | 42.34 ± 1.51 n | 17.69 ± 1.00 h |
LA1N | 4.34 ± 1.15 i | 104.42 ± 1.06 h | n.d. | n.d. | 1115.85 ± 1.50 b | 516.01 ± 1.56 k | 354.38 ± 1.74 d | 532.31 ± 1.28 b | 56.96 ± 1.26 d |
LA1B | 139.62 ± 1.90 a | 35.78 ± 1.05 m | n.d. | n.d. | n.d. | 88.83 ± 0.75 q | 71.63 ± 1.94 j | 687.69 ± 1.82 a | 18.22 ± 1.11 h |
Sample | Staphylococcus aureus ATCC29213 | Bacillus subtilis ATCC23857 | Streptococcus pyogenes ATCC19615 | Escherichia coli ATCC25922 | Pseudomonas aeruginosa ATCC10145 | Morganella morganii ATCC25830 | Candida albicans ATCC14053 | Candida parapsilosis ATCC22019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | MIC | AA | MIC | AA | MIC | AA | MIC | AA | MIC | AA | MIC | AA | MIC | AA | MIC | |
SP1N | ++++ | 125 | + | 750 | ++ | 500 | ++++ | 125 | +++ | 250 | + | 750 | +++ | 250 | + | 750 |
SP2N | ++++ | 125 | + | 750 | +++ | 250 | ++++ | 125 | ++ | 500 | − | − | +++ | 250 | − | − |
SP1B | +++++ | 62.5 | ++ | 500 | ++ | 500 | ++++ | 125 | +++ | 250 | + | 750 | ++++ | 125 | + | 750 |
SP2B | +++++ | 62.5 | ++ | 500 | +++ | 250 | ++++ | 125 | +++ | 250 | − | − | ++++ | 125 | − | − |
FI1N | ++++ | 125 | − | − | +++ | 250 | +++ | 250 | +++ | 250 | + | 750 | ++++ | 125 | + | 750 |
FI2N | ++++ | 125 | − | − | +++ | 250 | +++++ | 62.5 | +++ | 250 | − | − | ++++ | 125 | + | 750 |
FI1B | +++++ | 62.5 | − | − | +++ | 250 | ++++ | 125 | +++ | 250 | + | 750 | ++++ | 125 | − | − |
FI2B | +++++ | 62.5 | − | − | ++++ | 125 | +++++ | 62.5 | +++ | 250 | − | − | ++++ | 125 | + | 750 |
DO1N | +++++ | 62.5 | ++ | 500 | +++ | 250 | +++ | 250 | ++ | 500 | + | 750 | ++++ | 125 | − | − |
DO2N | +++++ | 62.5 | + | 750 | +++ | 250 | +++ | 250 | +++ | 250 | − | − | +++ | 250 | − | − |
DO1B | ++++ | 125 | ++ | 500 | ++++ | 125 | ++++ | 125 | +++ | 250 | + | 750 | +++ | 250 | − | − |
DO2B | ++++ | 125 | + | 750 | +++ | 250 | ++++ | 125 | +++ | 250 | − | − | +++ | 250 | − | − |
PI1N | ++++ | 125 | + | 750 | ++ | 500 | +++ | 250 | +++ | 250 | + | 750 | ++++ | 125 | + | 750 |
PI2N | ++++ | 125 | + | 750 | +++ | 250 | +++ | 250 | +++ | 250 | − | − | ++++ | 125 | + | 750 |
PI1B | +++++ | 62.5 | + | 750 | ++++ | 125 | ++++ | 125 | +++ | 250 | + | 750 | ++++ | 125 | + | 750 |
PI2B | ++++ | 62.5 | + | 750 | ++++ | 125 | ++++ | 125 | +++ | 250 | − | − | ++++ | 125 | + | 750 |
LA1N | ++++ | 125 | ++ | 500 | +++ | 250 | +++ | 250 | ++ | 500 | − | − | ++++ | 125 | − | − |
LA1B | +++++ | 62.5 | ++ | 500 | +++ | 250 | ++++ | 125 | ++++ | 125 | − | − | ++++ | 125 | + | 750 |
Gentamicin | +++++ | 62.5 | ++ | 500 | ++++ | 125 | ++++ | 125 | ++++ | 125 | +++ | 250 | − | − | − | − |
Ketoconazole | − | − | − | − | − | − | − | − | − | − | − | − | +++++ | 62.5 | +++++ | 62.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, D.I.; Frum, A.; Dobrea, C.M.; Cristea, R.; Gligor, F.G.; Vicas, L.G.; Ionete, R.E.; Sutan, N.A.; Georgescu, C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2024, 16, 52. https://doi.org/10.3390/pharmaceutics16010052
Popescu DI, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics. 2024; 16(1):52. https://doi.org/10.3390/pharmaceutics16010052
Chicago/Turabian StylePopescu (Stegarus), Diana Ionela, Adina Frum, Carmen Maximiliana Dobrea, Ramona Cristea, Felicia Gabriela Gligor, Laura Gratiela Vicas, Roxana Elena Ionete, Nicoleta Anca Sutan, and Cecilia Georgescu. 2024. "Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts" Pharmaceutics 16, no. 1: 52. https://doi.org/10.3390/pharmaceutics16010052
APA StylePopescu, D. I., Frum, A., Dobrea, C. M., Cristea, R., Gligor, F. G., Vicas, L. G., Ionete, R. E., Sutan, N. A., & Georgescu, C. (2024). Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics, 16(1), 52. https://doi.org/10.3390/pharmaceutics16010052