Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of “Liquid” Cisplatin via Rapid Expansion of Supercritical Solvents (RESS) Process
2.2. Characterization of “Liquid” Cisplatin
2.3. Liquid In Situ TEM Imaging of “Liquid” Cisplatin
2.4. In Vitro Studies
3. Results and Discussion
3.1. Preparation and Characterization of “Liquid” Cisplatin
3.2. Liquid TEM Analysis of “Liquid” Cisplatin
3.3. Cell Viability and Apoptosis Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer Treatment and Survivorship Statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Petsko, G.A. Heavy Metal Revival. Nature 1995, 377, 580–581. [Google Scholar] [CrossRef]
- Kelland, L. The Resurgence of Platinum-Based Cancer Chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Lippard, S.J. New Chemistry of an Old Molecule: Cis-[Pt(NH3) 2Cl2]. Science 1982, 218, 1075–1082. [Google Scholar] [CrossRef]
- Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Brown, A.; Kumar, S.; Tchounwou, P.B. Cisplatin-Based Chemotherapy of Human Cancers. J. Cancer Sci. Ther. 2019, 11, 97. [Google Scholar]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Amable, L. Cisplatin Resistance and Opportunities for Precision Medicine. Pharmacol. Res. 2016, 106, 27–36. [Google Scholar] [CrossRef]
- Brock, P.R.; Knight, K.R.; Freyer, D.R.; Campbell, K.C.M.; Steyger, P.S.; Blakley, B.W.; Rassekh, S.R.; Chang, K.W.; Fligor, B.J.; Rajput, K.; et al. Platinum-Induced Ototoxicity in Children: A Consensus Review on Mechanisms, Predisposition, and Protection, Including a New International Society of Pediatric Oncology Boston Ototoxicity Scale. J. Clin. Oncol. 2012, 30, 2408–2417. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Eshaghi, M.M.; Rahmani, E.; Ajalli, N.; Bakhshi, S.; Mirkhaef, H.; Lasemi, M.V.; Rahdar, A.; Behzadmehr, R.; Díez-Pascual, A.M. Cisplatin-Loaded Nanoformulations for Cancer Therapy: A Comprehensive Review. J. Drug Deliv. Sci. Technol. 2022, 77, 103928. [Google Scholar] [CrossRef]
- Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of Adverse Effects of Cisplatin Administration in Patients Affected by Solid Tumours: A Retrospective Evaluation. Oncol. Rep. 2013, 29, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Matsumoto, D.; Nakayama, T.; Shimazaki, Y.; Sagara, A.; Kanehira, D.; Azechi, T.; Sato, F.; Sakai, H.; Yumoto, T.; et al. Effect of Different Shielding Conditions on the Stability of Cisplatin. J. Pharm. Health Care Sci. 2020, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Cheriyamundath, S.; Madassery, J. Dimethyl Sulfoxide Inactivates the Anticancer Effect of Cisplatin against Human Myelogenous Leukemia Cell Lines in in Vitro Assays. Indian J. Pharmacol. 2015, 47, 322–324. [Google Scholar]
- Kasan, R.; Seiffe, M.; Yellin, H. Stable Aqueous Cisplatin Solutions. U.S. Patent Application No. US07/228,521, 26 December 1989. [Google Scholar]
- Greene, R.F.; Chatterji, D.C.; Hiranaka, P.K.; Gallelli, J.F. Stability of Cisplatin in Aqueous Solution. Am. J. Hosp. Pharm. 1979, 36, 38–43. [Google Scholar] [CrossRef]
- Karbownik, A.; Szaełk, E.; Urjasz, H.; Geł̧boka, A.; Mierzwa, E.; Grzesḱowiak, E. The Physical and Chemical Stability of Cisplatin (Teva) in Concentrate and Diluted in Sodium Chloride 0.9%. Wspolczesna Onkol. 2012, 16, 435–439. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jagannathan, R. High Throughput RESS Processing of Sub-10nm Ibuprofen Nanoparticles. J. Supercrit. Fluids 2016, 109, 74–79. [Google Scholar] [CrossRef]
- Jung, J.; Perrut, M. Particle Design Using Supercritical Fluids: Literature and Patent Survey. J. Supercrit. Fluids 2001, 20, 179–219. [Google Scholar] [CrossRef]
- Sharma, S.K.; Al Hosani, S.; Kalmouni, M.; Nair, A.R.; Palanikumar, L.; Pasricha, R.; Sadler, K.C.; Magzoub, M.; Jagannathan, R. Supercritical CO2 Processing Generates Aqueous Cisplatin Solutions with Enhanced Cancer Specificity. ACS Omega 2020, 5, 4558–4567. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mohan, S. Influence of Annealing on Structural, Morphological, Compositional and Surface Properties of Magnetron Sputtered Nickel-Titanium Thin Films. Appl. Surf. Sci. 2013, 282, 492–498. [Google Scholar] [CrossRef]
- Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-Carboxymethoxyphenyl)-2-(4,5-Dimethylthiazolyl)-3-(4-Sulfophenyl)Te Trazolium, Inner Salt (MTS) and Related Analogs of 3-(4,5-Dimethylthiazolyl)-2,5-Diphenyltetrazolium Bromide (MTT) Reducing to Purple Water-Soluble Formazans As Cell-Viability Indica. Bioorganic Med. Chem. Lett. 1991, 1, 611–614. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S. Characterization of the Cellular Reduction of 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Saleh, H.O.; Magzoub, M. Hexokinase II-Derived Cell-Penetrating Peptide Mediates Delivery of MicroRNA Mimic for Cancer-Selective Cytotoxicity. Biochemistry 2020, 59, 2259–2273. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Koopman, G.; Reutelingsperger, C.P.M.; Kuijten, G.A.M.; Keehnen, R.M.J.; Pals, S.T.; Van Oers, M.H.J. Annexin V for Flow Cytometric Detection of Phosphatidylserine Expression on B Cells Undergoing Apoptosis. Blood 1994, 84, 1415–1420. [Google Scholar] [CrossRef]
- Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V.P.; Ali, L.; Pasricha, R.; Barrera, F.N.; Magzoub, M. PH-Responsive High Stability Polymeric Nanoparticles for Targeted Delivery of Anticancer Therapeutics. Commun. Biol. 2020, 3, 95. [Google Scholar] [CrossRef]
- Palanikumar, L.; Karpauskaite, L.; Al-Sayegh, M.; Chehade, I.; Alam, M.; Hassan, S.; Maity, D.; Ali, L.; Kalmouni, M.; Hunashal, Y.; et al. Protein Mimetic Amyloid Inhibitor Potently Abrogates Cancer-Associated Mutant P53 Aggregation and Restores Tumor Suppressor Function. Nat. Commun. 2021, 12, 3962. [Google Scholar] [CrossRef]
- Palanikumar, L.; Kalmouni, M.; Houhou, T.; Abdullah, O.; Ali, L.; Pasricha, R.; Straubinger, R.; Thomas, S.; Afzal, A.J.; Barrera, F.N.; et al. PH-Responsive Upconversion Mesoporous Silica Nanospheres for Combined Multimodal Diagnostic Imaging and Targeted Photodynamic and Photothermal Cancer Therapy. ACS Nano 2023, 17, 18979–18999. [Google Scholar] [CrossRef]
- Araujo, J.R.; Archanjo, B.S.; de Souza, K.R.; Kwapinski, W.; Falcão, N.P.S.; Novotny, E.H.; Achete, C.A. Selective Extraction of Humic Acids from an Anthropogenic Amazonian Dark Earth and from a Chemically Oxidized Charcoal. Biol. Fertil. Soils 2014, 50, 1223–1232. [Google Scholar] [CrossRef]
- Tuschel, D. Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes. Spectroscopy 2014, 29, 14. [Google Scholar]
- Munaweera, I.; Shi, Y.; Koneru, B.; Patel, A.; Dang, M.H.; Di Pasqua, A.J.; Balkus, K.J. Nitric Oxide- and Cisplatin-Releasing Silica Nanoparticles for Use against Non-Small Cell Lung Cancer. J. Inorg. Biochem. 2015, 153, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Poy, D.; Akbarzadeh, A.; Ebrahimi Shahmabadi, H.; Ebrahimifar, M.; Farhangi, A.; Farahnak Zarabi, M.; Akbari, A.; Saffari, Z.; Siami, F. Preparation, Characterization, and Cytotoxic Effects of Liposomal Nanoparticles Containing Cisplatin: An in Vitro Study. Chem. Biol. Drug Des. 2016, 88, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Khan, S.; Duplanty, M.; Lozano, H.C.; Morris, T.J.; Nguyen, T.; Rostovtsev, Y.V.; Deyonker, N.J.; Mirsaleh-Kohan, N. Raman and Infrared Studies of Platinum-Based Drugs: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, and Heptaplatin. J. Phys. Chem. A 2018, 122, 6934–6952. [Google Scholar] [CrossRef]
- Parhizkar, M.; Reardon, P.J.T.; Harker, A.H.; Browning, R.J.; Stride, E.; Pedley, R.B.; Knowles, J.C.; Edirisinghe, M.; Torres, M.; Khan, S.; et al. Enhanced Efficacy in Drug-Resistant Cancer Cells through Synergistic Nanoparticle Mediated Delivery of Cisplatin and Decitabine. Nanoscale Adv. 2020, 2, 1177–1186. [Google Scholar] [CrossRef]
- Li, Q.; Shu, Y. Pharmacological Modulation of Cytotoxicity and Cellular Uptake of Anti-Cancer Drugs by PDE5 Inhibitors in Lung Cancer Cells. Pharm. Res. 2014, 31, 86–96. [Google Scholar] [CrossRef]
- Kumar, A.; Naaz, A.; Prakasham, A.P.; Gangwar, M.K.; Butcher, R.J.; Panda, D.; Ghosh, P. Potent Anticancer Activity with High Selectivity of a Chiral Palladium N-Heterocyclic Carbene Complex. ACS Omega 2017, 2, 4632–4646. [Google Scholar] [CrossRef]
- Tardito, S.; Isella, C.; Medico, E.; Marchiò, L.; Bevilacqua, E.; Hatzoglou, M.; Bussolati, O.; Franchi-Gazzola, R. The Thioxotriazole Copper (II) Complex A0 Induces Endoplasmic Reticulum Stress and Paraptotic Death in Human Cancer Cells. J. Biol. Chem. 2009, 284, 24306–24319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.K.; Palanikumar, L.; Pasricha, R.; Prakasam, T.; Magzoub, M.; Jagannathan, R. Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process. Pharmaceutics 2024, 16, 1471. https://doi.org/10.3390/pharmaceutics16111471
Sharma SK, Palanikumar L, Pasricha R, Prakasam T, Magzoub M, Jagannathan R. Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process. Pharmaceutics. 2024; 16(11):1471. https://doi.org/10.3390/pharmaceutics16111471
Chicago/Turabian StyleSharma, Sudhir Kumar, Loganathan Palanikumar, Renu Pasricha, Thirumurugan Prakasam, Mazin Magzoub, and Ramesh Jagannathan. 2024. "Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process" Pharmaceutics 16, no. 11: 1471. https://doi.org/10.3390/pharmaceutics16111471
APA StyleSharma, S. K., Palanikumar, L., Pasricha, R., Prakasam, T., Magzoub, M., & Jagannathan, R. (2024). Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process. Pharmaceutics, 16(11), 1471. https://doi.org/10.3390/pharmaceutics16111471