Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of L. plantarum Strains from Oranges
2.3. Taxonomic Identification of the Isolates by 16S rRNA Gene Sequence
2.4. Assessment of In Vitro Antibacterial Activity of Cell-Free Supernatants from L. plantarum Strains
2.5. Assessment of In Vitro Antibacterial Activity of Viable Cells of L. plantarum Strains
2.6. Genome Sequencing of L. plantarum BIA
2.7. Evaluation of Anti-Inflammatory Activity
2.8. Freeze-Drying of L. plantarum BIA
2.9. Cell Viability upon Freeze-Drying
2.10. Polymer Solution Development and Reconstitution of the Freeze-Dried L. plantarum BIA
2.10.1. pH and Viscosity Determination
2.10.2. Mucoadhesive Properties
2.10.2.1. Dripping Test
2.10.2.2. Force of Mucoadhesion
2.11. Stability Study
2.12. Statistical Analysis
3. Results and Discussion
3.1. Taxonomical Identification of the Strains Isolated from Organic Oranges
3.2. Antibacterial Activity of the Isolated Strains and Selection of L. plantarum BIA Strain
3.3. Anti-Inflammatory Activity of L. plantarum BIA
3.4. Genome Features of L. plantarum BIA and Safety Profile
3.5. Selection of the Lyophilization Media
3.6. Characterization of Polymer Solutions
3.7. Characterization of Polymer Solutions upon Reconstitution of the Freeze-Dried Matrix
3.8. Nasal Spray Shelf Life and Probiotic’s Biological Activities upon Formulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natalini, J.G.; Singh, S.; Segal, L.N. The Dynamic Lung Microbiome in Health and Disease. Nat. Rev. Microbiol. 2023, 21, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The Microbiota of the Respiratory Tract: Gatekeeper to Respiratory Health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Jokicevic, K.; Kiekens, S.; Byl, E.; De Boeck, I.; Cauwenberghs, E.; Lebeer, S.; Kiekens, F. Probiotic Nasal Spray Development by Spray Drying. Eur. J. Pharm. Biopharm. 2021, 159, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Guitor, A.K.; Wright, G.D. Antimicrobial Resistance and Respiratory Infections. Chest 2018, 154, 1202–1212. [Google Scholar] [CrossRef]
- Sanders, M.E.; Heimbach, J.T.; Pot, B.; Tancredi, D.J.; Lenoir-Wijnkoop, I.; Lähteenmäki-Uutela, A.; Gueimonde, M.; Bañares, S. Health Claims Substantiation for Probiotic and Prebiotic Products. Gut Microbes 2011, 2, 127–133. [Google Scholar] [CrossRef]
- Echegaray, N.; Yilmaz, B.; Sharma, H.; Kumar, M.; Pateiro, M.; Ozogul, F.; Lorenzo, J.M. A Novel Approach to Lactiplantibacillus Plantarum: From Probiotic Properties to the Omics Insights. Microbiol. Res. 2023, 268, 127289. [Google Scholar] [CrossRef]
- Fendrick, A.M.; Monto, A.S.; Nightengale, B.; Sarnes, M. The Economic Burden of Non–Influenza-Related Viral Respiratory Tract Infection in the United States. Arch. Intern. Med. 2003, 163, 487. [Google Scholar] [CrossRef]
- Gabryszewski, S.J.; Bachar, O.; Dyer, K.D.; Percopo, C.M.; Killoran, K.E.; Domachowske, J.B.; Rosenberg, H.F. Lactobacillus-Mediated Priming of the Respiratory Mucosa Protects against Lethal Pneumovirus Infection. J. Immunol. 2011, 186, 1151–1161. [Google Scholar] [CrossRef]
- Kawase, M.; He, F.; Kubota, A.; Yoda, K.; Miyazawa, K.; Hiramatsu, M. Heat-Killed Lactobacillus Gasseri TMC0356 Protects Mice against Influenza Virus Infection by Stimulating Gut and Respiratory Immune Responses. FEMS Immunol. Med. Microbiol. 2012, 64, 280–288. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.I.; Bae, J.-Y.; Yoo, K.; Kim, H.; Kim, I.-H.; Park, M.-S.; Lee, I. Effects of Heat-Killed Lactobacillus Plantarum against Influenza Viruses in Mice. J. Microbiol. 2018, 56, 145–149. [Google Scholar] [CrossRef]
- Takeda, S.; Takeshita, M.; Kikuchi, Y.; Dashnyam, B.; Kawahara, S.; Yoshida, H.; Watanabe, W.; Muguruma, M.; Kurokawa, M. Efficacy of Oral Administration of Heat-Killed Probiotics from Mongolian Dairy Products against Influenza Infection in Mice: Alleviation of Influenza Infection by Its Immunomodulatory Activity through Intestinal Immunity. Int. Immunopharmacol. 2011, 11, 1976–1983. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Lun, J.; Gao, J.; Gao, X.; Gong, Z.; Wan, Y.; He, X.; Cao, H. Inhibitory Effects of the Lactobacillus Rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4/MyD88/NF-κB Axis. Front. Immunol. 2020, 11, 551449. [Google Scholar] [CrossRef] [PubMed]
- Espírito Santo, C.; Caseiro, C.; Martins, M.J.; Monteiro, R.; Brandão, I. Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients 2021, 13, 1716. [Google Scholar] [CrossRef] [PubMed]
- Lee-Sarwar, K.A.; Kelly, R.S.; Lasky-Su, J.; Zeiger, R.S.; O’Connor, G.T.; Sandel, M.T.; Bacharier, L.B.; Beigelman, A.; Rifas-Shiman, S.L.; Carey, V.J.; et al. Fecal Short-Chain Fatty Acids in Pregnancy and Offspring Asthma and Allergic Outcomes. J. Allergy Clin. Immunol. Pract. 2020, 8, 1100–1102.e13. [Google Scholar] [CrossRef]
- Du, T.; Lei, A.; Zhang, N.; Zhu, C. The Beneficial Role of Probiotic Lactobacillus in Respiratory Diseases. Front. Immunol. 2022, 13, 908010. [Google Scholar] [CrossRef]
- Cammarota, M.; De Rosa, M.; Stellavato, A.; Lamberti, M.; Marzaioli, I.; Giuliano, M. In Vitro Evaluation of Lactobacillus Plantarum DSMZ 12028 as a Probiotic: Emphasis on Innate Immunity. Int. J. Food Microbiol. 2009, 135, 90–98. [Google Scholar] [CrossRef]
- De Vries, M.C.; Vaughan, E.E.; Kleerebezem, M.; De Vos, W.M. Lactobacillus Plantarum—Survival, Functional and Potential Probiotic Properties in the Human Intestinal Tract. Int. Dairy J. 2006, 16, 1018–1028. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration 2023. Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 17 October 2023).
- Tsai, C.-C.; Leu, S.-F.; Huang, Q.-R.; Chou, L.-C.; Huang, C.-C. Safety Evaluation of Multiple Strains of Lactobacillus plantarum and Pediococcus pentosaceus in Wistar Rats Based on the Ames Test and a 28-Day Feeding Study. Sci. World J. 2014, 2014, 928652. [Google Scholar] [CrossRef]
- Coelho-Rocha, N.D.; De Jesus, L.C.L.; Barroso, F.A.L.; Da Silva, T.F.; Ferreira, E.; Gonçalves, J.E.; Dos Santos Martins, F.; De Oliveira Carvalho, R.D.; Barh, D.; Azevedo, V.A.D.C. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus Plantarum Strains. Probiotics Antimicrob. Proteins 2023, 15, 160–174. [Google Scholar] [CrossRef]
- Gholipour, F.; Amini, M.; Baradaran, B.; Mokhtarzadeh, A.; Eskandani, M. Anticancer Properties of Curcumin-Treated Lactobacillus Plantarum against the HT-29 Colorectal Adenocarcinoma Cells. Sci. Rep. 2023, 13, 2860. [Google Scholar] [CrossRef]
- Mohd-Zubri, N.S.; Ramasamy, K.; Abdul-Rahman, N.Z. Characterization and Potential Oral Probiotic Properties of Lactobacillus Plantarum FT 12 and Lactobacillus Brevis FT 6 Isolated from Malaysian Fermented Food. Arch. Oral. Biol. 2022, 143, 105515. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xue, W.; Ding, H.; An, C.; Ma, S.; Liu, Y. Probiotic Potential of Lactobacillus Strains Isolated From Fermented Vegetables in Shaanxi, China. Front. Microbiol. 2022, 12, 774903. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, L.; Wang, J.; Guo, S.; Liu, G.; Chen, X.; Deng, X.; Tu, M.; Tao, Y.; Rao, Y. Antimicrobial Activity against Staphylococcus Aureus and Genome Features of Lactiplantibacillus Plantarum LR-14 from Sichuan Pickles. Arch. Microbiol. 2022, 204, 637. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Cho, H.; Nam, Y.; Park, M.; Lim, A.; Kim, J.-H.; Park, J.; Kim, W. Multifunctional Probiotic and Functional Properties of Lactiplantibacillus plantarum LRCC5314, Isolated from Kimchi. J. Microbiol. Biotechnol. 2022, 32, 72–80. [Google Scholar] [CrossRef]
- Laffleur, F.; Bauer, B. Progress in Nasal Drug Delivery Systems. Int. J. Pharm. 2021, 607, 120994. [Google Scholar] [CrossRef]
- Baral, K.C.; Bajracharya, R.; Lee, S.H.; Han, H.-K. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int. J. Nanomed. 2021, 16, 7535–7556. [Google Scholar] [CrossRef]
- Wang, A.; Zhong, Q. Drying of Probiotics to Enhance the Viability during Preparation, Storage, Food Application, and Digestion: A Review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13287. [Google Scholar] [CrossRef]
- Henriques, P.; Fortuna, A.; Doktorovová, S. Spray Dried Powders for Nasal Delivery: Process and Formulation Considerations. Eur. J. Pharm. Biopharm. 2022, 176, 1–20. [Google Scholar] [CrossRef]
- Parolin, C.; Marangoni, A.; Laghi, L.; Foschi, C.; Ñahui Palomino, R.A.; Calonghi, N.; Cevenini, R.; Vitali, B. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity. PLoS ONE 2015, 10, e0131220. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Modern microbiological methods; Wiley: Chichester, UK; New York, NY, USA, 1991; pp. 115–175. ISBN 978-0-471-92906-2. [Google Scholar]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Parolin, C.; Ñahui Palomino, R.A.; Vitali, B.; Lanciotti, R. Determination of Antibacterial and Technological Properties of Vaginal Lactobacilli for Their Potential Application in Dairy Products. Front. Microbiol. 2017, 8, 166. [Google Scholar] [CrossRef]
- Masiuk, T.; Kadakia, P.; Wang, Z. Development of a Physiologically Relevant Dripping Analytical Method Using Simulated Nasal Mucus for Nasal Spray Formulation Analysis. J. Pharm. Anal. 2016, 6, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Corazza, E.; di Cagno, M.P.; Bauer-Brandl, A.; Abruzzo, A.; Cerchiara, T.; Bigucci, F.; Luppi, B. Drug Delivery to the Brain: In Situ Gelling Formulation Enhances Carbamazepine Diffusion through Nasal Mucosa Models with Mucin. Eur. J. Pharm. Sci. 2022, 179, 106294. [Google Scholar] [CrossRef] [PubMed]
- Flora, M.; Perrotta, F.; Nicolai, A.; Maffucci, R.; Pratillo, A.; Mollica, M.; Bianco, A.; Calabrese, C. Staphylococcus Aureus in Chronic Airway Diseases: An Overview. Respir. Med. 2019, 155, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, Z.; Ghaffari, M. Diagnostic Methods, Clinical Guidelines, and Antibiotic Treatment for Group A Streptococcal Pharyngitis: A Narrative Review. Front. Cell. Infect. Microbiol. 2020, 10, 563627. [Google Scholar] [CrossRef]
- Deshamukhya, C.; Saikia, R.; Das, B.J.; Paul, D.; Dhar, D.; Bhattacharjee, A. Expression of cupA Gene Cluster Responsible for Biofilm Formation in Pseudomonas Aeruginosa Is Enhanced against Subinhibitory Concentration of Carbapenems. Gene Rep. 2022, 26, 101427. [Google Scholar] [CrossRef]
- Hong, J.; Son, M.; Sin, J.; Kim, H.; Chung, D.-K. Nanoparticles of Lactiplantibacillus Plantarum K8 Reduce Staphylococcus aureus Respiratory Infection and Tumor Necrosis Factor Alpha- and Interferon Gamma-Induced Lung Inflammation. Nutrients 2023, 15, 4728. [Google Scholar] [CrossRef]
- Gómez-Mejia, A.; Orlietti, M.; Tarnutzer, A.; Mairpady Shambat, S.; Zinkernagel, A.S. Inhibition of Streptococcus pyogenes Biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024, 9, e00430-24. [Google Scholar] [CrossRef]
- Racanelli, A.C.; Kikkers, S.A.; Choi, A.M.K.; Cloonan, S.M. Autophagy and Inflammation in Chronic Respiratory Disease. Autophagy 2018, 14, 221–232. [Google Scholar] [CrossRef]
- Hwang, J.H.; Ma, J.N.; Park, J.H.; Jung, H.W.; Park, Y.-K. Anti-Inflammatory and Antioxidant Effects of MOK, a Polyherbal Extract, on Lipopolysaccharide-stimulated RAW 264.7 Macrophages. Int. J. Mol. Med. 2019, 43, 26–36. [Google Scholar] [CrossRef]
- Dziarski, R.; Gupta, D. Review: Mammalian Peptidoglycan Recognition Proteins (PGRPs) in Innate Immunity. Innate Immun. 2010, 16, 168–174. [Google Scholar] [CrossRef]
- Tomosada, Y.; Chiba, E.; Zelaya, H.; Takahashi, T.; Tsukida, K.; Kitazawa, H.; Alvarez, S.; Villena, J. Nasally Administered Lactobacillus Rhamnosus Strains Differentially Modulate Respiratory Antiviral Immune Responses and Induce Protection against Respiratory Syncytial Virus Infection. BMC Immunol. 2013, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Z.; Zhao, L.; Zhao, Y.; Yang, G.; Wang, C.; Gao, L.; Niu, C.; Li, S. Lactobacillus plantarum DP189 Reduces α-SYN Aggravation in MPTP-Induced Parkinson’s Disease Mice via Regulating Oxidative Damage, Inflammation, and Gut Microbiota Disorder. J. Agric. Food Chem. 2022, 70, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.-N.; Lee, D.-H.; Lee, Y.-N.; Park, J.-K.; Yuk, S.-S.; Yang, S.-Y.; Lee, H.-J.; Woo, S.-H.; Kim, H.-M.; Lee, J.-B.; et al. Intranasal Administration of Live Lactobacillus Species Facilitates Protection against Influenza Virus Infection in Mice. Antivir. Res. 2012, 93, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Zelaya, H.; Tada, A.; Vizoso-Pinto, M.G.; Salva, S.; Kanmani, P.; Agüero, G.; Alvarez, S.; Kitazawa, H.; Villena, J. Nasal Priming with Immunobiotic Lactobacillus Rhamnosus Modulates Inflammation–Coagulation Interactions and Reduces Influenza Virus-Associated Pulmonary Damage. Inflamm. Res. 2015, 64, 589–602. [Google Scholar] [CrossRef]
- Anderssen, E.L.; Diep, D.B.; Nes, I.F.; Eijsink, V.G.; Nissen-Meyer, J. Antagonistic Activity of Lactobacillus Plantarum C11: Two New Two-Peptide Bacteriocins, Plantaricins EF and JK, and the Induction Factor Plantaricin A. Appl. Environ. Microbiol. 1998, 64, 2269–2272. [Google Scholar] [CrossRef]
- Diep, D.B.; Håvarstein, L.S.; Nes, I.F. Characterization of the Locus Responsible for the Bacteriocin Production in Lactobacillus Plantarum C11. J. Bacteriol. 1996, 178, 4472–4483. [Google Scholar] [CrossRef]
- O’Shea, E.F.; O’Connor, P.M.; O’Sullivan, O.; Cotter, P.D.; Ross, R.P.; Hill, C. Bactofencin A, a New Type of Cationic Bacteriocin with Unusual Immunity. mBio 2013, 4, e00498-e13. [Google Scholar] [CrossRef]
- Corcoran, B.; Stanton, C.; Fitzgerald, G.; Ross, R. Life Under Stress: The Probiotic Stress Response and How It May Be Manipulated. Curr. Pharm. Des. 2008, 14, 1382–1399. [Google Scholar] [CrossRef]
- Isaac, S.L.; Abdul Malek, A.Z.; Hazif, N.S.; Roslan, F.S.; Mohd Hashim, A.; Song, A.A.-L.; Abdul Rahim, R.; Wan Nur Ismah, W.A.K. Genome Mining of Lactiplantibacillus Plantarum PA21: Insights into Its Antimicrobial Potential. BMC Genom. 2024, 25, 571. [Google Scholar] [CrossRef]
- Goel, A.; Halami, P.M.; Tamang, J.P. Genome Analysis of Lactobacillus Plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes. Front. Microbiol. 2020, 11, 40. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, N.; Liu, Z.; Chen, X.; Li, M.; Fu, T.; Zhang, D.; Zhao, C. Genome-Assisted Probiotic Characterization and Application of Lactiplantibacillus Plantarum 18 as a Candidate Probiotic for Laying Hen Production. Microorganisms 2023, 11, 2373. [Google Scholar] [CrossRef] [PubMed]
- Huidrom, S.; Ngashangva, N.; Khumlianlal, J.; Sharma, K.C.; Mukherjee, P.K.; Devi, S.I. Genomic Insights from Lactiplantibacillus Plantarum BRD3A Isolated from Atingba, a Traditional Fermented Rice-Based Beverage and Analysis of Its Potential for Probiotic and Antimicrobial Activity against Methicillin-Resistant Staphylococcus Aureus. Front. Microbiol. 2024, 15, 1357818. [Google Scholar] [CrossRef] [PubMed]
- Van Kranenburg, R.; Golic, N.; Bongers, R.; Leer, R.J.; De Vos, W.M.; Siezen, R.J.; Kleerebezem, M. Functional Analysis of Three Plasmids from Lactobacillus plantarum. Appl. Environ. Microbiol. 2005, 71, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Jie, L.; Zhang, H.; Zhang, J.; Jin, J.; Liu, H.; Xie, Y. Characterization of Four Novel Plasmids from Lactobacillus Plantarum BM4. Jundishapur J. Microbiol. 2017, 10, 12894. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Li, P.; Feng, X.; Mao, Z.; Wei, J.; Lin, X.; Li, X.; Wang, L. Exploring the Protective Effects of Freeze-Dried Lactobacillus Rhamnosus under Optimized Cryoprotectants Formulation. LWT 2023, 173, 114295. [Google Scholar] [CrossRef]
- Gao, X.; Kong, J.; Zhu, H.; Mao, B.; Cui, S.; Zhao, J. Lactobacillus, Bifidobacterium and Lactococcus Response to Environmental Stress: Mechanisms and Application of Cross-protection to Improve Resistance against Freeze-drying. J. Appl. Microbiol. 2022, 132, 802–821. [Google Scholar] [CrossRef]
- Ge, S.; Han, J.; Sun, Q.; Zhou, Q.; Ye, Z.; Li, P.; Gu, Q. Research Progress on Improving the Freeze-Drying Resistance of Probiotics: A Review. Trends Food Sci. Technol. 2024, 147, 104425. [Google Scholar] [CrossRef]
- Oluwatosin, S.O.; Tai, S.L.; Fagan-Endres, M.A. Sucrose, Maltodextrin and Inulin Efficacy as Cryoprotectant, Preservative and Prebiotic—Towards a Freeze Dried Lactobacillus Plantarum Topical Probiotic. Biotechnol. Rep. 2022, 33, e00696. [Google Scholar] [CrossRef]
- Pires, P.C.; Rodrigues, M.; Alves, G.; Santos, A.O. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022, 14, 588. [Google Scholar] [CrossRef]
- Sailer, M.M.; Köllmer, M.; Masson, B.; Fais, F.; Hohenfeld, I.P.; Herbig, M.E.; Koitschev, A.K.; Becker, S. Nasal Residence Time and Rheological Properties of a New Bentonite-Based Thixotropic Gel Emulsion Nasal Spray—AM-301. Drug Dev. Ind. Pharm. 2023, 49, 103–114. [Google Scholar] [CrossRef]
- Patterlini, V.; Guareschi, F.; D’Angelo, D.; Baldini, S.; Meto, S.; Mostafa Kamal, D.; Fabrizzi, P.; Buttini, F.; Mösges, R.; Sonvico, F. Clinically Relevant Characterization and Comparison of Ryaltris and Other Anti-Allergic Nasal Sprays. Pharmaceutics 2024, 16, 989. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.P.; Lansley, A.B. Nasal drug delivery. In Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 5th ed.; Aulton, M.E., Taylor, K., Eds.; Elsevier: Edinburgh, UK, 2018; pp. 671–688. ISBN 978-0-7020-7005-1. [Google Scholar]
- De Boeck, I.; Van Den Broek, M.F.L.; Allonsius, C.N.; Spacova, I.; Wittouck, S.; Martens, K.; Wuyts, S.; Cauwenberghs, E.; Jokicevic, K.; Vandenheuvel, D.; et al. Lactobacilli Have a Niche in the Human Nose. Cell Rep. 2020, 31, 107674. [Google Scholar] [CrossRef] [PubMed]
- Spacova, I.; Petrova, M.I.; Fremau, A.; Pollaris, L.; Vanoirbeek, J.; Ceuppens, J.L.; Seys, S.; Lebeer, S. Intranasal Administration of Probiotic Lactobacillus rhamnosus GG Prevents Birch Pollen-induced Allergic Asthma in a Murine Model. Allergy 2019, 74, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important Step towards the Development of Novel Pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Kamil, R.Z.; Yanti, R.; Murdiati, A.; Juffrie, M.; Rahayu, E.S. Microencapsulation of Indigenous Probiotic Lactobacillus Plantarum Dad-13 by Spray and Freeze-Drying: Strain-Dependent Effect and Its Antibacterial Property. Food Res. 2020, 4, 2181–2189. [Google Scholar] [CrossRef]
- Silva, J.; Carvalho, A.S.; Teixeira, P.; Gibbs, P.A. Bacteriocin Production by Spray-Dried Lactic Acid Bacteria. Lett. Appl. Microbiol. 2002, 34, 77–81. [Google Scholar] [CrossRef]
- Layús, B.I.; Gerez, C.L.; Rodriguez, A.V. Development of an Ophthalmic Formulation with a Postbiotic of Lactiplantibacillus Plantarum CRL 759. Benef. Microbes 2022, 13, 417–426. [Google Scholar] [CrossRef]
Lyophilization Media | Excipients (% w/v) | |||||
---|---|---|---|---|---|---|
SK | FOS | AA | LCT | YE | IN | |
LM0 | 10 | 0.1 | 0.5 | 0.5 | ||
LM1 | 10 | 0.1 | 0.5 | 0.5 | ||
LM2 | 0.1 | 0.5 | 0.5 | 10 | ||
LM3 | 10 | 0.1 | 0.5 | 0.5 | ||
LM4 | 10 | 0.1 | 0.5 |
E. coli ATCC 11105 | S. aureus ATCC 292113 | B. subtilis ATCC 31324 | P. aeruginosa ATCC 10145 | S. pyogenes DSMZ 0565 | |
---|---|---|---|---|---|
L. plantarum BIA | ++ | ++ | ++ | +++ | ++ |
L. plantarum BIA1 | ++ | + | ++ | +++ | ++ |
L. plantarum BEA | ++ | + | ++ | +++ | ++ |
L. plantarum BEA1 | ++ | ++ | ++ | +++ | ++ |
Days | E. coli ATCC 11105 | S. aureus ATCC 292113 | B. subtilis ATCC 31324 | P. aeruginosa ATCC 10145 | S. pyogenes DSMZ 0565 | HPMC-HV 1% | |
---|---|---|---|---|---|---|---|
LM1 | 0 | ++ | ++ | ++ | ++ | ++ | - |
90 | ++ | ++ | ++ | +++ | ++ | - | |
LM4 | 0 | ++ | ++ | ++ | +++ | +++ | - |
90 | +++ | ++ | ++ | +++ | ++ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corazza, E.; Pizzi, A.; Parolin, C.; Giordani, B.; Abruzzo, A.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Vitali, B. Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity. Pharmaceutics 2024, 16, 1470. https://doi.org/10.3390/pharmaceutics16111470
Corazza E, Pizzi A, Parolin C, Giordani B, Abruzzo A, Bigucci F, Cerchiara T, Luppi B, Vitali B. Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity. Pharmaceutics. 2024; 16(11):1470. https://doi.org/10.3390/pharmaceutics16111470
Chicago/Turabian StyleCorazza, Elisa, Asia Pizzi, Carola Parolin, Barbara Giordani, Angela Abruzzo, Federica Bigucci, Teresa Cerchiara, Barbara Luppi, and Beatrice Vitali. 2024. "Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity" Pharmaceutics 16, no. 11: 1470. https://doi.org/10.3390/pharmaceutics16111470
APA StyleCorazza, E., Pizzi, A., Parolin, C., Giordani, B., Abruzzo, A., Bigucci, F., Cerchiara, T., Luppi, B., & Vitali, B. (2024). Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity. Pharmaceutics, 16(11), 1470. https://doi.org/10.3390/pharmaceutics16111470