Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Microorganisms
2.3. Isolation of Essential Oils
2.4. Chemical Analysis of Essential Oils
2.4.1. Gas Chromatography—GC
2.4.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.4.3. Antimicrobial Activity
2.4.4. Evaluation of Synergistic Effect
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The Genus Pinus: A Comparative Study on the Needle Essential Oil Composition of 46 Pine Species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
- Badik, K.J.; Jahner, J.P.; Wilson, J.S. A Biogeographic Perspective on the Evolution of Fire Syndromes in Pine Trees (Pinus: Pinaceae). R. Soc. Open Sci. 2018, 5, 172412. [Google Scholar] [CrossRef] [PubMed]
- Fekih, N.; Allali, H.; Merghache, S.; Chaïb, F.; Merghache, D.; El Amine, M.; Djabou, N.; Muselli, A.; Tabti, B.; Costa, J. Chemical Composition and Antibacterial Activity of Pinus halepensis Miller Growing in West Northern of Algeria. Asian Pac. J. Trop. Dis. 2014, 4, 97–103. [Google Scholar] [CrossRef]
- Kurti, F.; Giorgi, A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; et al. Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oils of Different Pinus Species from Kosovo. J. Essent. Oil Res. 2019, 31, 263–275. [Google Scholar] [CrossRef]
- Kizilarslan Hancer, C.; Sevgi, E. Ethnobotanical Uses of Genus Pinus L. (Pinaceae) in Turkey. Indian J. Tradit. Knowl. 2013, 12, 209–220. [Google Scholar]
- Šarić-Kundalić, B. Traditional Medicine in the Pristine Village of Prokoško Lake on Vranica Mountain, Bosnia and Herzegovina. Sci. Pharm. 2010, 78, 275–290. [Google Scholar] [CrossRef]
- Redzic, S. Wild Medicinal Plants and Their Usage in Traditional Human Therapy (Southern Bosnia and Herzegovina, W. Balkan). J. Med. Plants Res. 2010, 4, 1003–1027. [Google Scholar]
- Sharma, A.; Goyal, R.; Sharma, L. Potential Biological Efficacy of Pinus Plant Species against Oxidative, Inflammatory and Microbial Disorders. BMC Complement. Altern. Med. 2015, 16, 35. [Google Scholar] [CrossRef]
- Kong, Z.; Liu, Z.; Ding, B. Study on the Antimutagenic Effect of Pine Needle Extract. Mutat. Res. Lett. 1995, 347, 101–104. [Google Scholar] [CrossRef]
- Jung, Y.J.; Bae, M.W.; Chung, M.I.; Lee, J.S.; Chung, K.S. Cytotoxic Effect of the Distilled Pine-Needle Extracts on Several Cancer Cell Lines In Vitro. J. Korean Soc. Food Sci. Nutr. 2002, 31, 691–695. [Google Scholar]
- Iravani, S.; Zolfaghari, B. Pharmaceutical and Nutraceutical Effects of Pinus Pinaster Bark Extract. Res. Pharm. Sci. 2011, 6, 1–11. [Google Scholar] [PubMed]
- Süntar, I.; Tumen, I.; Ustün, O.; Keleş, H.; Küpeli Akkol, E. Appraisal on the Wound Healing and Anti-Inflammatory Activities of the Essential Oils Obtained from the Cones and Needles of Pinus Species by In Vivo and In Vitro Experimental Models. J. Ethnopharmacol. 2012, 139, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.H.S.; Riesen, S.K.; Truong, K.P.; Lau, E.W.; Rohdewald, P.; Barreta, R.A. Pycnogenol® as an Adjunct in the Management of Childhood Asthma. J. Asthma 2004, 41, 825–832. [Google Scholar] [CrossRef]
- Lawless, J. The Encyclopedia of Essential Oils; Element Books Limited: Boston, MA, USA, 1992. [Google Scholar]
- Sudjarwo, S.A.; Wardani, G.; Eraiko, K.; Koerniasari. The Potency of Nanoparticle of Pinus merkusii as Immunostimulatory on Male Wistar Albino Rat. Int. J. Nutr. Pharmacol. Neurol. Dis. 2018, 8, 10. [Google Scholar] [CrossRef]
- Ghaffari, T.; Kafil, H.S.; Asnaashari, S.; Farajnia, S.; Delazar, A.; Baek, S.C.; Hamishehkar, H.; Kim, K.H. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Pinus eldarica Grown in Northwestern Iran. Molecules 2019, 24, 3203. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309. [Google Scholar] [CrossRef]
- Hu, X.-Y.; Logue, M.; Robinson, N. Antimicrobial Resistance Is a Global Problem—A UK Perspective. Eur. J. Integr. Med. 2020, 36, 101136. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of Essential Oils and Antibiotics Reduce Antibiotic Resistance in Plasmid-Conferred Multidrug Resistant Bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Gibbons, S.; Oluwatuyi, M.; Veitch, N.C.; Gray, A.I. Bacterial Resistance Modifying Agents from Lycopus europaeus. Phytochemistry 2003, 62, 83–87. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Antonietta Milillo, M. Antibacterial Effect of Some Essential Oils Administered Alone or in Combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef]
- Moussaoui, F.; Alaoui, T. Evaluation of Antibacterial Activity and Synergistic Effect between Antibiotic and the Essential Oils of Some Medicinal Plants. Asian Pac. J. Trop. Biomed. 2016, 6, 32–37. [Google Scholar] [CrossRef]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and Antimicrobial Properties of Essential Oils of Five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Caetano da Silva, S.D.; Mendes de Souza, M.G.; Oliveira Cardoso, M.J.; da Silva Moraes, T.; Ambrósio, S.R.; Sola Veneziani, R.C.; Martins, C.H.G. Antibacterial Activity of Pinus elliottii against Anaerobic Bacteria Present in Primary Endodontic Infections. Anaerobe 2014, 30, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.-J.; Na, K.-J.; Choi, I.-G.; Choi, K.-C.; Jeung, E.-B. Antibacterial and Antifungal Effects of Essential Oils from Coniferous Trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric Acid from Pinus nigra Shows Activity against Multidrug-Resistant and EMRSA Strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef]
- Politeo, O.; Skocibusic, M.; Maravic, A.; Ruscic, M.; Milos, M. Chemical Composition and Antimicrobial Activity of the Essential Oil of Endemic Dalmatian Black Pine (Pinus nigra ssp. dalmatica). Chem. Biodivers. 2011, 8, 540–547. [Google Scholar] [CrossRef]
- Khan, M.H.; Dar, N.A.; Alie, B.A.; Dar, S.A.; Lone, A.A.; Mir, G.H.; Fayaz, U.; Ali, S.; Tyagi, A.; El-Sheikh, M.A.; et al. Unraveling the Variability of Essential Oil Composition in Different Accessions of Bunium persicum Collected from Different Temperate Micro-Climates. Molecules 2023, 28, 2404. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, Z.; Zanuso, E.; Trajano, H. Hydrothermal Processing in Biorefineries-Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass; Springer: Berlin, Germany, 2017. [Google Scholar]
- Rana, A.K.; Guleria, S.; Gupta, V.K.; Thakur, V.K. Cellulosic Pine Needles-Based Biorefinery for a Circular Bioeconomy. Bioresour. Technol. 2023, 367, 128255. [Google Scholar] [CrossRef]
- Ne’eman, G.; Osem, Y. Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin; Springer: Berlin, Germany, 2021; ISBN 978-3-030-63627-2. [Google Scholar]
- Yield and Components of Pine (Pinus Merkusii) Turpentine Among Age Class Differences Tapping by Borehole Method|Indonesian Journal of Environment and Sustainable Development. Available online: https://jpal.ub.ac.id/index.php/jpal/article/view/464 (accessed on 12 September 2024).
- Jankovský, M.; García-Jácome, S.P.; Dvořák, J.; Nyarko, I.; Hájek, M. Innovations in Forest Bioeconomy: A Bibliometric Analysis. Forests 2021, 12, 1392. [Google Scholar] [CrossRef]
- Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Available online: http://ouci.dntb.gov.ua/en/works/lDv335q7/ (accessed on 12 September 2024).
- Inferences from Thermogravimetric Analysis of Pine Needles and Its Chars from a Pilot-Scale Screw Reactor|Request PDF. Available online: https://www.researchgate.net/publication/337365175_Inferences_from_thermogravimetric_analysis_of_pine_needles_and_its_chars_from_a_pilot-scale_screw_reactor (accessed on 12 September 2024).
- An Integrated Approach for Extracting Fuel, Chemicals, and Residual Carbon Using Pine Needles. Available online: https://www.researchgate.net/publication/323393372_An_integrated_approach_for_extracting_fuel_chemicals_and_residual_carbon_using_pine_needles (accessed on 12 September 2024).
- Potential of Pine Needles for PLA-based Composites—Sinha—2018—Polymer Composites—Wiley Online Library. Available online: https://4spepublications.onlinelibrary.wiley.com/doi/abs/10.1002/pc.24074 (accessed on 12 September 2024).
- Wawro, A.; Jakubowski, J.; Gieparda, W.; Pilarek, Z.; Łacka, A. Potential of Pine Needle Biomass for Bioethanol Production. Energies 2023, 16, 3949. [Google Scholar] [CrossRef]
- Jugoslovenska Farmakopeja IV SFRJ (Ph. Jug. IV). Pharmacopoea Jugoslavica Editio Quarta; Savezni Zavod za Zdravstvenu Zaštitu: Belgrade, Serbia, 1984. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Approved Standard-CLSI Document M07-Ed11; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Ansel, H.C.; Norred, W.P.; Roth, I.L. Antimicrobial Activity of Dimethyl Sulfoxide against Escherichia coli, Pseudomonas aeruginosa, and Bacillus megaterium. J. Pharm. Sci. 1969, 58, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Crevelin, E.J.; Caixeta, S.C.; Dias, H.J.; Groppo, M.; Cunha, W.R.; Martins, C.H.G.; Crotti, A.E.M. Antimicrobial Activity of the Essential Oil of Plectranthus neochilus against Cariogenic Bacteria. Evid. Based Complement. Alternat. Med. 2015, 2015, 02317. [Google Scholar] [CrossRef] [PubMed]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial Activity of Cinnamon Essential Oils and Their Synergistic Potential with Antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical Composition and Antioxidant Properties of Clove Leaf Essential Oil. J. Agric. Food Chem. 2006, 54, 6303–6307. [Google Scholar] [CrossRef]
- Judzentiene, A.; Kupcinskiene, E. Chemical Composition on Essential Oils from Needles of Pinus sylvestris L. Grown in Northern Lithuania. J. Essent. Oil Res. 2008, 20, 26–29. [Google Scholar] [CrossRef]
- Ustun, O.; Sezik, E.; Kurkcuoglu, M.; Baser, K.H.C. Study of the Essential Oil Composition of Pinus sylvestris from Turkey. Chem. Nat. Compd. 2006, 42, 26–31. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Trajkovska-Dokik, E.; Kaftandzieva, A.; Kulevanova, S. Chemical Composition and Antimicrobial Activity of the Essential Oils of Pinus peuce (Pinaceae) Growing Wild in R. Macedonia. Nat. Prod. Commun. 2014, 9, 1623–1628. [Google Scholar] [CrossRef]
- Mimoune, N.; Mimoune, D.; Yataghene, A. Chemical Composition and Antimicrobial Activity of the Essential Oils of Pinus pinaster. J. Coast. Life Med. 2013, 1, 55–59. [Google Scholar] [CrossRef]
- Lis, A.; Lukas, M.; Mellor, K. Comparison of Chemical Composition of the Essential Oils from Different Botanical Organs of Pinus mugo Growing in Poland. Chem. Biodivers. 2019, 16, e1900397. [Google Scholar] [CrossRef]
- Macchioni, F.; Cioni, P.L.; Flamini, G.; Morelli, I.; Maccioni, S.; Ansaldi, M. Chemical Composition of Essential Oils from Needles, Branches and Cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from Central Italy. Flavour Fragr. J. 2003, 18, 139–143. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and Constituents of Essential Oil from Cones of Pinaceae spp. Natively Grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef] [PubMed]
- Hajdari, A.; Mustafa, B.; Ahmeti, G.; Pulaj, B.; Lukas, B.; Ibraliu, A.; Stefkov, G.; Quave, C.L.; Novak, J. Essential Oil Composition Variability among Natural Populations of Pinus mugo Turra in Kosovo. SpringerPlus 2015, 4, 828. [Google Scholar] [CrossRef] [PubMed]
- Karapandzova, M.; Stefkov, G.; Karanfilova, I.C.; Panovska, T.K.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Chemical Characterization and Antioxidant Activity of Mountain Pine (Pinus mugo Turra, Pinaceae) from Republic of Macedonia. Rec. Nat. Prod. 2018, 13, 50–63. [Google Scholar] [CrossRef]
- Stevanovic, T.; Garneau, F.-X.; Jean, F.-I.; Vilotic, D.; Petrovic, S.; Ruzic, N. The Essential Oil Composition of Pinus mugo Turra from Serbia. Flavour Fragr. J. 2005, 20, 96–97. [Google Scholar] [CrossRef]
- Essential Oil Composition of Six Pinus, L. Taxa (Pinaceae) from Canada and Their Chemotaxonomy|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Essential-Oil-Composition-of-Six-Pinus-L.-Taxa-from-Omer-Kili%C3%A7/4985ce1e26ca2f136bba7b2380a46fa741ee34fe (accessed on 11 December 2023).
- Amri, I.; Hanana, M.; Jamoussi, B.; Hamrouni, L. Essential Oils of Pinus nigra J.F. Arnold subsp. Laricio Maire: Chemical Composition and Study of Their Herbicidal Potential. Arab. J. Chem. 2017, 10, S3877–S3882. [Google Scholar] [CrossRef]
- Dob, T.; Berramdane, T.; Chelgoum, C. Chemical Composition of Essential Oil of Pinus halepensis Miller Growing in Algeria. Comptes Rendus Chim. 2005, 8, 1939–1945. [Google Scholar] [CrossRef]
- Sezik, E.; Üstün, O.; Demirci, B.; Başer, K. Composition of the Essential Oils of Pinus nigra Arnold from Turkey. Turk. J. Chem. 2010, 34, 313–325. [Google Scholar] [CrossRef]
- Dakhlaoui, S.; Bourgou, S.; Bachkouel, S.; Ben Mansour, R.; Ben Jemaa, M.; Jallouli, S.; Megdiche-Ksouri, W.; Hessini, K.; Msaada, K. Essential Oil Composition and Biological Activities of Aleppo Pine (Pinus halepensis Miller) Needles Collected from Different Tunisian Regions. Int. J. Environ. Health Res. 2023, 33, 83–97. [Google Scholar] [CrossRef]
- Aloui, F.; Baraket, M.; Jedidi, S.; Hosni, K.; Bouchnak, R.; Salhi, O.; Jdaidi, N.; Selmi, H.; Ghazghazi, H.; Khadhri, A.; et al. Chemical Composition, Anti-Radical and Antibacterial Activities of Essential Oils from Needles of Pinus halepensis Mill, P. pinaster Aiton, and P. pinea L. J. Essent. Oil Bear. Plants 2021, 24, 453–460. [Google Scholar] [CrossRef]
- Loizzo, M.; Saab, A.; Tundis, R.; Menichini, F.; Bonesi, M.; Statti, G.; Menichini, F. Chemical Composition and Antimicrobial Activity of Essential Oils from Pinus brutia (Calabrian Pine) Growing in Lebanon. Chem. Nat. Compd. 2008, 44, 784–786. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, H.-Y.; Lee, H.-S.; Hong, S.-K. Chemical Composition and Antimicrobial Activity of Essential Oil from Cones of Pinus koraiensis. Available online: https://pubmed.ncbi.nlm.nih.gov/18388468/ (accessed on 11 July 2020).
- Maciag, A.; Milaković, D.; Christensen, H.H.; Antolović, V.; Kalemba, D. Essential oil composition and plant-insect relations in scots pine (Pinus sylvestris L.). Food Chem. Biotechnol. 2007, 71, 71–94. [Google Scholar]
- Jafarzadeh, M.; Moghaddam, M.; Bakhshi, D. Antimicrobial Activity of Three Plant Species against Multi-Drug Resistant E. coli Causing Urinary Tract Infection. J. Herb. Med. 2020, 22, 100352. [Google Scholar] [CrossRef]
- Gavanji, S.; Mohammadi, E.; Larki, B.; Bakhtari, A. Antimicrobial and Cytotoxic Evaluation of Some Herbal Essential Oils in Comparison with Common Antibiotics in Bioassay Condition. Integr. Med. Res. 2014, 3, 142–152. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Ezzahrae Guaouguaou, F.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and Biological Activities of Pinus halepensis Mill, and Their Ethnomedicinal Use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef]
- Kazancı, C.; Oruç, S.; Mosulishvili, M. Medicinal Ethnobotany of Wild Plants: A Cross-Cultural Comparison around Georgia-Turkey Border, the Western Lesser Caucasus. J. Ethnobiol. Ethnomed. 2020, 16, 71. [Google Scholar] [CrossRef]
- Papp, N.; Bartha, S.; Boris, G.; Balogh, L. Traditional Uses of Medicinal Plants for Respiratory Diseases in Transylvania. Nat. Prod. Commun. 2011, 6, 1459–1460. [Google Scholar] [CrossRef]
- Boucher, H.; Miller, L.G.; Razonable, R.R. Serious Infections Caused by Methicillin-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2010, 51, S183–S197. [Google Scholar] [CrossRef]
- Atef, N.M.; Shanab, S.M.; Negm, S.I.; Abbas, Y.A. Evaluation of Antimicrobial Activity of Some Plant Extracts against Antibiotic Susceptible and Resistant Bacterial Strains Causing Wound Infection. Bull. Natl. Res. Cent. 2019, 43, 144. [Google Scholar] [CrossRef]
- Nogueira, R.J.L.; Pinheiro, V.A. Evaluation of the Antibacterial Activity of Green Propolis Extract and Meadowsweet Extract Against Staphylococcus aureus Bacteria: Importance in Wound Care Compounding Preparations. Int. J. Pharm. Compd. 2016, 20, 333–337. [Google Scholar]
- Hosein Farzaei, M.; Abbasabadi, Z.; Reza Shams-Ardekani, M.; Abdollahi, M.; Rahimi, R. A Comprehensive Review of Plants and Their Active Constituents with Wound Healing Activity in Traditional Iranian Medicine. Wounds Compend. Clin. Res. Pract. 2014, 26, 197–206. [Google Scholar]
- Ghattargi, V.C.; Nimonkar, Y.S.; Sape, K.; Prakash, O.; Suryavanshi, M.V.; Shouche, Y.S.; Meti, B.S.; Pawar, S.P. Functional and Comparative Genomics of Niche-Specific Adapted Actinomycetes Kocuria rhizophila Strain D2 Isolated from Healthy Human Gut. bioRxiv 2018. [Google Scholar] [CrossRef]
- Purty, S.; Saranathan, R.; Prashanth, K.; Narayanan, K.; Asir, J.; Sheela Devi, C.; Kumar Amarnath, S. The Expanding Spectrum of Human Infections Caused by Kocuria Species: A Case Report and Literature Review. Emerg. Microbes Infect. 2013, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Whon, T.W.; Kim, H.S.; Bae, J.-W. Complete Genome Sequence of Kocuria rhizophila BT304, Isolated from the Small Intestine of Castrated Beef Cattle. Gut Pathog. 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of Herbal Drugs for Promising Anti-Candida Activity. BMC Complement. Altern. Med. 2017, 17, 257. [Google Scholar] [CrossRef] [PubMed]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans Natural Products, Sources of New Antifungal Drugs: A Review. J. Mycol. Méd. 2017, 27, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, A.; Muenz, H.; Akbulut, M.; Başer, K.H.C.; Durmuşkahya, C. Traditional Phytotherapy and Trans-Cultural Pharmacy among Turkish Migrants Living in Cologne, Germany. J. Ethnopharmacol. 2005, 102, 69–88. [Google Scholar] [CrossRef]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) Essential Oils and Their Main Components to Enhance Itraconazole Activity against Azole Susceptible/Not-Susceptible Cryptococcus neoformans Strains. BMC Complement. Altern. Med. 2018, 18, 143. [Google Scholar] [CrossRef]
- Šarac, Z.; Matejić, J.; Stojanović-Radić, Z.; Veselinović, J.; Dzamic, A.; Bojovic, S.; Marin, P. Biological Activity of Pinus nigra Terpenes—Evaluation of FtsZ Inhibition by Selected Compounds as Contribution to Their Antimicrobial Activity. Comput. Biol. Med. 2014, 54, 72–78. [Google Scholar] [CrossRef]
- Nikolić, B.; Ristic, M.; Janaćković, P.; Novaković, J.; Sarac, Z.; Rajčević, N.; Marin, P. Essential Oil Composition of One-Year-Old Bosnian Pine Needles; REFORESTA: Belgrade, Serbia, 2015. [Google Scholar]
- Arı, S.; Kargıoğlu, M.; Temel, M.; Konuk, M. Traditional Tar Production from the Anatolian Black Pine [Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe var. pallasiana] and Its Usages in Afyonkarahisar, Central Western Turkey. J. Ethnobiol. Ethnomed. 2014, 10, 29. [Google Scholar] [CrossRef]
- da Silva, K.R.; Damasceno, J.L.; Inácio, M.d.O.; Abrão, F.; Ferreira, N.H.; Tavares, D.C.; Ambrosio, S.R.; Veneziani, R.C.S.; Martins, C.H.G. Antibacterial and Cytotoxic Activities of Pinus tropicalis and Pinus elliottii Resins and of the Diterpene Dehydroabietic Acid Against Bacteria That Cause Dental Caries. Front. Microbiol. 2019, 10, 987. [Google Scholar] [CrossRef]
- Plants|Free Full-Text|Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea. Available online: https://www.mdpi.com/2223-7747/12/19/3409 (accessed on 12 September 2024).
Chemical Compounds | Kovats Index | CAS | PNC | PNN | PMC | PMN | PHC | PHN | PSC | PSN |
---|---|---|---|---|---|---|---|---|---|---|
Approximate | Percentage (%) | |||||||||
Tricyclene | 921 | 508-32-7 | 0.21 | t | 0.48 | 0.07 | 0.08 | t | 0.66 | |
α-Thujene | 924 | 2867-05-2 | 0.30 | 0.09 | 1.62 | 0.35 | ||||
α–Pinene | 932 | 80–-56-8 | 40.00 | 54.42 | 3.93 | 1.89 | 47.47 | 17.02 | 37.86 | 39.82 |
Camphene | 946 | 79-92-5 | 0.69 | 1.16 | 1.21 | 1.41 | 0.65 | 0.18 | 0.74 | 3.08 |
Thuja-2,4(10)-diene | 953 | 36262-09-6 | 0.03 | |||||||
Verbenene | 961 | 4080-46-0 | 0.24 | |||||||
Sabinene | 969 | 3387-41-5 | 0.66 | 1.69 | 2.49 | |||||
3,7,7-trimethylcyclohepta-1,3,5-triene | 970 | 3479-89-8 | ||||||||
β–Pinene | 974 | 127-91-3 | 2.49 | 3.59 | 2.21 | 6.56 | 3.85 | 3.44 | 6.78 | 6.02 |
Myrcene | 988 | 123-35-3 | 1.22 | 1.38 | 2.41 | 14.61 | 24.65 | 13.78 | 1.69 | |
α-Phellandrene | 1002 | 99-83-2 | 0.03 | 0.12 | 0.19 | 0.04 | ||||
iso-Sylvestrene | 1007 | 1461-27-4 | 0.08 | 7.85 | ||||||
δ-3-Carene | 1008 | 13466-78-9 | 0.02 | 19.95 | 23.36 | 5.10 | 0.07 | |||
α-Terpinene | 1014 | 99-86-5 | 0.02 | 0.02 | ||||||
p-Cymene | 1020 | 99-87-6 | 0.05 | 0.31 | 0.19 | 0.09 | 0.22 | |||
Limonene | 1024 | 138-86-3 | 0.96 | 2.57 | 5.98 | 6.92 | ||||
β-Phellandrene | 1025 | 555-10-2 | 7.33 | 5.75 | 2.81 | 2.23 | ||||
(Z)-β-Ocimene | 1032 | 3338-55-4 | 0.04 | |||||||
(E)-β-Ocimene | 1044 | 3779-61-1 | 0.41 | 0.77 | ||||||
γ-Terpinene | 1054 | 99-85-4 | t | 0.17 | 0.25 | 0.04 | 0.13 | t | 0.05 | |
Borneol | 1165 | 507-70-0 | ||||||||
Terpinen-4-ol | 1174 | 562-74-3 | 0.56 | |||||||
Terpinolene | 1086 | 586-62-9 | 0.34 | 1.57 | 3.48 | 0.38 | 2.06 | |||
α-Pinene oxide | 1099 | 1686-14-2 | 0.04 | 0.04 | 0.04 | 0.04 | ||||
trans-p-Mentha-2,8-dien-1-ol | 1119 | 7212-40-0 | 0.04 | |||||||
α-Campholenal | 1122 | 91819-58-8 | t | |||||||
cis-p-Mentha-2,8-dien-1-ol | 1133 | 22771-44-4 | 0.05 | |||||||
iso-3-Thujanol | 1134 | 7712-79-0 | 0.10 | |||||||
trans-Pinocarveol | 1135 | 517-61-5 | 0.05 | 0.06 | 0.03 | 0.21 | 0.09 | |||
cis-Verbenol | 1137 | 1845-30-3 | t | |||||||
trans-Verbenol | 1140 | 1820-09-3 | 0.07 | t | 0.13 | 0.16 | ||||
Camphor | 1141 | 76-22-2 | 0.03 | |||||||
trans-Pinocamphone | 1158 | 547-60-4 | t | 0.03 | 0.16 | t | ||||
Pinocarvone | 1160 | 16812-40-1 | t | 0.12 | ||||||
Borneol | 1165 | 507-70-0 | t | t | 0.04 | 0.04 | 0.08 | |||
cis-Pinocamphone | 1172 | 15318-88-0 | 0.03 | 0.08 | ||||||
Terpinen-4-ol | 1174 | 562-74-3 | 0.06 | 0.14 | 0.07 | 0.15 | 0.12 | |||
α-Terpineol | 1186 | 98-55-5 | 0.06 | 0.24 | 0.13 | 0.07 | ||||
neo-dihydro Carveol | 1193 | 18675-34-8 | 0.06 | |||||||
Myrtenol | 1194 | 515-00-4 | 0.04 | 0.17 | t | |||||
Myrtenal | 1195 | 18486-69-6 | 0.18 | t | ||||||
Verbenone | 1204 | 80-57-9 | t | t | t | |||||
Thymol methyl ether ili | 1232 | 1076-56-8 | 0.04 | 0.20 | t | |||||
Carvacrol methyl ether | 1241 | 6379-73-3 | t | |||||||
Linalool acetate | 1254 | 115-95-7 | 0.03 | 0.08 | ||||||
Bornyl acetate | 1287 | 76-49-3 | 4.39 | 0.55 | 0.18 | 3.93 | 0.64 | 0.17 | 0.20 | 1.98 |
trans- Sabinyl acetate (IPP vs. Acetyl) | 1289 | 53833-85-5 | t | |||||||
2-Undecanone | 1293 | 112-12-9 | 0.09 | |||||||
Dihydro carveol acetate | 1306 | 20777-49-5 | t | |||||||
(Z)-Pinocarvyl acetate | 1311 | 73366-18-4 | 0.04 | t | ||||||
Myrtenyl acetate | 1324 | 1079-01-2 | 0.06 | t | ||||||
δ-Elemene | 1335 | 20307-84-0 | 0.18 | t | 0.04 | |||||
Verbanol acetate | 1340 | 73366-09-3 | 0.07 | |||||||
Terpinen-4-ol acetat | 1343 | 4821-04-9. | 0.53 | 0.27 | ||||||
α–Cubebene | 1345 | 17699-14-8 | 0.63 | t | t | 0.10 | 0.21 | t | ||
α–Terpinyl acetate ili Neoiso–dihydrocarveol acetate | 1346 1356 | 80-26-2 20777-49-5 | 0.27 | 1.02 | 0.12 | 2.41 | t | 0.06 | 0.81 | |
α-Longipinene | 1350 | 5989-08-2 | 0.20 | t | ||||||
Longicyclene | 1371 | 1137-12-8 | 0.07 | |||||||
α-Ylangene | 1373 | 14912-44-8 | 0.03 | t | t | |||||
α–Copaene | 1374 | 3856–25–5 | 0.22 | 0.11 | 0.41 | 0.09 | 0.28 | 2.27 | 0.05 | 0.17 |
trans-Myrtanol acetate | 1385 | 90934-53-5 | 0.24 | |||||||
β–Cubebene | 1387 | 13744-15-5 | 0.07 | 0.17 | 0.20 | t | 0.27 | |||
β-Bourbonene | 1387 | 5208-59-3 | 0.12 | |||||||
β-Elemene | 1389 | 515-13-9 | 0.05 | 0.32 | 2.49 | 0.06 | 0.64 | 1.72 | ||
Sativene | 1390 | 6813-05-4 | t | t | ||||||
β-Longipinene | 1400 | 41432-70-6 | t | |||||||
Longifolene | 1407 | 475-20-7 | 0.09 | 0.05 | 1.26 | |||||
β-Funebrene | 1413 | 50894-66-1 | t | |||||||
(E)– Caryophyllene | 1417 | 87-44-5 | 14.00 | 8.50 | 21.07 | 5.94 | 11.70 | 24.69 | 9.13 | 4.81 |
β-Copaene | 1430 | 18252-44-3 | 0.27 | 0.27 | 0.09 | 0.10 | ||||
Aromadendrene | 1433 | 489-39-4 | 0.14 | |||||||
(Z)-β-Farnesene | 1440 | 18794-84-8 | 0.06 | |||||||
6,9-Guaiadiene | 1442 | 36577-33-0 | 0.05 | 0.16 | t | |||||
cis-Muurola-3,5-diene | 1448 | 157374-44-2 | 0.08 | |||||||
Spirolepechinene α-Himachalene | 1449 | 246243-00-5 3853-83-6 | t | 0.08 | ||||||
trans-Muurola-3,5-diene | 1451 | 189165-77-3 | 0.07 | 0.10 | ||||||
α– Humulene | 1452 | 6753-98-6 | 2.35 | 1.53 | 3.70 | 1.07 | 2.01 | 3.85 | 1.56 | 0.85 |
(E)-β-Farnesene | 1454 | 18794-84-8 | 0.10 | 0.21 | 0.35 | t | 0.12 | t | t | |
Sesquisabinene | 1457 | 58319-04-3 | t | 0.08 | 0.12 | |||||
Alloaromadendrene | 1458 | 25246-27-9 | t | |||||||
cis-Cadina-1(6),4-diene | 1461 | 000-00-0 | 0.44 | t | ||||||
cis-Muurola-4(14),5-dien | 1465 | 157477-72-0 | 0.12 | |||||||
Dauca-5,8-diene | 1471 | 142928-08-3 | t | t | ||||||
trans-Cadina-1(6),4-dien | 1475 | 20085-11-4 | 0.07 | t | ||||||
α–Murrolene | 1478 | 483-75-0 | 0.10 | t | t | t | 0.60 | |||
Amorpha-4,7(11)-dien-8-one | 1479 | 000-00-0 | 0.10 | |||||||
Germacrene D | 1484 | 23986-74-5 | 1.39 | 16.34 | 16.30 | 5.50 | 0.20 | 1.51 | 0.07 | 3.80 |
Phenethyl 2-methylbutanoate | 1486 | 24817-51-4 | 0.30 | 1.7 | ||||||
β-Selinene | 1489 | 17066-67-0 | 0.56 | |||||||
Phenyl ethyl 3-methyl-butanoate | 1490 | 140-26-1 | 0.40 | 2.3 | ||||||
trans–Muurola–4(14),5–diene | 1493 | 54324-03-7 | t | t | 0.14 | 0.09 | t | |||
γ–Amorphene | 1495 | 6980-46-7 | 0.24 | t | ||||||
Valencene | 1496 | 4630-07-3 | 0.14 | |||||||
α–Muurolene | 1500 | 31983-22-9 | 0.34 | 0.04 | 0.62 | 3.47 | 0.20 | 0.06 | ||
Bicyclogermacrene | 1500 | 67650-90-2 | 0.18 | 1.04 | 3.19 | |||||
β–Bisabolene | 1505 | 495-61-4 | t | 0.69 | ||||||
Germacrene A | 1508 | 28387-44-2 | t | 0.09 | t | |||||
δ- Amorphene | 1511 | 189165-79-5 | t | |||||||
γ–Cadinene | 1513 | 39029-41-9 | 0.63 | 0.45 | 0.37 | 0.29 | 0.16 | 2.16 | ||
Cubebol | 1514 | 23445-02-5 | 0.19 | t | ||||||
cis-Dihydroagarofuran | 1519 | 150652-94-1 | t | |||||||
Isobornyl isovalerate | 1521 | 7779-73-9 | t | 0.06 | ||||||
δ–Cadinene | 1522 | 483-76-1 | 0.36 | 1.13 | 0.69 | 3.70 | 0.45 | 1.02 | 0.05 | 4.12 |
Isobornyl 2-methyl butanoate | 1523 | 94200-10-9 | 0.06 | |||||||
Zonarene | 1528 | 41929-05-9 | 0.04 | |||||||
α-Muurolene | 1530 | 31983-22-9 | t | |||||||
(Z)-Nerolidol | 1531 | 142-50-7 | 0.04 | |||||||
trans-Cadina-1,4-diene | 1533 | 38758-02-0 | t | t | 0.07 | t | t | 0.11 | ||
α- Cadinene | 1537 | 24406-05-1 | 0.03 | t | 0.13 | 0.23 | ||||
Germacrene A | 1538 | 28387-44-2 | t | |||||||
α-Calacorene | 1544 | 21391-99-1 | t | t | ||||||
trans-α-Bisabolene | 1545 | 000-00-0 | 0.04 | |||||||
Hedycaryol | 1546 | 21657-90-9 | 0.12 | t | ||||||
(E)-Veltonal | 1555 | 58102-02-6 | t | t | ||||||
trans-Dauca-4(11),7-dien | 1556 | 000-00-0 | t | |||||||
cis-Muurol-5-en-4α-ol | 1559 | 157374-45-3 | 0.05 | |||||||
cis-Muurol-5-en-4β-ol | 1561 | 000-00-0 | 0.11 | |||||||
β –Calacorene | 1564 | 50277-34-4 | 0.08 | 0.04 | ||||||
Longipinanol | 1567 | 39703-23-6 | 0.06 | |||||||
Germacrene D–4–ol | 1574 | 74841–87–5 | 0.17 | 0.04 | 0.08 | 1.09 | 1.51 | |||
Spathulenol | 1577 | 6750-60-3 | 1.39 | |||||||
Caryophyllene oxide | 1582 | 1139-30-6 | 0.55 | 0.42 | 0.78 | 0.67 | 0.80 | 1.00 | 0.66 | |
Germacrene D | 1584 | 23986-74-5 | ||||||||
Thujopsan-2α-ol | 1586 | 000-00-0 | 0.12 | |||||||
Salvial-4(14)-en-1-one | 1594 | 73809-82-2 | t | |||||||
1,7,7-trimethyl acetate bicyclo[2.2.1]heptan-2-ol | 1595 | 92618-89-8 | t | |||||||
Longiborneol | 1599 | 465-24-7 | t | |||||||
Guaiol | 1600 | 489-86-1 | 0.03 | 0.25 | 0.07 | t | ||||
Humulene oxide II | 1608 | 19888-34-7 | 0.08 | 0.17 | 0.19 | 0.11 | 0.15 | 0.09 | ||
1,10-diepi-Cubenol | 1618 | 73365-77-2 | 0.04 | 0.08 | t | 0.08 | ||||
10-epi-γ-Eudesmol | 1622 | 15051-81-7 | t | t | ||||||
1-epi-Cubenol | 1627 | 19912-67-5 | t | 0.08 | 0.08 | 0.08 | ||||
γ-Eudesmol | 1630 | 1209-71-8 | 0.08 | t | ||||||
α-Acorenol | 1632 | 28296-85-7 | t | t | ||||||
cis-Cadin-4-en-7-ol | 1635 | 217650-27-6 | t | |||||||
epi-α-Cadinol | 1638 | 5937-11-1 | 0.30 | t | ||||||
allo-Aromadendrene epoxide | 1639 | 85160-81-2 | 0.24 | t | ||||||
τ–Muurolol (epi-α-Muurolol) | 1640 | 19912–62–0 | 0.07 | t | 0.10 | 1.05 | t | |||
Torreyol | 1644 | 19435–97–3 | 0.14 | 0.11 | 0.65 | t | 0.25 | t | ||
Cubenol | 1645 | 21284-22-0 | 0.11 | t | ||||||
β-Eudesmol | 1649 | 473-15-4 | t | t | ||||||
α–Cadinol | 1652 | 481–34–5 | 0.09 | 0.21 | 0.07 | 1.72 | 0.25 | 0.55 | t | |
Allohimachalol | 1661 | 1891-45-8 | t | |||||||
Intermedeol | 1665 | 6168-59-8 | 0.04 | |||||||
Bulnesol | 1670 | 2245-73-6 | t | |||||||
(Z)-Nerolidyl acetate | 1676 | 91050-14-5 | 0.07 | t | ||||||
Germacra-4(15),5,10(14)-trien-1α-ol | 1685 | 81968-62-9 | t | |||||||
Amorpha-4,9-dien-2-ol | 1700 | 394251-66-2 | t | |||||||
(2E)-Tridecanol acetate | 1703 | 193758-89-3 | t | |||||||
ar-Curcumen-15-al | 1712 | 000-00-0 | t | |||||||
14-hydroxy-α-Humulene | 1713 | 000-00-0 | t | |||||||
Oplopanone | 1739 | 1911-78-0 | 0.15 | |||||||
(Z)-Nerolidyl isobutyrate | 1783 | 74646-27-8 | t | |||||||
8 -Cedren-13-ol acetate | 1788 | 18819-41-0 | t | |||||||
1-Octadecene | 1789 | 112-88-9 | t | |||||||
Abieta-6,13-dien | 1880 | 5939-62-8 | 0.08 | |||||||
Khusinol acetate | 1823 | 78405-34-2 | t | |||||||
cis-Thujopsenic acid | 1863 | 546-53-2 | t | |||||||
1-Hexadecanol | 1874 | 36653-82-4 | 0.44 | |||||||
Cubitene | 1878 | 66723-19-1 | t | |||||||
Pimara-8,15-diene | 1895 | 55255-56-6 | t | |||||||
Rosa-5,15-dien | 1902 | 1686-67-5 | t | |||||||
epi-Laurenene ili Isopimara-9(11),15-diene | 1901 1905 | 110455-92-0 39702-28-8 | t | |||||||
Totarene | 1922 | 000-00-0 | t | t | ||||||
Beyerene | 1931 | 3564-54-3 | t | |||||||
Cembrene | 1937 | 1898-13-1 | 0.44 | 0.70 | 0.11 | 0.18 | t | 1.05 | ||
5α-androst-7-ene | 1940 | 54411-76-6 | t | |||||||
[4aS-(4aα,4aβ,7β,10aβ)]- 7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-4a,7-dimethyl-1-methylene phenanthrene | 1942 | 26549-04-2 | t | |||||||
(3E)–Cembrene A | 1947 | 31570-39-5 | 0.35 | 0.38 | 0.65 | |||||
Pimaradiene | 1948 | 1686-61-9 | t | 0.09 | ||||||
Hexadecanoic acid | 1959 | 57-10-3 | 0.26 | |||||||
(3Z)-Cembrene A | 1965 | 71213-92-8 | 0.35 | |||||||
(3Z)–Cembrene A | 1967 | 71213-92-8 | 0.12 | 0.13 | ||||||
Sandaracopimara-8(14),15-diene | 1968 | 1686-56-2 | 0.28 | 0.06 | 0.12 | |||||
19-nor-Abieta-8,11,13-triene | 1969 | 1686-61-9 | t | t | t | |||||
Sclarene | 1974 | 511-02-4 | 0.19 | 0.44 | ||||||
1,7,7-Trimethyl-3-phenethylidenebicyclo[2.2.1]heptan-2-one | 1978 | 464-48-2 | 0.23 | |||||||
Manool oxide | 1987 | 596–84–9 | 0.52 | 0.06 | 0.29 | 0.25 | 0.45 | 0.14 | ||
(9Z)-Octadecenal | 1995 | 2423-10-1 | t | |||||||
13–epi–Dolabradiene | 2000 | 134507-28-1 | 1.98 | t | ||||||
Phyllocladene | 2016 | 20070-61-5 | 0.30 | t | 0.17 | |||||
8β,13β-kaur-16-ene | 2017 | 20070-61-5 | 2.00 | |||||||
Sclarene | 2018 | 511-02-4 | 0.65 | |||||||
Abieta–8,12–dien | 2022 | 122712-77-0 | 0.42 | 0.20 | 0.06 | 0.80 | ||||
Geranyl linalool | 2034 | 1113-21-9 | t | |||||||
Kaurene | 2042 | 34424-57-2 | 0.04 | |||||||
Isocembrol | 2047 (2073) | 25269-17-4 | 0.97 | t | 2.45 | |||||
Abietatriene | 2055 | 19407–28–4 | 0.40 | t | 0.31 | 0.34 | 1.04 | |||
13-epi-Manool | 2059 | 1438-62-6 | 0.27 | |||||||
Abietadiene | 2087 | 35241-400-8 | 0.45 | t | 0.46 | 0.03 | 1.50 | |||
(11E,13Z)–Labdadien–8–ol | 2095 | 000-00-0 | 18.83 | |||||||
5-(7a-Isopropenyl-4,5-dimethyl-octahydroinden-4-yl)-3-methyl-pent-2-en-1-ol | 2141 | 000-00-0 | 2.67 | t | ||||||
Abienol | 2149 | 25578–83–0 | 0.14 | t | 0.08 | 0.27 | t | |||
Abieta–8(14),13(5)–dien | 2153 | 5119–12–7 | 0.60 | 0.37 | 0.10 | 0.89 | ||||
Pimaral | 2177 | 472-39-39 | 0.05 | |||||||
Sandaracopimarinal | 2184 | 3855–14–9 | 0.42 | t | 0.08 | 0.22 | 0.48 | |||
Sclareol | 2200 | 515-03-7 | t | |||||||
Abieta-7,13-dien-3-one-18-al | 2214 | 000-00-0 | 5.23 | |||||||
Pimara–7,15–dien–3–one | 2227 | 7715–48–2 | 2.03 | |||||||
Methyl abietate | 2234 | 127-25-3 | t | |||||||
Methyl dehydroabietate | 2341 | 1235-74-1 | t | |||||||
Pimara-7,15-dien-3-ol | 2253 | 4752-56-1 | 0.28 | |||||||
Larixol | 2265 | 1438–66–0 | 0.41 | |||||||
Dehydroabietal | 2274 | 13601–88–2 | 0.83 | t | 1.20 | 0.50 | 2.30 | |||
Methyl isopimarate | 2297 | 1686-62-0 | t | |||||||
4-epi Abietal | 2298 | 000-00-0 | 0.33 | |||||||
Isopimardien-3-one | 2300 | 000-00-0 | 0.36 | |||||||
Abieta-7,113-dien-3-one | 2312 | 29461-25-4 | 4.83 | |||||||
Abietal | 2313 | 6704–50–3 | 0.27 | 0.17 | 0.26 | |||||
8,13-Abietadien-18-ol | 2324 | 21414-53-9 | 0.07 | 0.12 | ||||||
Methyl dehydroabietate | 2341 | 1235-74-1 | 0.08 | t | ||||||
4-epi-Abietol | 2343 | 24563-94-8 | 1.25 | |||||||
Methyl neoabietate | 2443 | 3310-97–2 | 0.62 | t | ||||||
Methyl abietate | 2356 | 127-25-3 | 0.11 | |||||||
Methyl abietate | 2380 | 127-25-3 | 1.32 | |||||||
Dehydroabietol | 2389 | 3772-55-2 | t | 0.20 | ||||||
p-Anisic acid, 2-adamantyl ester | 2395 | 000-00-0 | t | |||||||
Neoabietic acid, methyl ester | 2397 | 3310-97-2 | 0.17 | |||||||
Abietol | 2401 | 666-84-2 | t | |||||||
Methyl neoabietate | 2443 | 3310-97-2 | t | 0.08 | ||||||
Abietic acid | 2457 | 66104-41-4 | t | |||||||
all-trans Retinal | 2466 | 116-31-4 | t | t | ||||||
Neo-abietol | 2468 | 640-42-6 | t | 0.20 | ||||||
22-methyl-24-norcholan-16-one | 2515 | 54498-41-8 | t | |||||||
Total | 98.32 | 99.96 | 99.18 | 89.71 | 99.75 | 99.66 | 99.84 | 91.78 | ||
Monoterpene hydrocarbons | 44.14 | 64.24 | 37.44 | 45.80 | 77.86 | 50.80 | 66.18 | 62.84 | ||
Oxygenated monoterpenes | 5.29 | 2.58 | 2.40 | 10.98 | 1.58 | 2.59 | 1.36 | 4.16 | ||
Sesquiterpene hydrocarbons | 19.70 | 29.03 | 44.71 | 25.34 | 15.42 | 35.23 | 12.65 | 23.11 | ||
Oxygenated sesquiterpenes | 1.02 | 1.17 | 1.57 | 6.99 | 1.80 | 2.40 | 0.83 | 1.67 | ||
Diterpenes | 5.62 | 1.27 | 2.93 | 0.60 | 1.23 | 2.19 | 6.96 | |||
Oxygenated diterpene | 23.55 | 0.97 | 7.02 | 1.86 | 2.45 | 11.63 | ||||
Others | 0.70 | 3.11 | 4.00 | 0.23 |
MIC (μg/mL) | PMN | PMC | PNN | PNC | PSN | PSC | PHN | PHC |
---|---|---|---|---|---|---|---|---|
S. aureus ATCC 6538 | 1000 | >1000 | >1000 | >1000 | 800 | 100 | 150 | 150 |
E. faecalis ATCC 29212 | 1000 | 1000 | 800 | 1000 | 600 | 100 | 150 | 100 |
K. rhizophila ATCC 9341 | 500 | 500 | 600 | 800 | 800 | 1000 | 400 | 800 |
B. subtilis ATCC 6633 | 1000 | >1000 | >1000 | >1000 | >1000 | >1000 | 400 | 400 |
E. coli ATCC 8739 | 400 | 400 | 600 | 100 | 500 | 150 | 200 | 150 |
K. pneumoniae NCIMB 9111 | 600 | 600 | 500 | 800 | 600 | 400 | 400 | 500 |
S. typhimurium ATCC 14028 | 800 | 800 | 800 | 600 | 800 | 600 | 600 | 200 |
P. aeruginosa ATCC 9027 | >1000 | >1000 | >1000 | >1000 | >1000 | 1000 | 800 | >1000 |
A. baumannii ATCC 19606 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
C. albicans ATCC 10231 | 600 | 400 | 400 | 400 | 500 | 150 | 100 | 100 |
Bacterial Strain | S. aureus ATCC 6538 | E. coli ATCC 8739 | K. pneumoniae NCIMB 9111 | |
---|---|---|---|---|
MIC (FIC) | Gent | 0.0625 (0.125) | 2 (1) | 0.25 (0.25) |
PSC | 75 (0.25) | 37.5 | 37.5 (0.0375) | |
FICI (Eff) | 0.375 (SY) | >1 (IN) | 0.2875 (SY) | |
MIC (FIC) | Gent | 0.125 (0.25) | 2 (1) | 0.25 (0.25) |
PNC | 37.5 (0.25) | 37.5 | 75 (0.075) | |
FICI (Eff) | 0.5 (SY) | >1 (IN) | 0.325 (SY) | |
MIC (FIC) | Gent | 0.125 (0.25) | 1 (0.5) | 0.25 (0.25) |
PHN | 37.5 (<0.0625) or 37.5 (0.0375) | 75 (<0.125) or 75 (0.075) | 37.5 (0.0375) | |
FICI (Eff) | <0.5 (SY) or 0.2875 (SY) | <1 (AD) or 0.575 (AD) | 0.2875 (SY) | |
MIC (FIC) | Gent | 0.125 (0.25) | 1 (0.5)2 | 0.25 (0.25) |
PHC | 37.5 (0.0625) | 300 (<0.5) or 300 (0.3) | 37.5 (0.0375) | |
FICI (Eff) | 0.3125 (SY) | <1 (AD) or 0.8 (AD) | 0.2875 (SY) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirković, S.; Tadić, V.; Milenković, M.T.; Ušjak, D.; Racić, G.; Bojović, D.; Žugić, A. Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics 2024, 16, 1331. https://doi.org/10.3390/pharmaceutics16101331
Mirković S, Tadić V, Milenković MT, Ušjak D, Racić G, Bojović D, Žugić A. Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics. 2024; 16(10):1331. https://doi.org/10.3390/pharmaceutics16101331
Chicago/Turabian StyleMirković, Snježana, Vanja Tadić, Marina T. Milenković, Dušan Ušjak, Gordana Racić, Dragica Bojović, and Ana Žugić. 2024. "Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina" Pharmaceutics 16, no. 10: 1331. https://doi.org/10.3390/pharmaceutics16101331
APA StyleMirković, S., Tadić, V., Milenković, M. T., Ušjak, D., Racić, G., Bojović, D., & Žugić, A. (2024). Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics, 16(10), 1331. https://doi.org/10.3390/pharmaceutics16101331