Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Formulation Preparation
Lactose Carrier Formulation
Coarse Drug Carrier Formulation
2.2.2. Blend Uniformity
Lactose Carrier Formulation—UV–VIS Assay
Coarse Drug Carrier Formulation—Particle Size Dispersion (PSD)
2.2.3. Aerosol Performance
2.2.4. Blend Characterization
Particle Size Distribution
Flow Properties
Powder X-ray Diffraction (PXRD)
Differential Scanning Calorimetry (DSC)
Scanning Electron Microscopy (SEM)
2.3. Statistics
3. Results
3.1. Blend Preparation and Uniformity
3.2. Powder Characterization
3.2.1. Particle Size and Morphology (Particle Size Distribution (PSD) and Scanning Electron Microscopy (SEM))
3.2.2. Powder Physicochemical Properties (PXRD and DSC)
3.2.3. Powder Flow Properties
3.2.4. Powder Interparticulate Properties
3.3. Aerosol Performance Results
4. Discussion
4.1. Lactose Blend Formulations Had Poorer Aerosol Performance Compared to Indomethacin-Only Formulations
4.2. Indomethacin-Only Formulations Achieve Target Respirable Doses
4.3. A Coarse Particle Dose, When Using Indomethacin-Only Formulations, Is Likely to Provide Adequate Oral Dose for Additional Oral Absorption and Prolonged Plasma Levels
4.4. Coarse Indomethacin Demonstrates Superior Flow over Milled Indomethacin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- O’Brien, M.; McCauley, J.; Cohen, E. Indomethacin. In Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 211–238. Available online: https://www.sciencedirect.com/science/article/pii/S0099542808601926 (accessed on 6 February 2022).
- Boardman, P.L.; Hart, F.D. Side-effects of indomethacin. Ann. Rheum. Dis. 1967, 26, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Husain, M.; Sureka, D.S.; Shah, N.P.; Shah, N.D. Is there need to search for alternatives to indomethacin for hemicrania continua? Case reports and a review. J. Neurol. Sci. 2009, 277, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Nalamachu, S.; Wortmann, R. Role of Indomethacin in Acute Pain and Inflammation Management: A Review of the Literature. Postgrad. Med. 2014, 126, 92–97. [Google Scholar] [CrossRef]
- Patton, J.S.; Byron, P.R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 2007, 6, 67–74. [Google Scholar] [CrossRef]
- Bell, J.H.; Hartley, P.S.; Cox, J.S.G. Dry powder aerosols I: A new powder inhalation device. J. Pharm. Sci. 1971, 60, 1559–1564. [Google Scholar] [CrossRef]
- Tamaoki, J.; Nakata, J.; Nishimura, K.; Kondo, M.; Aoshiba, K.; Kawatani, K.; Nagai, A. Effect of inhaled indomethacin in asthmatic patients taking high doses of inhaled corticosteroids. J. Allergy Clin. Immunol. 2000, 105, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Mochizuki, H.; Shigeta, M.; Morikawa, A. Effect of inhaled indomethacin on exercise-induced bronchoconstriction in children with asthma. Am. J. Respir. Crit. Care Med. 1997, 155, 170–173. [Google Scholar] [CrossRef]
- Onischuk, A.A.; Tolstikova, T.G.; Sorokina, I.V.; Zhukova, N.A.; Baklanov, A.M.; Karasev, V.V.; Dultseva, G.G.; Boldyrev, V.V.; Fomin, V.M. Anti-inflammatory Effect from Indomethacin Nanoparticles Inhaled by Male Mice. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21, 231–244. [Google Scholar] [CrossRef]
- Ceschan, N.E.; Bucalá, V.; Mateos, M.V.; Smyth, H.D.C.; Ramírez-Rigo, M.V. Carrier free indomethacin microparticles for dry powder inhalation. Int. J. Pharm. 2018, 549, 169–178. [Google Scholar] [CrossRef]
- Dodick, D.W. Indomethacin-responsive headache syndromes. Curr. Pain Headache Rep. 2004, 8, 19–26. [Google Scholar] [CrossRef]
- Prakash, S.; Patel, P. Hemicrania continua: Clinical review, diagnosis and management. J. Pain Res. 2017, 10, 1493–1509. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, E.; Alqahtani, S.; Sadler, R.C.; Prime, D.; Stolnik, S.; Bosquillon, C. In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. Eur. J. Pharm. Biopharm. 2019, 141, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Smyth, H.D.C.; Saleem, I.; Donovan, M.; Verschraegen, C.F. Pulmonary Delivery of Anti-Cancer Agents. In Advanced Drug Formulation Design to Optimize Therapeutic Outcomes; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-429-14351-9. [Google Scholar]
- Sheikh, Z.; Ong, H.X.; Pozzoli, M.; Young, P.M.; Traini, D. Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment? Expert Opin. Orphan Drugs 2018, 6, 69–84. [Google Scholar] [CrossRef]
- Lucas, S. The Pharmacology of Indomethacin. Headache J. Head Face Pain 2016, 56, 436–446. [Google Scholar] [CrossRef]
- Nagaoka, H.; Momo, K.; Hamano, J.; Miyaji, T.; Oyamada, S.; Kawaguchi, T.; Homma, M.; Yamaguchi, T.; Morita, T.; Kizawa, Y. Effects of an Indomethacin Oral Spray on Pain Due to Oral Mucositis in Cancer Patients Treated with Radiotherapy and Chemotherapy: A Double-Blind, Randomized, Placebo-Controlled Trial (JORTC-PAL04). J. Pain Symptom Manag. 2021, 62, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Hebbink, G.A.; Jaspers, M.; Peters, H.J.W.; Dickhoff, B.H.J. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv. Drug Deliv. Rev. 2022, 189, 114527. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Smyth, H.D.C. Formulation techniques for high dose dry powders. Int. J. Pharm. 2018, 547, 489–498. [Google Scholar] [CrossRef]
- Yazdi, A.K.; Smyth, H.D.C. Implementation of design of experiments approach for the micronization of a drug with a high brittle–ductile transition particle diameter. Drug Dev. Ind. Pharm. 2017, 43, 364–371. [Google Scholar] [CrossRef]
- Yazdi, A.K.; Smyth, H.D.C. Carrier-free high-dose dry powder inhaler formulation of ibuprofen: Physicochemical characterization and in vitro aerodynamic performance. Int. J. Pharm. 2016, 511, 403–414. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Jan, S.U.; Ferrati, S.; Smyth, H.D.C. Excipient-Free Pulmonary Delivery and Macrophage Targeting of Clofazimine via Air Jet Micronization. Mol. Pharm. 2017, 14, 4019–4031. [Google Scholar] [CrossRef]
- Spahn, J.E.; Hefnawy, A.; Smyth, H.D.C.; Zhang, F. Development of a novel method for the continuous blending of carrier-based dry powders for inhalation using a co-rotating twin-screw extruder. Int. J. Pharm. 2022, 623, 121914. [Google Scholar] [CrossRef] [PubMed]
- Clydesdale, G.; Roberts, K.J.; Telfer, G.B.; Grant, D.J.W. Modeling the Crystal Morphology of α-lactose Monohydrate. J. Pharm. Sci. 1997, 86, 135–141. [Google Scholar] [CrossRef]
- Slavin, P.A.; Sheen, D.B.; Shepherd, E.E.A.; Sherwood, J.N.; Feeder, N.; Docherty, R.; Milojevic, S. Morphological evaluation of the γ-polymorph of indomethacin. J. Cryst. Growth 2002, 237–239, 300–305. [Google Scholar] [CrossRef]
- Wu, T.; Yu, L. Surface Crystallization of Indomethacin Below Tg. Pharm. Res. 2006, 23, 2350–2355. [Google Scholar] [CrossRef]
- The United States Pharmacopeia. <1174>Powder Flow [Internet]. 2016. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/g05_pf_30_6_2004.pdf (accessed on 14 June 2024).
- Alván, G.; Orme, M.; Bertilsson, L.; Ekstrand, R.; Palmér, L. Pharmacokinetics of indomethacin. Clin. Pharmacol. Ther. 1975, 18, 364–373. [Google Scholar] [CrossRef]
- Grasmeijer, F.; Grasmeijer, N.; Hagedoorn, P.; Frijlink, H.W.; Haaije de Boer, A. Recent advances in the fundamental understanding of adhesive mixtures for inhalation. Curr. Pharm. Des. 2015, 21, 5900–5914. [Google Scholar] [CrossRef]
- Donovan, M.J.; Smyth, H.D.C. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Int. J. Pharm. 2010, 402, 1–9. [Google Scholar] [CrossRef]
- Spahn, J.E.; Zhang, F.; Smyth, H.D.C. Mixing of dry powders for inhalation: A review. Int. J. Pharm. 2022, 619, 121736. [Google Scholar] [CrossRef] [PubMed]
- Begat, P.; Morton, D.A.V.; Staniforth, J.N.; Price, R. The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations I: Direct Quantification by Atomic Force Microscopy. Pharm. Res. 2004, 21, 1591–1597. [Google Scholar] [CrossRef]
- Yeh, K.C. Pharmacokinetic overview of indomethacin and sustained-release indomethacin. Am. J. Med. 1985, 79, 3–12. [Google Scholar] [CrossRef]
- Food and Drug Administration. INDOCIN (Indomethacin) Capsules, for Oral Use [Internet]. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/016059s100lbl.pdf (accessed on 14 June 2024).
- Turakka, H.; Airaksinen, M.M. Biopharmaceutical assessment of phenylbutazone and indomethacin preparations. Ann. Clin. Res. 1974, 6 (Suppl. 11), 34–43. [Google Scholar]
- Tan, S.B.; Newton, J.M. Powder flowability as an indication of capsule filling performance. Int. J. Pharm. 1990, 61, 145–155. [Google Scholar] [CrossRef]
Formulation | X10 | X50 | X90 | Span ((X90 − X10)/X50) |
---|---|---|---|---|
Lactohale 206 | 1.9 µm | 4.2 µm | 116.1 µm | 27.5 |
Lactohale 206, 0.4% magnesium stearate | 5.3 µm | 54.8 µm | 101.4 µm | 1.8 |
Micronized indomethacin | 0.8 µm | 2.7 µm | 7.3 µm | 2.4 |
Coarse indomethacin | 2.6 µm | 15.7 µm | 42.5 µm | 2.5 |
1:5 (w/w) micronized indomethacin–lactose | 1.2 µm | 11.7 µm | 64.1 µm | 5.4 |
1:5 (w/w) micronized indomethacin–coarse indomethacin | 1.3 µm | 10.1 µm | 37.9 µm | 3.62 |
Average % Recovered | RSD (%) | |||
---|---|---|---|---|
Lactose carrier formulation | 95.6 | 7.6 | ||
Average d10 | RSD (%) | Average D90 | RSD (%) | |
1:5 (w/w) Coarse drug carrier formulation | 1.3 µm | 3.0 | 37.9 µm | 1.8 |
1:1 (w/w) Coarse drug carrier formulation | 0.9 µm | 2.0 | 22.8 µm | 3.5 |
Powder | Angle of Repose (°) | Bulk Density (g/mL) | Tapped Density (g/mL) | Compressibility Index | Hausner Ratio |
---|---|---|---|---|---|
Coarse indomethacin | 38.99 ± 0.58 | 0.380 ± 0.01 | 0.61 ± 0.01 | 37.7 ± 1.2 | 1.6 ± 0.0 |
Milled indomethacin | 46.73 ± 3.00 | 0.217 ± 0.00 | 0.35 ± 0.00 | 38.9 ± 0.0 | 1.6 ± 0.0 |
Formulation | Micronized Drug Mass (mg) | Carrier Mass (mg) | Emitted Dose (mg) | SD | Fine Particle Dose (mg) | SD | Emitted Fraction (%) | SD | Fine Particle Fraction (%) | SD |
---|---|---|---|---|---|---|---|---|---|---|
Lactose | 5 | 25 | 3.86 | 0.66 | 0.33 | 0.02 | 77.2 | 13.3 | 6.6 | 0.4 |
Pure micronized | 5 | 0 | 3.26 | 0.51 | 1.23 | 0.12 | 65.2 | 10.2 | 24.6 | 2.4 |
30 | 0 | 20.98 | 2.86 | 6.34 | 0.67 | 69.9 | 9.5 | 21.1 | 2.2 | |
65 | 0 | 41.80 | 2.24 | 8.49 | 0.98 | 64.3 | 3.5 | 13.1 | 1.5 | |
Micronized + coarse (1:1 w/w) | 5 | 5 | 8.12 | 1.55 | 1.84 | 0.12 | 81.2 | 15.5 | 36.7 | 2.3 |
10 | 10 | 14.79 | 2.74 | 2.60 | 0.58 | 73.9 | 13.7 | 26.0 | 5.8 | |
25 | 25 | 38.26 | 2.23 | 5.45 | 0.42 | 76.5 | 4.5 | 21.8 | 1.7 | |
Micronized + coarse (1:5 w/w) | 5 | 25 | 25.74 | 2.90 | 1.37 | 0.17 | 85.8 | 9.7 | 27.4 | 3.4 |
10 | 50 | 28.27 | 16.80 | 2.80 | 0.39 | 47.1 | 28.0 | 28.0 | 3.9 |
Formulation | Micronized Drug Mass (mg) | Carrier Mass (mg) | Coarse Particle Dose (ug) | SD | %CV |
---|---|---|---|---|---|
Lactose | 5 | 25 | 3530 | 641 | 18 |
Pure micronized | 5 | 0 | 2026 | 400 | 20 |
30 | 0 | 14,640 | 2201 | 15 | |
65 | 0 | 33,307 | 1375 | 4 | |
Micronized + coarse (1:1 w/w) | 5 | 5 | 6280 | 1444 | 23 |
10 | 10 | 12,191 | 2866 | 24 | |
25 | 25 | 32,813 | 1830 | 6 | |
Micronized + coarse (1:5 w/w) | 5 | 25 | 24,371 | 2807 | 12 |
10 | 50 | 22,688 | 17,538 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spahn, J.E.; Hefnawy, A.; Zhang, F.; Smyth, H.D.C. Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery. Pharmaceutics 2024, 16, 1269. https://doi.org/10.3390/pharmaceutics16101269
Spahn JE, Hefnawy A, Zhang F, Smyth HDC. Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery. Pharmaceutics. 2024; 16(10):1269. https://doi.org/10.3390/pharmaceutics16101269
Chicago/Turabian StyleSpahn, Jamie E., Amr Hefnawy, Feng Zhang, and Hugh D. C. Smyth. 2024. "Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery" Pharmaceutics 16, no. 10: 1269. https://doi.org/10.3390/pharmaceutics16101269
APA StyleSpahn, J. E., Hefnawy, A., Zhang, F., & Smyth, H. D. C. (2024). Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery. Pharmaceutics, 16(10), 1269. https://doi.org/10.3390/pharmaceutics16101269