Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estragole Inclusion Complex in β-Cyclodextrin (ES/β-CD)
2.1.1. Scanning Electron Microscope Images of ES/β-CD
2.1.2. Chemical Analysis by GC-FID
2.2. Bacterial Strains
2.3. Determination of Minimum Inhibitory Concentration (MIC)
2.4. Evaluation of NorA and MepA Efflux Pump Inhibition
2.5. Molecular Docking Study
2.6. MPO-Based Pharmacokinetics Prediction
2.7. Statistical Analysis
3. Results
3.1. Characterization of the Inclusion Complex
3.1.1. Scanning Electron Microscope Images of ES/β-CD
3.1.2. Characterization of the Complex by GC/FID
3.2. Minimum Inhibitory Concentration
3.3. Activity of Estragole Complexed to β-CD (ES/β-CD) Combined with Antibiotic and Ethidium Bromide
3.4. Molecular Docking Study
3.5. MPO-Based Pharmacokinetics Prediction
3.5.1. Topology Analysis and Drug-likeness
3.5.2. Predicted PAMPA Descriptors
3.5.3. Site of Metabolism and Toxicity Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinduti, P.A.; Emoh-Robinson, V.; Obamoh-Triumphant, H.F.; Obafemi, Y.D.; Banjo, T.T. Antibacterial Activities of Plant Leaf Extracts against Multi-Antibiotic Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections. BMC Complement. Med. Ther. 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Ondusko, D.S.; Nolt, D. Staphylococcus aureus. Pediatr. Rev. 2018, 39, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux Pump Inhibitors for Bacterial Pathogens: From Bench to Bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar] [PubMed]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Nichols, R.J.; Sen, S.; Choo, Y.J.; Beltrao, P.; Zietek, M.; Chaba, R.; Lee, S.; Kazmierczak, K.M.; Lee, K.J.; Wong, A.; et al. Phenotypic Landscape of a Bacterial Cell. Cell 2011, 144, 143–156. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Ganjloo, S.; Pourmand, M.R.; Mashhadi, R.; Ghazvini, K. Epidemiology of Efflux Pumps Genes Mediating Resistance among Staphylococcus aureus; A Systematic Review. Microb. Pathog. 2020, 139, 103850. [Google Scholar] [CrossRef]
- Gibbons, S. Phytochemicals for Bacterial Resistance—Strengths, Weaknesses and Opportunities. Planta Medica 2008, 74, 594–602. [Google Scholar] [CrossRef]
- Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.V.; Gkentzi, D.; Assimakopoulos, S.F.; Panos, G.; Marangos, M. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiotics 2020, 9, 107. [Google Scholar] [CrossRef]
- Shriram, V.; Khare, T.; Bhagwat, R.; Shukla, R.; Kumar, V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front. Microbiol. 2018, 9, 2990. [Google Scholar] [CrossRef]
- da Costa, R.H.S.; Rocha, J.E.; de Freitas, T.S.; Pereira, R.L.S.; Junior, F.N.P.; de Oliveira, M.R.C.; Batista, F.L.A.; Coutinho, H.D.M.; de Menezes, I.R.A. Evaluation of Antibacterial Activity and Reversal of the NorA and MepA Efflux Pump of Estragole against Staphylococcus aureus Bacteria. Arch. Microbiol. 2021, 203, 3551–3555. [Google Scholar] [CrossRef]
- Batista, F.L.A.; Andrade-pinheiro, J.C.; Santos, A.T.L.; Lima, J.N.M.; Alencar, G.G.; Siqueira, G.M.; Silva, A.R.P.; Carvalho, N.K.G.; Martins, A.O.B.P.B.; Costa, R.H.S.; et al. Comparative Antimicrobial Potential of Ocimum basilicum Essential Oil, Estragole and Estragole/β -Cyclodextrin Complex in an Infection Model on Adult Zebrafish. Carbohydr. Polym. Technol. Appl. 2023, 6, 100385. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.J.S.D.O.; Miranda, G.M.; Bessa, J.R.; Araújo, A.C.J.D.; Freitas, P.R.; Almeida, R.S.D.; Paulo, C.L.R.; Neto, J.B.D.A.; Coutinho, H.D.M.; Ribeiro-Filho, J. Terpenes as Bacterial Efflux Pump Inhibitors: A Systematic Review. Front. Pharmacol. 2022, 13, 953982. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Neto, V.F.; Medeiros, T.L.; Meurer, Y.S.R.; Oliveira, C.B.S. Anti-Inflammatory Activity of Thymol and Estragole. J. Appl. Biopharm. Pharmacokinet. 2016, 3, 47–51. [Google Scholar] [CrossRef]
- Rodrigues, L.B.; Martins, A.O.B.P.B.; Cesário, F.R.A.S.; Ferreira e Castro, F.; de Albuquerque, T.R.; Martins Fernandes, M.N.; Fernandes da Silva, B.A.; Quintans Júnior, L.J.; da Costa, J.G.M.; Melo Coutinho, H.D.; et al. Anti-Inflammatory and Antiedematogenic Activity of the Ocimum basilicum Essential Oil and Its Main Compound Estragole: In Vivo Mouse Models. Chem. Biol. Interact. 2016, 257, 14–25. [Google Scholar] [CrossRef]
- Silva-Comar, F.M.d.S.; Wiirzler, L.A.M.; Silva-Filho, S.E.; Kummer, R.; Pedroso, R.B.; Spironello, R.A.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of Estragole on Leukocyte Behavior and Phagocytic Activity of Macrophages. Evid.-Based Complement. Altern. Med. 2014, 2014, 784689. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Silva, L.P.; Ferreira, O.; Schröder, B.; Coutinho, J.A.P.; Pinho, S.P. Terpenes Solubility in Water and Their Environmental Distribution. J. Mol. Liq. 2017, 241, 996–1002. [Google Scholar] [CrossRef]
- Sithole, M.N.; Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Marimuthu, T.; Kondiah, P.P.D.; Pillay, V. Development of a Novel Polymeric Nanocomposite Complex for Drugs with Low Bioavailability. AAPS PharmSciTech 2018, 19, 303–314. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Duarte, C.; Ílary, F.; Heimfarth, L.; Quintans, S.; de Souza, J.; Quintans-Júnior, L.J.; Veiga Júnior, V.F.d.; Neves de Lima, Á.A. Cyclodextrin–Drug Inclusion Complexes: In Vivo and In Vitro Approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef]
- Lima, P.S.S.S.; Lucchese, A.M.; Araújo-Filho, H.G.; Menezes, P.P.; Araújo, A.A.S.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.S. Inclusion of Terpenes in Cyclodextrins: Preparation, Characterization and Pharmacological Approaches. Carbohydr. Polym. 2016, 151, 965–987. [Google Scholar] [CrossRef]
- Ciobanu, A.; Landy, D.; Fourmentin, S. Complexation Efficiency of Cyclodextrins for Volatile Flavor Compounds. Food Res. Int. 2013, 53, 110–114. [Google Scholar] [CrossRef]
- da Costa, R.H.S.; Martins, A.O.B.P.B.; Pessoa, R.T.; Alshehri, S.A.; Wahab, S.; Ahmad, M.F.; Suliman, M.; da Silva, L.Y.S.; Alcântara, I.S.; Ramos, A.G.B.; et al. Mechanisms of Actions Involved in The Antinociceptive Effect of Estragole and Its β-Cyclodextrin Inclusion Complex in Animal Models. Plants 2022, 11, 2854. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, OH, USA, 2017; ISBN 978-0-9981557-2-2. [Google Scholar]
- CLSI. CLSI, M100ED29E. Performance Standards for Antimicrobial Susceptibility Testing: 29th Informational Supplement. 20, 29th ed.; CLSI: Wayne, PA, USA, 2019; ISBN 9781684400324. [Google Scholar]
- de Morais Oliveira-Tintino, C.D.; Tintino, S.R.; Limaverde, P.W.; Figueredo, F.G.; Campina, F.F.; da Cunha, F.A.B.; da Costa, R.H.S.; Pereira, P.S.; Lima, L.F.; de Matos, Y.M.L.S.; et al. Inhibition of the Essential Oil from Chenopodium ambrosioides L. and α-Terpinene on the NorA Efflux-Pump of Staphylococcus aureus. Food Chem. 2018, 262, 72–77. [Google Scholar] [CrossRef]
- Banerjee, A.; Mikhailova, E.; Cheley, S.; Gu, L.-Q.; Montoya, M.; Nagaoka, Y.; Gouaux, E.; Bayley, H. Molecular Bases of Cyclodextrin Adapter Interactions with Engineered Protein Nanopores. Proc. Natl. Acad. Sci. USA 2010, 107, 8165–8170. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Avery, P.; Ludowieg, H.; Autschbach, J.; Zurek, E. Extended Hückel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer. J. Chem. Educ. 2018, 95, 331–337. [Google Scholar] [CrossRef]
- Hanif, A.U.; Lukis, P.A.; Fadlan, A. Pengaruh Minimisasi Energi MMFF94 Dengan MarvinSketch Dan Open Babel PyRx Pada Penambatan Molekular Turunan Oksindola Tersubstitusi. Alchemy 2020, 8, 33–40. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and Vina with AutoDockTools: A Tutoria; Scripps Research Institute: San Diego, CA, USA, 2011. [Google Scholar]
- Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706. [Google Scholar] [CrossRef]
- Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties. ACS Chem. Neurosci. 2010, 1, 435–449. [Google Scholar] [CrossRef]
- Oliveira Brito Pereira Bezerra Martins, A.; Wanderley, A.G.; Alcântara, I.S.; Rodrigues, L.B.; Cesário, F.R.A.S.; Correia de Oliveira, M.R.; Castro, F.F.; de Albuquerque, T.R.; da Silva, M.S.A.; Ribeiro-Filho, J.; et al. Anti-Inflammatory and Physicochemical Characterization of the Croton rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin. Biology 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Xu, P.; Qi, W.; Kong, Q.; Wang, J.; Liao, T.; Xiong, G. Preparation and Characterization of a Sustained-Release Bio-Preservative Based on β-Cyclodextrin Encapsulated Eugenol. Food Biosci. 2021, 42, 101192. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Complexation of Estragole as Pure Compound and as Main Component of Basil and Tarragon Essential Oils with Cyclodextrins. Carbohydr. Polym. 2015, 118, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, L.; Yao, X.; Ji, H. Host-guest Complexes of Estragole with Β-cyclodextrin: An Experimental and Theoretical Investigation. Flavour. Fragr. J. 2017, 32, 102–111. [Google Scholar] [CrossRef]
- Pereira da Cruz, R.; Sampaio de Freitas, T.; do Socorro Costa, M.; Lucas dos Santos, A.T.; Ferreira Campina, F.; Pereira, R.L.S.; Bezerra, J.W.A.; Quintans-Júnior, L.J.; De Souza Araújo, A.A.; De Siqueira Júnior, J.P.; et al. Effect of α-Bisabolol and Its β-Cyclodextrin Complex as TetK and NorA Efflux Pump Inhibitors in Staphylococcus aureus Strains. Antibiotics 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer New York: New York, NY, USA, 2018; ISBN 978-1-4939-6674-5. [Google Scholar]
- de Oliveira, M.R.C.; Silva, M.G.d.L.; Oliveira-Tintino, C.D.d.M.; Tintino, S.R.; Rocha, J.E.; Magalhães, F.E.A.; da Costa, R.H.S.; Pessoa, R.T.; Alcântara, I.S.; Martins, A.O.B.P.B.; et al. Antibacterial Effect, Efflux Pump Inhibitory (NorA, TetK and MepA) of Staphylococcus aureus and in Silico Prediction of α, β and δ-Damascone Compounds. Arab. J. Chem. 2023, 16, 104482. [Google Scholar] [CrossRef]
- Ashtiani, E.E.; Gholizadeh Siahmazgi, Z.; Mirpour, M.; Soltani, B.M. RND Pump Inhibition: In-Silico and in-Vitro Study by Eugenol on Clinical Strain of E. coli and P. aeruginosa. Silico Pharmacol. 2023, 11, 22. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Cheng, W. Determination of Cinnamaldehyde, Thymol and Eugenol in Essential Oils by LC–MS/MS and Antibacterial Activity of Them against Bacteria. Sci. Rep. 2024, 14, 12424. [Google Scholar] [CrossRef]
- Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae Pv. Actinidiae Causing Bacterial Canker Disease in Kiwifruit. Plant Pathol. J. 2016, 32, 363–370. [Google Scholar] [CrossRef]
- Andrade, T.C.B.; Lima, S.G.D.; Freitas, R.M.; Rocha, M.S.; Islam, T.; Silva, T.G.D.; Militão, G.C.G. Isolation, Characterization and Evaluation of Antimicrobial and Cytotoxic Activity of Estragole, Obtained from the Essential Oil of Croton zehntneri (Euphorbiaceae). Acad. Bras. Cienc. 2015, 87, 173–182. [Google Scholar] [CrossRef]
- Mahendran, G.; Vimolmangkang, S. Chemical Compositions, Antioxidant, Antimicrobial, and Mosquito Larvicidal Activity of Ocimum americanum L. and Ocimum basilicum L. Leaf Essential Oils. BMC Complement. Med. Ther. 2023, 23, 390. [Google Scholar] [CrossRef] [PubMed]
- Kaatz, G.W.; Seo, S.M. Inducible NorA-Mediated Multidrug Resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1995, 39, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.S.; Sobkowiak, B.; Parreira, R.; Edgeworth, J.D.; Viveiros, M.; Clark, T.G.; Couto, I. Genetic Diversity of NorA, Coding for a Main Efflux Pump of Staphylococcus aureus. Front. Genet. 2019, 9, 710. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, K.L.C.; de Aquino, T.M.; Mendonça Junior, F.J.B. An Update on Staphylococcus aureus NorA Efflux Pump Inhibitors. Curr. Top. Med. Chem. 2020, 20, 2168–2185. [Google Scholar] [CrossRef] [PubMed]
- Kaatz, G.W.; DeMarco, C.E.; Seo, S.M. MepR, a Represser of the Staphylococcus aureus MATE Family Multidrug Efflux Pump MepA, Is a Substrate-Responsive Regulatory Protein. Antimicrob. Agents Chemother. 2006, 50, 1276–1281. [Google Scholar] [CrossRef]
- Schindler, B.D.; Patel, D.; Seo, S.M.; Kaatz, G.W. Mutagenesis and Modeling to Predict Structural and Functional Characteristics of the Staphylococcus aureus MepA Multidrug Efflux Pump. J. Bacteriol. 2013, 195, 523–533. [Google Scholar] [CrossRef]
- Rathi, E.; Kumar, A.; Kini, S.G. Computational Approaches in Efflux Pump Inhibitors: Current Status and Prospects. Drug Discov. Today 2020, 25, 1883–1890. [Google Scholar] [CrossRef]
- Lamut, A.; Peterlin Mašič, L.; Kikelj, D.; Tomašič, T. Efflux Pump Inhibitors of Clinically Relevant Multidrug Resistant Bacteria. Med. Res. Rev. 2019, 39, 2460–2504. [Google Scholar] [CrossRef]
- Singh, R.; Bharti, N.; Madan, J.; Hiremath, S.N. Characterization of Cyclodextrin Inclusion Complexes—A Review. J. Pharm. Sci. Technol. 2010, 2, 171–183. [Google Scholar]
- Santos, A.M.; Carvalho Santana Júnior, C.; Nascimento Júnior, J.A.C.; Andrade, T.d.A.; Shanmugam, S.; Thangaraj, P.; Frank, L.A.; Serafini, M.R. Antibacterial Drugs and Cyclodextrin Inclusion Complexes: A Patent Review. Expert Opin. Drug Deliv. 2023, 20, 349–366. [Google Scholar] [CrossRef]
- Coêlho, M.L.; Ferreira, J.H.L.; de Siqueira Júnior, J.P.; Kaatz, G.W.; Barreto, H.M.; de Carvalho Melo Cavalcante, A.A. Inhibition of the NorA Multi-Drug Transporter by Oxygenated Monoterpenes. Microb. Pathog. 2016, 99, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yue, S.; Xiang, H.; Xie, M. Inclusion Complexes of Eucalyptus Essential Oil with β-Cyclodextrin: Preparation, Characterization and Controlled Release. J. Porous Mater. 2018, 25, 1577–1586. [Google Scholar] [CrossRef]
- Rodríguez-López, M.I.; Mercader-Ros, M.T.; Pellicer, J.A.; Gómez-López, V.M.; Martínez-Romero, D.; Núñez-Delicado, E.; Gabaldón, J.A. Evaluation of Monoterpene-Cyclodextrin Complexes as Bacterial Growth Effective Hurdles. Food Control 2020, 108, 106814. [Google Scholar] [CrossRef]
Property | Value | T⁰ |
---|---|---|
logP | 2.91 | 1.00 |
logD at pH 7.4 | 2.91 | 0.54 |
MW | 148.21 g/mol | 1.00 |
TPSA | 9.23 Å2 | 0.00 |
HBD | 0 | 1.00 |
pKa | −4.82 | 1.00 |
MPO score | 4.54 | |
Pfizer rule | Accepted |
Property | ADMETlab 3.0 | Deep-PK | PreADMET |
---|---|---|---|
Papp,A→B Caco-2 | 3.04 × 10−5 cm/s | 5.20 × 10−5 cm/s | 5.80 × 10−6 cm/s |
Papp,A→B MDCK | 2.31 × 10−5 cm/s | 2.23 × 10−4 cm/s | 1.72 × 10−5 cm/s |
CLint,u | 11.721 mL/min/kg | 6.78 mL/min/kg | - |
P-gp efflux | Non-substrate | Non-substrate | Non-inhibitor |
VD | 2.35 L/kg | 1.62 L/kg | - |
CYP2C9 substrate | Substrate | Non | Non |
CYP2D6 substrate | Substrate | Substrate | Weakly |
CYP3A4 substrate | Non | Non | Non |
Ames Mutagenicity | 0.52 | Safe | Yes |
DILI—Liver injury | 0.38 | Safe | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, R.H.S.d.; Pessoa, R.T.; Silva, E.d.S.; Araujo, I.M.; Gonçalves, S.A.; Rocha, J.E.; Pereira Junior, F.N.; Oliveira, N.C.; Oliveira, V.M.d.; Rocha, M.N.d.; et al. Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction. Pharmaceutics 2024, 16, 1469. https://doi.org/10.3390/pharmaceutics16111469
Costa RHSd, Pessoa RT, Silva EdS, Araujo IM, Gonçalves SA, Rocha JE, Pereira Junior FN, Oliveira NC, Oliveira VMd, Rocha MNd, et al. Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction. Pharmaceutics. 2024; 16(11):1469. https://doi.org/10.3390/pharmaceutics16111469
Chicago/Turabian StyleCosta, Roger Henrique Sousa da, Renata Torres Pessoa, Eduardo dos Santos Silva, Isaac Moura Araujo, Sheila Alves Gonçalves, Janaína Esmeraldo Rocha, Francisco Nascimento Pereira Junior, Naiara Cipriano Oliveira, Victor Moreira de Oliveira, Matheus Nunes da Rocha, and et al. 2024. "Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction" Pharmaceutics 16, no. 11: 1469. https://doi.org/10.3390/pharmaceutics16111469
APA StyleCosta, R. H. S. d., Pessoa, R. T., Silva, E. d. S., Araujo, I. M., Gonçalves, S. A., Rocha, J. E., Pereira Junior, F. N., Oliveira, N. C., Oliveira, V. M. d., Rocha, M. N. d., Marinho, E. S., Kelly Gomes de Carvalho, N., Galberto Martins da Costa, J., Santos, H. S. d., & Menezes, I. R. A. d. (2024). Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction. Pharmaceutics, 16(11), 1469. https://doi.org/10.3390/pharmaceutics16111469