SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives
Abstract
:1. Introduction
2. Skin Delivery of SLNs and NLCs
2.1. Pathways of Skin Absorption
2.2. Skin Permeability of Active Ingredients
3. Fundamental Insights into SLNs and NLCs
4. Overview on SLNs and NLCs Entrapping Natural Bioactives for Skin Health
4.1. Delivery of Natural Bioactives from SLNs and NLCs
4.2. The Advantages of Natural Bioactives Incorporation in SLNs and NLCs
SLNs | ||||||||
---|---|---|---|---|---|---|---|---|
Entrapped Natural Bioactives | Lipids | Surfactants | Method of Preparation | Characterization | Applications | Evaluation: Samples and Test Type (In Vitro/Ex Vivo/In Vivo Studies) | Effects Reported | Ref. |
Oils and EOs | ||||||||
Chamomila recutita oil | Stearic acid | Tween® 80 | Hot homogenization. | Size 542.1–956.5 nm PDI: 0.273–0.723, ZP: (−25.6)–(−35.9) mV, Occlusion factor: 38.46–56.41%, Viscosity: 1.70–5.80 Pa s. | Wound healing | SNLs and cream with SLNs: In vivo wound healing study (Wistar rats), Ex vivo IL-1β and TGF-β1, MMP-9 and TIMP-1 levels and collagen deposition. | ↑ Wound area contraction, ↑ re-epithelization grade, ↑ collagen deposition, skin architecture, ↑ tensile strength, ↑ TGF-β levels, ↓ IL-1β levels and MMP-9 activity (better results in cream with SLNs with oil > SLNs with oil > oil). | [47] |
HEs | ||||||||
Platycladus orientalis methanolic extract | Precirol® Compritol® Glucire® Glyceryl monostearate | Tween® 80, Labrasol®, Poloxamer® | High-shear homogenization and sonication. | Size: 34.32–1420 nm. PDI: 0.159–0.921. ZP: (−651)–(−4.35) mV. EE: 71%. Stability for 6 M. | Hair growth | SLNs: biofilm formation assay (P. aeruginosa, P. mirabilis, E. coli, S.s aureus, E. fecalis, S. pneumoniae), 5-α reductase activity. | ↓ Biofilm development compared to control sample. ↑ 5-α reductase inhibitor activity. | [41] |
Withania somnifera leaves ethanolic, hydroethanolic and aqueous extract | Compritol® 888ATO, L-α-phosphatidylcholine | Tween® 80, Span®80 | Solvent injection method and sonication. | Size: 186.8–260.8 nm. PDI: 0.48–0.74. ZP: 16.7–27.3 mV. EE withaferin A: 35.4–70.0%. EE withanolide A: 81.5–95.3%. pH: 5.0–5.3. Stability for 3 M, room temperature. | Antimelanoma | SNLs: ex vivo skin diffusion and tape-stripping studies (human skin). | Relatively low concentrations of withaferin A and withanolide A diffused into the skin during 12 h. High EE, not correlated with a high release and skin permeation. | [56] |
Elaeis guineensis fruits concentrated ethanolic extract | Glyceryl monostearate | Span® 80, Tween® 80 | Hot homogenization. | Size: 609.70 nm. PDI: 0.22. ZP: −28.3 mV. pH: 4.77. Stability for 1 M (better at 4 °C than at room temperature). | Skin hydration | Creams with SLNs: skin hydration, TEWL, skin elasticity, melanin index, skin texture and satisfactory survey on human volunteers. | ↑ Skin hydration, TEWL, cutaneous elasticity, and melanin index, skin moisturizing, ↓ wrinkles, ↑ elasticity, and skin whitening. | [54] |
Aloe vera powder | Stearic acid, cetosteryl alcohol, and glyceryl monostearate | Tween® 80 | Modified solvent emulsification technique and sonication. | Size: 96.36–209.86 nm. PDI: 0.28–0.66. ZP: (−19.18)–(−11.02) mV. EE: 64.78 to 86.27%. | Photoprotective potential | Cream with SLNs: in vitro release profile dialysis bag (cellophane membrane), ex vivo permeation study (Albino rats’ skin) Determination of SPF: in vitro method and in vivo (Albino rats) Skin irritation test (Albino rats). | Improved topical retention of Aloe vera up to 12 h SPF 14.6–16.9 (in vitro) and 14.81 (in vivo) 80.10% permeation over 8 h. No irritation or sensitivity. | [57] |
PCs | ||||||||
Rutin | Beeswax, Carnauba wax | Tween® 80, phosphatidylcholine | Hot melt microemulsion technique. | Size: 74.22 nm. PDI: 0.16. ZP: –53.00 mV. EE: 98.9%. | Photoprotective | SNLs: photochemopreventive effect against UVB radiation in ex vivo skin explants and 3D tissue engineering skin. | Efficient protection against UVB induced damage, inhibition of lipid peroxidation and metalloproteinase formation. | [58] |
Noscapine | Precirol®, glyceryl monostearate, stearic acid, Campritol® 888 ATO, cetyl palmitate | Poloxamer® 188, Tween® 80 | High-shear homogenization method. | Size: 99.8–384 nm. PDI: 0.215–0.412. ZP: (−12.6)–(−32) mV. EE: 86.45–94.15%. Stability for 6 M, 30 °C, and 40 °C. | Psoriasis | SNLs: in vitro release profile, in vivo: inflammation degree, PASI on mice, histological analysis of ear samples, ELISA. | Cumulative release at pH 7.4 and 5.8 (72 h) ↓ inflammation degree and PASI, ↓ IL-17, TNF- α, TGF-β levels, ↑ IL-10 levels ↓ parakeratosis, hyperkeratosis, acanthosis. | [50] |
Auraptene | Glyceryl monostearate Precirol® ATO 5, stearic acid, glyceryl behenate | Poloxamer® 188, Span® 80 | Hot homogenization and ultrasound method. | Size: 130.1–401.2 nm. PDI: 0.21–0.40. ZP: (−29.1)–19.4 mV. EE: 84.11%. Stability for 3 M, 25 °C, and 4 °C. | Anti-inflammatory | SNLs: in vitro release profile and skin retention study (mice skin). Anti-inflammatory activity (ear edema inflammation method), histopathological studies (mice) Skin sensitization study (Guinea pigs). | Biphasic release (burst release: 30–60 min, then sustained release until 24 h). ↑ cutaneous uptake and skin targeting. Improvement of the anti-inflammatory activity, no skin sensitization. | [59] |
Tetrahydrocurcumin | Compritol® 888 ATO | Tween® 80, phosphatydylcholine | Microemulsification technique. | Size: 96.6 nm. PDI: 0.252. ZP: −22 mV. EE: 69.56% Stability for 2 M, 4 °C, and 40 °C. | Anti-inflammatory, wound healing | SLNs and hydrogel with SNLs: in vitro release profile (dialysis membrane). Ex vivo permeation studies (pig ear skin). Hydrogel with SNLs: acute dermal irritation studies. | ↑ Drug release for 24 h. ↑ Skin permeation. No erythema or edema. | [60] |
Curcuminoids | Beeswax | Tween® 80, phosphatidylcholine | Hot melt emulsion technique, high-shear homogenization. | Size: 32.7–481.9 nm. PDI: 0.179–1.000. ZP: (−34.0)–(−21.2) mV. EE curcumin: 41.4–62.0%. EE total curcuminoids: 31.0–58.78%. | Anti-inflammatory, radiodermitis | SLNs: in vitro release profile. Gel with SNLs: ex vivo permeation study (pig ear skin), retention in the epidermis and dermis. | Sustained and slow release for 16 h, reduced permeation in epidermis/dermis for 18 h. | [61] |
Curcumin | Precirol® ATO 5 | Tween® 80, Span® 80 | Pre-emulsion technique and sonication. | Size: 51.8–107.0 nm. PDI: 0.211–0.462. EE: 85–93%. DL: 5.05–9.51%. | Contact dermatitis (pigmentation, irritation) | Gel with SNLs: ex vivo drug diffusion, drug deposition studies, antioxidant activity (DPPH assay), in vitro tyrosinase inhibition assay skin irritation test, efficacy against irritant contact dermatitis (BALB/c mice ears). | Controlled drug release up to 24 h, potential in skin depigmentation, ↑ antioxidant activity, proficient suppression of ear swelling and reduction in skin water content in the BALB/c mouse. | [62] |
Resveratrol | Theobroma grandiflorum seed butter | Pluronic® F-127 | High shear homogenization technique and sonication. | Size: 195.30 nm. PDI: 0.16. ZP: −19.54 mV. DL: 3.36%. EE: 74.12%. | Antioxidant | SLNs: in vitro release profile (polysulfone membrane), in vitro permeation (human skin), antioxidant activity (DPPH assay). | Slow and sustained release for 24 h. ↑ Concentration of resveratrol retained in the skin. | [45] |
NLCs | ||||||||
Oils and EOs | ||||||||
Rosmarinus officcinalis EO | Cetyl palmitate | Oleth-20, Glyceryl Oleate | Phase inversion temperature method. | Size: 26.90–171.70 nm. PDI: 0.171–0.495. ZP: (−1.55)–(−2.19) mV. Stability for 2 M, room Temperature. | Skin hydration | Gels with NLCs: skin hydration and elasticity on human volunteers. | ↑ Skin hydration and elasticity. | [53] |
Menta piperita EO | Precirol ® -ATO 5, Miglyol ® -812 | Poloxamer® | Hot melt homogenization technique. | Size: 40–250 nm. PDI: ~0.4. ZP: (−10)–(−15) mV. EE 93.2%. DL 9.3%. | Antibacterial, wound healing | NLCs: wound area rate, histopathological studies, molecular analysis, antimicrobial activity, total tissue bacterial count. | ↑ Wound contraction rate, fibroblast infiltration, collagen deposition, and re-epithelialization, positive effects on the FGF-2 and EGF mRNA levels expressions, antibacterial activity against S. epidermidis, S. aureus, L. monocytogenes, E. coli, and P. aeruginosa. | [48] |
Piper aduncum oil | Caprylic/capric triglycerides, Theobroma grandiflorum (Cupuaçu) butter | Tween 20®, Span 80® | Ultra-turrax homogenization and high-pressure homogenization. | Size: ~130 nm. PDI: 0.17. ZP: −40.50 mV. EE: 89.42%. | Anti-inflammatory | NLCs and hydrogels with NLCs: In vitro release profile (cellulose ester membrane), in vitro permeation/retention studies on porcine skin, HET-CAM Toxicity Test. | Controlled and constant release: initial burst for 2 h, then slower and continuous release for 12 h Delivery of dillapiole to dermis, low irritation potential. | [63] |
Camellia oleifera seed oil | Olivem® 1000 | Tween® 80, Varisoft® 442 | High-speed homogenization technique. | Size 80–290 nm. PDI 0.15–0.8. EE 96.26%. Stability for 3 M, 4 °C, 25 °C, and 40 °C. | Hair growth | NLCs: In vitro cell viability (HFDP cells). | Certain NLCs ↓ and other ↑ cell viability, depending on the surfactant and on the physicochemical properties. Hair growth stimulating effect and a better localization of the active into hair follicle. | [55] |
Rosa canina oil, Nigella sativa oil, Daucus carota extract, Calendula officinalis extract | Glycerol monostearate, cetyl palmitate | Tween® 20, Poloxamer® 188, phosphatidylcholine | Melt-emulsification and high-pressure homogenization. | Size: 118–158 nm. PDI: 0.108–0.189. ZP: (−41.6)–(−64.3) mV. EE β-carotene: 94.37–97.88%. EE azelaic acid: 91.76–93.48%. | Antioxidant, anti-inflammatory, antiacne, skin hydration | Hydrogels with NLCs: in vitro release profile (cellulose nitrate membrane), in vitro antioxidant action (chemiluminescence and TEAC methods), antimicrobial activity. Studies on cell lines: cytotoxicity, in vitro anti-inflammatory activity, in vivo hydration degree, antiacne potential (human volunteers), anti-inflammatory (Wistar rats). | Sustained release during for 8 h, ↑ antioxidant activity, antimicrobial activity on S. epidermidis, C. acnes, C. albicans. Biocompatibility with fibroblasts, ↓ IL-1β and TNF-α, ↑ skin hydration and skin elasticity, ↓ number of inflammatory acne lesions, ↓ sebum rate. | [52] |
HEs | ||||||||
Cratoxylum formosum leaf ethanolic extract, lyophilized | Glyceryl behenate, glyceryl monostearate, caprylic/capric triglycerides | Tween® 80, Poloxamer® 188 | High-shear ultrasonic Homogenization. | Size: 57.68–489.33 nm. PDI: 0.16–0.45. ZP: (−15.06)–(−5.76) mV. EE: 40.30–80.76%. Stability for 3 M, 4 °C, 25 °C, and 40 °C. | Skincare | NLCs: in vitro release profile (dialysis bag), skin permeation (porcine ear skin), cell viability (HDFn). | ↑ Skin absorption and biocompatibility, ↓ irritation potential than the free extract solution. | [49] |
PCs | ||||||||
Curcumin | Medium chain triglycerides, glyceryl monostearate, Span® 80 | Tween® 80 | High-pressure homogenization. | Size: ~200 nm. PDI: ~0.25. ZP: ~>−20 mV. EE: >90%. Stability for 4 M, 4°, 25°, and 37 °C. | Skin burns | NLCs: in vitro release profile (dialysis bags), ex vivo skin permeation and retention studies (porcine ear skin), cell viability on human skin fibroblasts (HFF-1 line), antimicrobial activity. | Release of curcumin in 72 h (51.64%). No toxicity on cells. ↑ Antimicrobial activity on Pseudomonas aeruginosa. | [64] |
Curcumin and caffeine | Stearic acid, oleic acid | Soya lecithin, polyvinyl alcohol | Hot homogenization and ultrasonication. | Size: 98–169 nm. PDI: 0.23–0.58. EE: 44.14–63.92%. | Psoriasis | NLCs: in vitro release profile (dialysis bag), gels with NLCs: in vitro drug diffusion studies (cellophane dialysis membrane), in vivo studies (mice with induced psoriasis), skin irritation, skin inflammation, ex vivo permeation studies, PCs retention in the skin layers. | Initial burst release followed by prolonged release of drug for 12 h, gels with NLCs: compatibility and nonirritant effect. ↓ Inflammation, ↑ efficacy of psoriasis treatment. | [65] |
Thymol | Glyceryl behenate, PEG-8, caprylic/capric triglycerides, | Tween® 20 | High-pressure homogenization and sonication. | Size: 123.8–360.0 nm. PDI: 0.113–0.359. ZP: (−13.02)–30.81 mV. EE: 76.38–81.41%. Stability for 6 M, room temperature. | Anti acne | NLCs and gels with NLCs: in vitro release profile (methylcellulose membranes), cell viability on HaCaT, ex vivo skin permeation studies (human skin explants), antimicrobial activity. | Prolonged release for 72 h cytotoxic at high doses, at lower doses and removal of excess free Tween® 20 from the formulation, cell viability ↑ significantly ↑ antimicrobial activity on C. acnes, S.s epidermidis. | [27] |
Naringenin, nordihydroguaiaretic acid, kaempferol | Gelucire® 50/13, Apifil®, Miglyol® 812, Labrafac® WL1349 | Tween® 80, Pluronic® F-127 | High shear homogenization and sonication. | Size: 176–213 nm. PDI: 0.205–0.234. ZP: (−22.9)–(−8.9) mV. EE: 89.9–98.8%. Stability for 1 M. | Antioxidant, cancer prevention | NLCs: in vitro release profile, antioxidant activity (DPPH assay), cell viability and antioxidant activity (HaCaT). | Slow and sustained release for 19 days. No significant cytotoxicity. Good antioxidant activity. | [66] |
Lycopene | Citrus sinensis wax, Oryza sativa bran oil | Eumulgin® SG | High pressure homogenization. | Size: 158–166 nm. PDI: 0.13–0.15. ZP: (−74.6)–(−74.2). pH: 6.6, EE: >99%. Stability for 4 M, 4 °C, 30 °C, and 40 °C. | Antioxidant | NLCs: in vitro release profile a. | Biphasic release profile: fast release for 6 h, then sustained release for 18 h. | [46] |
SLNs and NLCs | ||||||||
Oils and EOs | ||||||||
Eucalyptus globulus or Rosmarinus officinalis oils | Theobroma cacao butter, Olea europaea oil, Sesamum indicum oil | L-α-phosphatidylcholine | High shear homogenization and sonication. | Size: 50–60 nm. PDI: ~0.5. ZP: −22.07 mV. Good bioadhesive properties. Stability 3 M, 2–8 °C. | Wound healing | SLNs and NLCs: antimicrobial activity cytocompatibility, in vitro proliferation enhancement, and wound healing properties in human dermal fibroblasts, in vivo wound healing efficacy (Wistar rats). | Same inhibition on Staphylococcus aureus and Streptococcus pyogenes as the free oils for SLNs and ↑ inhibition than free oils for NLCs, good biocompatibility, ↑ cell proliferation. | [51] |
PCs | ||||||||
Orobol | Theobroma cacao butter, Butyrospermum parkii butter, Capmul® MCM EP | Transcutol® HP, Tween® 20 | Hot homogenization and sonification. | Size: 133–498 nm. PDI: 0.140–0.211. EE: 95.7–97.2%. DL: 0.91–0.97%. Stability 28 days, room temperature. | Antiaging | SLNs and NLCs: deposition study (Strat-M membranes and human cadaver skin), skin irritation (human volunteers). | Better results on NLCs: ↑ membrane/skin deposition of orobol, no significant skin irritation. | [67] |
Sesamol | Compritol®888 ATO, Miglyol® 812, Sesamum indicum oil | Poloxamer® 188 | Hot homogenization and sonification. | Size: 169.2–224.7 nm. PDI: 0.277–0.317. ZP: (−35)–(−38) mV. EE: 78.5–91.2%. | Antioxidant | Hydrogel with SLNs and NLCs: in vitro percutaneous absorption (human skin), in vitro skin permeation (human SCE membranes), in vitro antioxidant efficiency (ORAC assay). | ↓ Permeation from NLCs, controlled diffusion through the skin, prolonged antioxidant activity. | [31] |
Resveratrol | Octyl and decyl glycerate, glycerol monosterate | Cremophor® A25 and A6 | Hot high-pressure homogenization. | Size: 297.9–336.4 nm. PDI: 0.352–0.405. ZP: 4.9–6.8 mV. EE: 94.8–96.2%. Stability for 6 weeks, 2–6 °C. | N.A. | SLNs and NLCs: in vitro release profile (dialysis bags), in vitro penetration study. | Biphasic drug release profile (burst release at the initial stage, then controlled release for 24 h) ↑ Penetration of SLNs compared. to NLCs. | [32] |
5. Formulation of SLNs and NLCs into Semisolid Systems and Use as Dispersions: Revealing Their Properties for Specific Applications
5.1. SLNs and NLCs Used as Dispersion Per Se
5.2. SLNs and NLCs Used after Incorporation in Topical Vehicles
Entrapped EOs, HEs, PCs | Concentration of the Natural Bioactives in the Final Topical System | Composition of the Topical System | Ref. |
---|---|---|---|
SLNs | |||
Chamomilla recutita oil | N.A. | Camisan® cream (EIPICO, Egypt) | [47] |
Rosmarinus officinalis essential oil | N.A. | Carbopol® hydrogel (Carbopol® Ultrez 21®, TEA, Imidazolidinyl urea, Methylchloroisothiazolinone, Methylisothiazolinone) | [53] |
Aloe vera powder | N.A. | Sunscreen cream (Cetosteryl alcohol, Stearic acid, TEA, Glycerol, Liquid paraffin) | [57] |
Elaeis guineensis fruit extract | 3% | Day and night creams (Liquid paraffin, White soft paraffin, Isopropyl myristate, Glyceryl monostearate, Cetyl alcohol, Stearic acid, Carbomer 940, Glycerin, Propylene glycol, Polysorbate 80, Tocopherol acetate, Disodium EDTA, Phenoxyethanol, Titanium dioxide, Octyl methoxycinnamate, Grape seed extracts) | [54] |
NLCs | |||
Piper aduncum oil | N.A | Hydroxyethyl cellulose hydrogels | [63] |
Curcuminoids | N.A. | Natrosol® gel (Via Pharma Ltd.a, Brazil) | [61] |
Sesamol | 0.1% | Sodium polyacrylate hydrogels | [31] |
Rosa canina oil, Nigella sativa oil, Daucus carota extract, Calendula officinalis extract | 6% Daucus carota extract/Calendula officinalis extract, 2% azelaic acid and 12% Rosa canina oil/Nigella sativa oil | Carbopol® hydrogel (Carbopol® 940, ethanol, glycerin, TEA) | [52] |
Thymol | 0.1%, 0.25% | Carbopol® hydrogel (Carbopol® 934, glycerin, propylene glycol) Hydroxypropyl methylcellulose gel (HPMC, glycerin, propylene glycol) Pluronic® gel (poloxamer 407/Pluronic®F127, glycerin, propylene glycol) | [27] |
Tetrahydrocumarin | 0.2% | Carbopol® hydrogel (Carbopol® 934, TEA) | [60] |
Curcumin | N.A. | Carbopol® hydrogel (Carbopol 940®, propylene glycol, TEA, methyl and propylparaben) | [62] |
Curcumin and caffeine | N.A. | Carbopol gel (Carbopol-934, propylene glycol, TEA, propyl paraben) | [65] |
Camellia oleifera seed oil | N.A. | Serum (Ammonium acryloyldimethyltaurate/VP copolymer, glycerin, phenoxyethanol, and chlorphenesin) | [55] |
6. Key Features of Commercial Products Incorporating SLNs and NLCs
7. Recent Patents and Patent Applications with SLNs and NLCs
No | Patent No | Title | Filing Date | Description | Ref. |
---|---|---|---|---|---|
1 | CN104257632A | Solid lipid nanometer particle for astaxanthin and preparation method of solid lipid nanometer particle. | 2014-10-24 | Astaxanthin SLNs. | [76] |
2 | CA2872279A1 | Topical lipolysis compositions and methods. | 2014-11-25 | NLCs targeting fat deposits for noninvasive therapy of aggregated deposits of adipose tissue. | [80] |
3 | KR101860555B1 | Solid lipid nanoparticles composition for skin-whitening effect comprising MHY498 and preparation method thereof. | 2016-09-12 | Skin-whitening SLNs composed of a core layer made of MHY498 and a lipid matrix, and a shell layer made off Poloxamer 188 as an active ingredient. | [85] |
4 | JP7010823B2 | Compounds useful in the treatment and/or care of skin, hair, nails and / or mucous membranes. | 2016-12-08 | SLNs and NLCs incorporated in cosmetic delivery systems for antiaging properties. | [86] |
5 | US2021069121A1 | Solid lipid nanoparticle for intracellular release of active substances and method for production the same. | 2017-12-12 | SLNs containing a lipid (natural plant or synthetic wax), a surface acting agent (d-α-Tocopheryl polyethylene glycol 1000 succinate), water and an active compound. | [87] |
6 | US2021353553A1 | Mucoadhesive dispersion nanoparticle system and method for production the same. | 2018-09-11 | Mucoadhesive dispersion nanoparticle system for the transport and delivery of actives entrapped in SLNs. | [84] |
7 | US2022151945A1 | Solid lipid nanoparticles of curcumin. | 2018-11-26 | Curcumin-loaded SLNs using generally recognized as safe (GRAS) components. | [77] |
8 | KR20200094871A | Lipid-protein nanocomposites comprising ginsenoside and use thereof. | 2019-01-30 | Lipid nanocomplex containing ginsenoside, phosphatidylcholine, sucrose fatty acid ester, surfactant, and positively charged protein. | [88] |
9 | JP7377813B2 | Hair modification composition and method thereof. | 2019-04-11 | Hair care products with SLNs and NLCs. | [82] |
10 | CN111988999A | Pigment-loaded solid lipid nanoparticles. | 2019-04-16 | SLNs containing oil-soluble pigments and high melting point lipids in the core and a surfactant system formed by polysorbate and phospholipids. | [89] |
11 | CN112691044A | Positive charge modified solid lipid nanoparticle and preparation method thereof. | 2019-10-22 | SLNs for transdermal administration of cosmetic actives. | [90] |
12 | CN110974712A | Whitening acid nanostructure lipid carrier as well as preparation method and application thereof. | 2019-12-27 | Whitening acid nanostructured lipid carrier including the following components: fat-soluble acid, emulsifier, water-soluble acid, emulsion stabilizer, water. | [91] |
13 | US2022265565A1 | Nanotechnology-based delivery system of bergamot essential oil, method of preparation of the system and uses thereof. | 2020-07-29 | α-tocopheryl stearate-solid lipid nanostructures loaded with bergamot essential oil without psoralens. | [78] |
14 | CN114515258A | Phenylethyl resorcinol nanostructure lipid carrier, preparation method, and application in cosmetics. | 2020-11-20 | Phenethyl resorcinol nanostructure lipid carrier for cosmetic applications. | [92] |
15 | KR102577778B1 | pH-responsive capsosome using chitosan-coated solid lipid nanoparticles as core. | 2020-12-24 | pH-responsive-release-controlled capsosome prepared by reacting liposomes with chitosan-coated SLNs. | [83] |
16 | EP4169509A1 | Particle containing lipid nanoparticles and method for producing same. | 2021-05-18 | SLNs included in functional cosmetics. | [93] |
17 | WO2022112527A1 | Method for preparing nanosystems. | 2021-11-26 | Lipid-based nanoparticulate carriers, preferably SLNs or NLCs that be entrapped in vehicles for cosmetic use. | [94] |
18 | CN112868816A | Preparation method of water-in-oil emulsion gel based on diglyceride solid lipid nanoparticles. | 2021-01-26 | W/O emulsion gel based on diglyceride SLNs. | [95] |
19 | TWM639079U | Mist spray container bottle with nanostructured lipid carrier suspension. | 2021-09-29 | Spray container bottle with NLC suspension. | [96] |
20 | CN113876642A | Face cream composition containing lipid nanoparticles with moisturizing and hydrating effects and preparation method thereof. | 2021-11-12 | Face cream composition containing lipid nanoparticles with moisturizing effect. | [97] |
21 | KR20230149537A | Solid lipid nanoparticles comprising cosmetic composition and cosmetics comprising the same. | 2022-04-20 | SLNs containing 4-alkylresorcinol and cosmetic compositions containing SLNs with 4-alkylresorcinol. | [98] |
22 | WO2023137532A1 | Nanostructured lipid carrier, use of the nanostructured lipid carrier, photoprotective composition and method for skin photoprotection. | 2022-01-19 | NLCs consisting of at least one solid natural lipid, at least one liquid natural lipid, and at least one surfactant, which are combined to encapsulate sunscreen filters and enhance photoprotection in a sunscreen formulation. | [81] |
23 | CN116139025A | Preparation and application of multi-repeat-matching nanostructure lipid carrier. | 2022-08-26 | Multiple complex type NLC with glabridin and arbutin. | [75] |
24 | CN115517988A | Azelaic acid nano lipid particle, freeze-dried powder, preparation method and application. | 2022-10-12 | Nanolipid particles containing azelaic acid, cetyl palmitate, oleic acid, emulsifier (Tween 80 or poloxamer), glycerin, and water. | [99] |
25 | CN116211777A | Whitening and acne-removing cosmetic and preparation process thereof. | 2023-04-24 | SLNs with concentrated extracts of Angelica dahurica, Scutellaria baicalensis, and Forsythia chinensis. | [79] |
26 | CN116327662A | Antiaging solid lipid nanoparticle emulsion and preparation method thereof. | 2023-05-06 | Antiaging SLN emulsion containing 3,3,5-trimethylcyclohexyl dimethylamide succinate. | [100] |
27 | CN116725918A | Preparation method and application of diglyceride nanostructure lipid carrier hydrogel. | 2023-05-31 | Diglyceride caprylic acid NLC and diglyceride caprylic acid NLC hydrogel containing vegetable oil, diglyceride, soybean lecithin, tea saponin and glycerin. | [101] |
28 | CN117137825A | Ceramide lipid nanoparticles as well as preparation method and application thereof. | 2023-09-07 | Ceramide lipid nanoparticles. | [102] |
29 | CN117398294A | Chitosan interface modified ellagic acid nanostructure lipid carrier and preparation method thereof. | 2023-10-16 | NLCs loaded containing ellagic acid, solid lipids, liquid lipids, and emulsifier sodium caseinate. | [103] |
30 | WO2024102798A1 | Lipid nanoparticles as active molecule carriers in ophthalmic, dermatological, and/or cosmetic applications, and process for production thereof. | 2023-11-08 | NLCs containing solid lipids (glyceryl distearate, cocoa butter, and combinations thereof), liquid lipids (Linoleoyl Polyoxyl-6 glycerides, Oleoyl Polyoxyl-6 glycerides and combinations thereof) and nonionic surfactants (Polyethylene glycol 660 12-hydoxystearate, Polysorbate 80, and combinations thereof). | [104] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Qadir, A.; Jahan, S.; Aqil, M.; Warsi, M.H.; Alhakamy, N.A.; Alfaleh, M.A.; Khan, N.; Ali, A. Phytochemical-based nano-pharmacotherapeutics for management of burn wound healing. Gels 2021, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- de Souza Guedes, L.; Martinez, R.M.; Bou-Chacra, N.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. An overview on topical administration of carotenoids and coenzyme Q10 loaded in lipid nanoparticles. Antioxidants 2021, 10, 1034. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, skin (Integument) [Updated 17 October 2022]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441980/ (accessed on 13 August 2024).
- Romero, E.L.; Morilla, M.J. Ultradeformable phospholipid vesicles as a drug delivery system: A review. Res. Rep. Transdermal Drug Deliv. 2015, 4, 55. [Google Scholar] [CrossRef]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef]
- Murthy, S.N. Approaches for Delivery of Drugs Topically. AAPS PharmSciTech 2020, 21, 30. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Benfeldt, E.; Holmgaard, R. Penetration through the skin Barrier. Curr. Probl. Dermatol. 2016, 49, 103–111. [Google Scholar]
- Pandey, A.; Ashu, M.; Nitesh, C.; Sanjar, A. Role of surfactants as penetration enhancer in transdermal drug delivery system. J. Mol. Pharm. Org. Process Res. 2014, 2, 2–7. [Google Scholar] [CrossRef]
- Bolzinger, M.A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012, 17, 156–165. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.W.; Lau, W.M. Skin deep: The basics of human skin structure and drug penetration. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–11. [Google Scholar]
- Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, F.; Maibach, H. Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: Partition coefficient effects. Skin Pharmacol. Physiol. 2013, 26, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Osman, N.; Maibach, H.I. Effects of Occlusion on Dermal Drug Delivery: Implications for Bioequivalence Measurement. In Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah, V.P., Maibach, H., Jenner, J., Eds.; Springer Science+Business Media: New York, NY, USA, 2014; pp. 351–359. [Google Scholar]
- Barnes, T.M.; Mijaljica, D.; Townley, J.P.; Spada, F.; Harrison, I.P. Vehicles for drug delivery and cosmetic moisturizers: Review and comparison. Pharmaceutics 2021, 13, 2012. [Google Scholar] [CrossRef]
- Lopes, L.B.; Garcia, M.T.J.; Lb Bentley, M.V. Chemical penetration enhancers. In Therapeutic Delivery; Future Science Ltd.: London, UK, 2015; Volume 6, pp. 1053–1061. [Google Scholar]
- Roussel, L.; Gilbert, E.; Pirot, F. Influence of Excipients on Two Elements of the Stratum Corneum Barrier: Intercellular Lipids and Epidermal Tight Junctions. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects; Springer: Berlin/Heidelberg, Germany, 2015; pp. 69–90. Available online: https://link.springer.com/chapter/10.1007/978-3-662-45013-0_7 (accessed on 13 August 2024).
- Kopečná, M.; Macháček, M.; Roh, J.; Vávrová, K. Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers. Nat. Sci. Rep. 2022, 12, 19495. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, N.; Awasthi, R.; Sharma, B.; Kharkwal, H.; Kulkarni, G.T. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front. Chem. 2021, 9, 580118. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Spanidi, E.; Mourtzinos, I.; Gardikis, K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021, 10, 1238. [Google Scholar] [CrossRef]
- Safta, D.A.; Bogdan, C.; Moldovan, M.L. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022, 14, 991. [Google Scholar] [CrossRef]
- Assali, M.; Zaid, A.N. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals. Saudi Pharm. J. 2022, 30, 53–65. [Google Scholar] [CrossRef]
- Farasati Far, B.; Naimi-Jamal, M.R.; Sedaghat, M.; Hoseini, A.; Mohammadi, N.; Bodaghi, M. Combinational system of lipid-based nanocarriers and biodegradable polymers for wound Healing: An updated review. J. Funct. Biomater. 2023, 14, 115. [Google Scholar] [CrossRef]
- Akombaetwa, N.; Ilangala, A.B.; Thom, L.; Memvanga, P.B.; Witika, B.A.; Buya, A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023, 15, 656. [Google Scholar] [CrossRef] [PubMed]
- Folle, C.; Marqués, A.M.; Díaz-Garrido, N.; Carvajal-Vidal, P.; Sánchez López, E.; Suñer-Carbó, J.; Halbaut, L.; Mallandrich, M.; Espina, M.; Badia, J.; et al. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int. J. Nanomed. 2024, 19, 1225–1248. [Google Scholar] [CrossRef] [PubMed]
- Sabapati, M.; Palei, N.N.; Ashok, A.K.; Molakpogu, R.B. Solid lipid nanoparticles of Annona muricata fruit extract: Formulation, optimization and in vitro cytotoxicity studies. Drug Dev. Ind. Pharm. 2019, 45, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.; Patel, P.; Ratrey, P.; O’Connor, P.M.; O’Sullivan, J.; Ross, R.P.; Hill, C.; Hudson, S.P. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections. Drug Deliv. Transl. Res. 2023, 13, 2407–2423. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A comparative review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Puglia, C.; Lauro, M.R.; Offerta, A.; Crascì, L.; Micicchè, L.; Panico, A.M.; Bonina, F.; Puglisi, G. Nanostructured lipid carriers (nlc) as vehicles for topical administration of sesamol: In vitro percutaneous absorption study and evaluation of antioxidant activity. Planta Medica 2017, 83, 398–404. [Google Scholar] [CrossRef]
- Sun, R.; Zhao, G.; Ni, S.; Xia, Q. Lipid based nanocarriers with different lipid compositions for topical delivery of resveratrol: Comparative analysis of characteristics and performance. J. Drug Deliv. Sci. Technol. 2014, 24, 591–600. [Google Scholar] [CrossRef]
- Borges, A.; de Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants 2020, 9, 998. [Google Scholar] [CrossRef]
- Fitriani, E.W.; Avanti, C.; Rosana, Y.; Surini, S. Nanostructured lipid carriers: A prospective dermal drug delivery system for natural active ingredients. Pharmacia 2024, 71, 1–15. [Google Scholar] [CrossRef]
- Mirchandani, Y.; Patravale, V.B.; Brijesh, S. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Abuzinadah, M.F.; Alkreathy, H.M.; Banaganapalli, B.; Mujeeb, M. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies. PLoS ONE 2018, 13, e0193451. [Google Scholar] [CrossRef]
- Puri, D.; Anil, B.; Sharma, P.; Choudhary, D. Lipid nanoparticles (SLN, NLC): A novel approach for cosmetic and dermal pharmaceutical. J. Global Pharma Technol. 2010, 2, 1–15. [Google Scholar]
- Patel, P.; Garala, K.; Singh, S.; Prajapati, B.G.; Chittasupho, C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals 2024, 17, 329. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Alexiev, U.; Sinambela, P.; Keck, C.M. Nanostructured lipid carriers (NLC): The second generation of solid lipid nanoparticles. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers; Springer: Berlin/Heidelberg, Germany, 2016; pp. 161–185. [Google Scholar]
- Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances. Pharmaceutics 2022, 14, 533. [Google Scholar] [CrossRef]
- Daneshmand, S.; Niazi, M.; Fazeli-Nasab, B.; Asili, J.; Golmohammadzadeh, S.; Sayyed, R.Z. Solid lipid nanoparticles of Platycladus orientalis L. possessing 5-alpha reductase inhibiting activity for treating hair Loss and Hirsutism. J. Med. Plants By-Prod. 2024, 13, 233–246. [Google Scholar]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.X. Lipid nanoparticles for drug delivery. Adv. Nanobiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Cordenonsi, L.M.; Santer, A.; Sponchiado, R.M.; Wingert, N.R.; Raffin, R.P.; Schapoval, E.E.S. Amazonia products in novel lipid nanoparticles for fucoxanthin encapsulation. AAPS PharmSciTech. 2020, 21, 32. [Google Scholar] [CrossRef]
- Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm. 2011, 414, 267–275. [Google Scholar] [CrossRef]
- Soldati, P.P.; Polonini, H.C.; Paes, C.Q.; Restrepob, J.A.S.; Creczynksi-Pasa, T.B.; Chaves, M.G.A.M.; Brandão, M.A.; Pittella, F.; Raposo, N.R. Controlled release of resveratrol from lipid nanoparticles improves antioxidant effect. IFAC-PapersOnLine 2018, 51, 16–21. [Google Scholar] [CrossRef]
- Okonogi, S.; Riangjanapatee, P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int. J. Pharm. 2015, 478, 726–735. [Google Scholar] [CrossRef]
- Gad, H.A.; Abd El-Rahman, F.A.A.; Hamdy, G.M. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. J. Drug Deliv. Sci. Technol. 2019, 50, 329–338. [Google Scholar] [CrossRef]
- Ghodrati, M.; Farahpour, M.R.; Hamishehkar, H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 161–169. [Google Scholar] [CrossRef]
- Navabhatra, A.; Brantner, A.; Yingngam, B. Artificial Neural Network Modeling of Nanostructured Lipid Carriers Containing 5-O-Caffeoylquinic Acid-Rich Cratoxylum formosum Leaf Extract for Skin Application. Adv. Pharm. Bull. 2022, 12, 801–817. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian-Devin, P.; Askari, V.R.; Sanei-Far, Z.; Baradaran Rahimi, V.; Kamali, H.; Jaafari, M.R.; Golmohammadzadeh, S. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions. Biomed. Pharmacother. 2023, 168, 115823. [Google Scholar] [CrossRef] [PubMed]
- Saporito, F.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Boselli, C.; Cornaglia, A.I.; Ferrari, F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomed. 2018, 13, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Lacatusu, I.; Istrati, D.; Bordei, N.; Popescu, M.; Seciu, A.M.; Panteli, L.M.; Badea, N. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products. Mater. Sci. Eng. C 2020, 108, 110412. [Google Scholar] [CrossRef]
- Montenegro, L.; Pasquinucci, L.; Zappalà, A.; Chiechio, S.; Turnaturi, R.; Parenti, C. Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles. Pharmaceutics 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Plyduang, T.; Atipairin, A.; Yoon, A.S.; Sermkaew, N.; Sakdiset, P.; Sawatdee, S. Formula development of red palm (Elaeis guineensis) fruit extract loaded with solid lipid nanoparticles containing creams and its anti-aging efficacy in healthy volunteers. Cosmetics 2022, 9, 3. [Google Scholar] [CrossRef]
- Riangjanapatee, P.; Khongkow, M.; Treetong, A.; Unger, O.; Phungbun, C.; Jaemsai, S.; Bootsiri, C.; Okonogi, S. Development of tea seed oil nanostructured lipid carriers and in vitro studies on their applications in inducing human hair growth. Pharmaceutics 2022, 14, 984. [Google Scholar] [CrossRef]
- Chinembiri, T.N.; Gerber, M.; Du Plessis, L.H.; Du Preez, J.L.; Hamman, J.H.; Du Plessis, J. Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles. Pharmacogn. Mag. 2017, 13, S663–S671. [Google Scholar]
- Rodrigues, L.R.; Jose, J. Exploring the photo protective potential of solid lipid nanoparticle-based sunscreen cream containing Aloe vera. Environ. Sci. Pollut. Res. 2020, 27, 20876–20888. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.M.; de Siqueira Martins, S.; Barbosa, G.L.F.; Fonseca, M.J.V.; Rochette, P.J.; Moulin, V.J.; de Freitas, L.A.P. Photoprotective effect of solid lipid nanoparticles of rutin against UVB radiation damage on skin biopsies and tissue-engineered skin. J. Microencapsul. 2022, 39, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Jaafari, M.R.; Movaffagh, J.; Malaekeh-Nikouei, B.; Iranshahi, M.; Seyedian Moghaddam, A.; Najaran, Z.T.; Golmohammadzadeh, S. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids Surf. B Biointerfaces 2018, 164, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, V.; Kaur, I.P.; Kaur, A.P.; Saini, K.; Singh, K.K. Topical delivery of tetrahydrocurcumin lipid nanoparticles effectively inhibits skin inflammation: In vitro and in vivo study. Drug Dev. Ind. Pharm. 2018, 44, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Zamarioli, C.M.; Martins, R.M.; Carvalho, E.C.; Freitas, L.A.P. Nanoparticles containing curcuminoids (Curcuma longa): Development of topical delivery formulation. Rev. Bras. Farmacogn. 2015, 25, 53–60. [Google Scholar] [CrossRef]
- Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1471–1482. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Kreutz, T.; Limberger, R.P.; Teixeira, H.F.; da Veiga Júnior, V.F.; Koester, L.S. Piper aduncum essential oil rich in dillapiole: Development of hydrogel-thickened nanoemulsion and nanostructured lipid carrier intended for skin delivery. Pharmaceutics 2022, 14, 1–20. [Google Scholar] [CrossRef]
- de Araújo, G.M.S.; Loureiro, A.I.S.; Rodrigues, J.L.; Barros, P.A.B.; Halicki, P.C.B.; Ramos, D.F.; Marinho, M.A.G.; Vaiss, D.P.; Vaz, G.R.; Yurgel, V.C.; et al. Toward a platform for the treatment of burns: An assessment of nanoemulsions vs. nanostructured lipid carriers loaded with curcumin. Biomedicines 2023, 11, 3348. [Google Scholar] [CrossRef]
- Iriventi, P.; Gupta, N.v. Topical delivery of curcumin and caffeine mixture-loaded nanostructured lipid carriers for effective treatment of psoriasis. Pharmacogn. Mag. 2020, 16, 206. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ramalho, M.J.; Silva, R.; Silva, V.; Marques-Oliveira, R.; Silva, A.C.; Pereira, M.C.; Loureiro, J.A. Lipid nanoparticles containing mixtures of antioxidants to improve skin care and cancer prevention. Pharmaceutics 2021, 13, 2042. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeon, Y.E.; Kang, S.; Lee, J.Y.; Lee, K.W.; Kim, K.T.; Kim, D.-D. Lipid nanoparticles for enhancing the physicochemical stability and topical skin delivery of orobol. Pharmaceutics 2020, 12, 845. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Niziński, P.; Hawrył, A.; Gancarz, M.; Hawrył, D.; Oliwa, W.; Pałka, M.; Markowska, J.; Oniszczuk, A. Potential of curcumin in the management of skin diseases. Int. J. Mol. Sci. 2024, 25, 3617. [Google Scholar] [CrossRef] [PubMed]
- Maupas, C.; Moulari, B.; Béduneau, A.; Lamprecht, A.; Pellequer, Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int. J. Pharm. 2011, 411, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Szwed, M.; Torgersen, M.L.; Kumari, R.V.; Yadava, S.K.; Pust, S.; Iversen, T.G.; Skotland, T.; Giri, J.; Sandvig, K. Biological response and cytotoxicity induced by lipid nanocapsules. J. Nanobiotechnology 2020, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Badawi, N.M.; Hteaima, M.H.; El-Say, K.M.; Aattia, D.A.; Ael-Nabarawi, M.A.; Elmazar, M.M. Pomegranate extract-loaded solid lipid nanoparticles: Design, optimization, and in vitro cytotoxicity study. Int. J. Nanomed. 2018, 13, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Safta, D.A.; Ielciu, I.; Șuștic, R.; Hanganu, D.; Niculae, M.; Cenariu, M.; Tomuță, I. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants 2023, 12, 248. [Google Scholar] [CrossRef]
- Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol. 2019, 18, 315–321. Available online: https://pubmed.ncbi.nlm.nih.gov/29441672/ (accessed on 13 August 2024). [CrossRef]
- Pardeike, J.; Schwabe, K.; Müller, R.H. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int. J. Pharm. 2010, 396, 166–173. [Google Scholar] [CrossRef]
- Preparation and Application of Multi-Repeat-Matching Nano-Structure Lipid Carrier [Internet]. CN116139025A. Available online: https://worldwide.espacenet.com/patent/search/family/086360620/publication/CN116139025A?q=pn%3DCN116139025A (accessed on 13 August 2024).
- Solid Lipid Nanometer Particle for Astaxanthin and Preparation Method of Solid Lipid Nanometer Particle [Internet]. CN104257632A. Available online: https://worldwide.espacenet.com/patent/search/family/052149294/publication/CN104257632A?q=pn%3DCN104257632A (accessed on 13 August 2024).
- Solid Lipid Nanoparticles of Curcumin [Internet]. US2022151945A1. Available online: https://worldwide.espacenet.com/patent/search/family/070852435/publication/US2022151945A1?q=pn%3DUS2022151945A1 (accessed on 13 August 2024).
- Nanotechnology-Based Delivery System of Bergamot Essential Oil, Method of Preparation of the System and Uses Thereof [Internet]. US2022265565A1. Available online: https://worldwide.espacenet.com/patent/search/family/068733546/publication/US2022265565A1?q=pn%3DUS2022265565A1 (accessed on 13 August 2024).
- Whitening and Acne-Removing Cosmetic and Preparation Process Thereof [Internet]. CN116211777A. Available online: https://worldwide.espacenet.com/patent/search/family/086589507/publication/CN116211777A?q=pn%3DCN116211777A (accessed on 13 August 2024).
- Topical Lipolysis Compositions and Methods—Google Patents [Internet]. CA2872279A1. Available online: https://patents.google.com/patent/CA2872279A1/en?q=(nanostructured+lipid+carriers+for+skin+delivery)&oq=nanostructured+lipid+carriers+for+skin+delivery (accessed on 13 August 2024).
- Nanostructured Lipid Carrier, Use of the Nanostructured Lipid Carrier, Photoprotective Composition and Method for Skin Photoprotection [Internet]. WO2023137532A1. Available online: https://worldwide.espacenet.com/patent/search/family/087347490/publication/WO2023137532A1?q=pn%3DWO2023137532A1 (accessed on 13 August 2024).
- Hair Modification Composition and Method Thereof—Google Patents [Internet]. JP7377813B2. Available online: https://patents.google.com/patent/JP7377813B2/en?q=(nanostructured+lipid+carriers)&oq=nanostructured+lipid+carriers (accessed on 13 August 2024).
- pH—pH-Responsive Capsosome Using Chitosan-Coated Solid Lipid Nanoparticles as Core [Internet]. KR102577778B1. Available online: https://worldwide.espacenet.com/patent/search/family/082396913/publication/KR102577778B1?q=pn%3DKR102577778B1 (accessed on 13 August 2024).
- Mucoadhesive Dispersion Nanoparticle System and Method for Production the Same [Internet]. US2021353553A1. Available online: https://worldwide.espacenet.com/patent/search/family/063857975/publication/US2021353553A1?q=pn%3DUS2021353553A1 (accessed on 13 August 2024).
- MHY498 Solid Lipid Nanoparticles Composition for Skin-Whitening Effect Comprising MHY498 and Preparation Method Thereof [Internet]. KR101860555B1. Available online: https://worldwide.espacenet.com/patent/search/family/061900412/publication/KR101860555B1?q=pn%3DKR101860555B1 (accessed on 13 August 2024).
- Compounds Useful in the Treatment and/or Care of Skin, Hair, Nails and/or Mucous Membranes [Internet]. JP7010823B2. Available online: https://patents.google.com/patent/JP7010823B2/en?q=(nanostructured+lipid+carriers+skin)&oq=nanostructured+lipid+carriers+skin+ (accessed on 13 August 2024).
- Solid Lipid Nanoparticle for Intracellular Release of Active Substances and Method for Production the Same [Internet]. US2021069121A1. Available online: https://worldwide.espacenet.com/patent/search/family/060937800/publication/US2021069121A1?q=pn%3DUS2021069121A1 (accessed on 13 August 2024).
- Lipid-Protein Nanocomposites Comprising Ginsenoside and Use Thereof [Internet]. KR20200094871A. Available online: https://worldwide.espacenet.com/patent/search/family/072049304/publication/KR20200094871A?q=pn%3DKR20200094871A (accessed on 13 August 2024).
- Pigment-Loaded Solid Lipid Nanoparticles [Internet]. CN111988999A. Available online: https://worldwide.espacenet.com/patent/search/family/062152298/publication/CN111988999A?q=pn%3DCN111988999A (accessed on 13 August 2024).
- Positive Charge Modified Solid Lipid Nanoparticle and Preparation Method Thereof [Internet]. CN112691044A. Available online: https://worldwide.espacenet.com/patent/search/family/075504579/publication/CN112691044A?q=pn%3DCN112691044A (accessed on 13 August 2024).
- Whitening Acid Nanostructure Lipid Carrier as well as Preparation Method and Application Thereof [Internet]. CN110974712A. Available online: https://worldwide.espacenet.com/patent/search/family/070077776/publication/CN110974712A?q=pn%3DCN110974712A (accessed on 13 August 2024).
- Phenylethyl Resorcinol Nanostructure Lipid Carrier, Preparation Method and Application in Cosmetics [Internet]. CN114515258A. Available online: https://worldwide.espacenet.com/patent/search/family/081594908/publication/CN114515258A?q=pn%3DCN114515258A (accessed on 13 August 2024).
- Particle Containing Lipid Nanoparticles, and Method for Producing Same—Google Patents [Internet]. EP4169509A1. Available online: https://patents.google.com/patent/EP4169509A1/ja (accessed on 13 August 2024).
- Method for Preparing Nanosystems—Google Patents [Internet]. WO2022112527A1. Available online: https://patents.google.com/patent/WO2022112527A1/en (accessed on 13 August 2024).
- Preparation Method of Water-in-Oil Emulsion Gel Based on Diglyceride Solid Lipid Nanoparticles [Internet]. CN112868816A. Available online: https://worldwide.espacenet.com/patent/search/family/076051915/publication/CN112868816A?q=pn%3DCN112868816A (accessed on 13 August 2024).
- Mist Spray Container Bottle with Nanostructured Lipid Carrier Suspension [Internet]. TWM639079U. Available online: https://worldwide.espacenet.com/patent/search/family/086943529/publication/TWM639079U?q=pn%3DTWM639079U (accessed on 13 August 2024).
- Face Cream Composition Containing Lipid Nanoparticles with Moisturizing and Hydrating Effects and Preparation Method Thereof [Internet]. CN113876642A. Available online: https://worldwide.espacenet.com/patent/search/family/079017962/publication/CN113876642A?q=pn%3DCN113876642A (accessed on 13 August 2024).
- 4- Solid Lipid Nanoparticles Comprising 4-Alkylresorcinol Cosmetic Composition and Cosmetics Comprising the Same [Internet]. KR20230149537A. Available online: https://worldwide.espacenet.com/patent/search/family/088514246/publication/KR20230149537A?q=pn%3DKR20230149537A (accessed on 13 August 2024).
- Azelaic Acid Nano Lipid Particle, Freeze-Dried Powder, Preparation Method and Application [Internet]. CN115517988A. Available online: https://worldwide.espacenet.com/patent/search/family/084702246/publication/CN115517988A?q=pn%3DCN115517988A (accessed on 13 August 2024).
- Anti-Aging Solid Lipid Nanoparticle Emulsion and Preparation Method Thereof [Internet]. CN116327662A. Available online: https://worldwide.espacenet.com/patent/search/family/086889668/publication/CN116327662A?q=pn%3DCN116327662A (accessed on 13 August 2024).
- Preparation Method and Application of Diglyceride Nanostructure Lipid Carrier Hydrogel [Internet]. CN116725918A. Available online: https://worldwide.espacenet.com/patent/search/family/087908965/publication/CN116725918A?q=pn%3DCN116725918A (accessed on 13 August 2024).
- Ceramide Lipid Nanoparticles as well as Preparation Method and Application Thereof [Internet]. CN117137825A. Available online: https://worldwide.espacenet.com/patent/search/family/088885206/publication/CN117137825A?q=pn%3DCN117137825A (accessed on 13 August 2024).
- Chitosan Interface Modified Ellagic Acid Nanostructure Lipid Carrier and Preparation Method Thereof [Internet]. CN117398294A. Available online: https://worldwide.espacenet.com/patent/search/family/089486458/publication/CN117398294A?q=pn%3DCN117398294A (accessed on 13 August 2024).
- Lipid Nanoparticles as Active Molecule Carriers in Ophthalmic, Dermatological, and/or Cosmetic Applications, and Process for Production Thereof [Internet]. WO2024102798A1. Available online: https://worldwide.espacenet.com/patent/search/family/090220679/publication/WO2024102798A1?q=pn%3DWO2024102798A1 (accessed on 13 August 2024).
SLNs and NLCs Categories | Characteristics | |
---|---|---|
SLNs | Type I (homogenous matrix model) | The bioactive is dispersed in the lipid core. |
Type II (drug-enriched shell model) | The lipid core is bioactive-free, and the exterior solid shell has both lipids and bioactive. | |
Type III (drug-enriched core model) | The active ingredient is precipitated in the core with a lipid coverage (the active concentration is close to its saturation solubility in the lipid). | |
NLCs | Type I (imperfect crystal model) | The mixture of lipids has a great number of voids and imperfections where the bioactive can be placed. |
Type II (amorphous/structureless model) | The special lipids do not recrystallize after homogenization and cooling and an amorphous lipid matrix that minimizes drug expulsion. | |
Type III (multiple model) | Small oil nanoparticles that are inside the solid lipid matrix due to a phase separation (mixing solid lipids with higher amounts of oils in a ratio where the solubility of the oil in the solid lipid is exceeded). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safta, D.A.; Bogdan, C.; Moldovan, M.-L. SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives. Pharmaceutics 2024, 16, 1270. https://doi.org/10.3390/pharmaceutics16101270
Safta DA, Bogdan C, Moldovan M-L. SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives. Pharmaceutics. 2024; 16(10):1270. https://doi.org/10.3390/pharmaceutics16101270
Chicago/Turabian StyleSafta, Diana Antonia, Cătălina Bogdan, and Mirela-Liliana Moldovan. 2024. "SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives" Pharmaceutics 16, no. 10: 1270. https://doi.org/10.3390/pharmaceutics16101270
APA StyleSafta, D. A., Bogdan, C., & Moldovan, M. -L. (2024). SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives. Pharmaceutics, 16(10), 1270. https://doi.org/10.3390/pharmaceutics16101270