Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO2-SAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Preparation
2.2.1. Synthesis of Thermosensitive Hydrogels
2.2.2. Synthesis of Linear pVCL
2.2.3. Fabrication of p-VCL@ICA Nanoparticles Using CO2 Supercritical SAS Technology
2.3. Methods for Material Characterization
2.3.1. Hydrogel Characterization
2.3.2. pVCL@ICA NPs Characterization
2.4. In Vitro Drug Release
2.5. Biological Evaluation
2.5.1. Preparation of Materials before Cell Evaluation
2.5.2. Cell Culture
2.5.3. Methodology for Thermal Cell Sheet Detachment
2.5.4. Metabolic Activity and Alamar Blue Assay
2.5.5. Collagen Secretion and PicroSirius Red Staining
2.5.6. Statistical Analysis
3. Results and Discussion
3.1. Preparation, Characterization, and Cell Response Study of OH-Functionalized Hydrogels
3.2. Encapsulation of Icariin in Linear pVCL by Supercritical CO2-SAS Technology
3.3. Icariin In Vitro Release
3.4. Osteoblastic Cell Sheet Transplants from pVCL Hydrogels Activated with ICA-NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feinberg, A.W. Engineered Tissue Grafts: Opportunities and Challenges in Regenerative Medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 207–220. [Google Scholar] [CrossRef]
- García-Sobrino, R.; Muñoz, M.; Rodríguez-Jara, E.; Rams, J.; Torres, B.; Cifuentes, S.C. Bioabsorbable Composites Based on Polymeric Matrix (PLA and PCL) Reinforced with Magnesium (Mg) for Use in Bone Regeneration Therapy: Physicochemical Properties and Biological Evaluation. Polymers 2023, 15, 4667. [Google Scholar] [CrossRef]
- Nakamura, A.; Akahane, M.; Shigematsu, H.; Tadokoro, M.; Morita, Y.; Ohgushi, H.; Dohi, Y.; Imamura, T.; Tanaka, Y. Cell Sheet Transplantation of Cultured Mesenchymal Stem Cells Enhances Bone Formation in a Rat Nonunion Model. Bone 2010, 46, 418–424. [Google Scholar] [CrossRef]
- Civantos, A.; Martinez-Campos, E.; Nash, M.E.; Gallardo, A.; Ramos, V.; Aranaz, I. Polymeric and Non-Polymeric Platforms for Cell Sheet Detachment. Adv. Mater. Interfaces 2016, 13, 463–495. [Google Scholar] [CrossRef]
- Lin, F.; Li, Y.; Cui, W. Injectable Hydrogel Microspheres in Cartilage Repair. Biomed. Technol. 2023, 1, 18–29. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, Z.; Zhuang, P.; Li, F.; Cui, W.; Li, Z. Living Probiotic Biomaterials for Osteoporosis Therapy. Biomed. Technol. 2023, 1, 52–64. [Google Scholar] [CrossRef]
- Li, C.; Cui, W. 3D Bioprinting of Cell-Laden Constructs for Regenerative Medicine. Eng. Regen. 2021, 2, 195–205. [Google Scholar] [CrossRef]
- Zheng, W.; Meng, Z.; Zhu, Z.; Wang, X.; Xu, X.; Zhang, Y.; Luo, Y.; Liu, Y.; Pei, X. Metal–Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. Small 2024, e2310622. [Google Scholar] [CrossRef]
- Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly(N-Isopropylacrylamide)-Based Thermoresponsive Surfaces Provide New Types of Biomedical Applications. Biomaterials 2018, 153, 27–48. [Google Scholar] [CrossRef]
- Martínez-Campos, E.; Santos-Coquillat, A.; Pérez-Ojeda, M.E.; Civantos, A.; Elvira, C.; Reinecke, H.; García, C.; Ramos, V.; Rodríguez-Hernández, J.; Gallardo, A. Thermosensitive Hydrogel Platforms with Modulated Ionic Load for Optimal Cell Sheet Harvesting. Eur. Polym. J. 2018, 103, 400–409. [Google Scholar] [CrossRef]
- García-Sobrino, R.; Lago, E.; Goñi, C.; Ramos, V.; García, C.; Reinecke, H.; Elvira, C.; Rodríguez-Hernández, J.; Gallardo, A.; Martínez-Campos, E. Fabrication of 3D Cylindrical Thermosensitive Hydrogels as Supports for Cell Culture and Detachment of Tubular Cell Sheets. Biomater. Adv. 2023, 144, 213210. [Google Scholar] [CrossRef]
- Samal, S.K.; Dash, M.; Dubruel, P.; Van Vlierberghe, S. Smart Polymer Hydrogels: Properties, Synthesis and Applications; Woodhead Publishing Limited: Sawston, UK, 2014. [Google Scholar] [CrossRef]
- Nash, M.E.; Healy, D.; Carroll, W.M.; Elvira, C.; Rochev, Y.A. Cell and Cell Sheet Recovery from PNIPAm Coatings; Motivation and History to Present Day Approaches. J. Mater. Chem. 2012, 22, 19376–19389. [Google Scholar] [CrossRef]
- Kobayashi, J.; Kikuchi, A.; Aoyagi, T.; Okano, T. Cell Sheet Tissue Engineering: Cell Sheet Preparation, Harvesting/Manipulation, and Transplantation. J. Biomed. Mater. Res. Part A 2019, 107, 955–967. [Google Scholar] [CrossRef] [PubMed]
- García-Sobrino, R.; Casado-Losada, I.; Bruno-Pérez, L.; García, C.; Reinecke, H.; Elvira, C.; Rodríguez-Hernández, J.; Gallardo, A.; Martínez-Campos, E. Thermosensitive Hydrogels Functionalized with PH Sensitive COOH Groups for Bone Cell Harvesting. Eur. Polym. J. 2022, 169, 111131. [Google Scholar] [CrossRef]
- García-Sobrino, R.; Ruiz-Blas, I.; García, C.; Reinecke, H.; Elvira, C.; Rodríguez-Hernández, J.; Martínez-Campos, E.; Gallardo, A. Hydrogels with Dual Sensitivity to Temperature and PH in Physiologically Relevant Ranges as Supports for Versatile Controlled Cell Detachment. Biomater. Adv. 2024, 159, 213826. [Google Scholar] [CrossRef] [PubMed]
- García-Sobrino, R.; García, C.; Liz-Basteiro, P.; Reinecke, H.; Elvira, C.; Rodríguez-Hernández, J.; Martínez-Campos, E.; Gallardo, A. Cell Harvesting on Robust Smart Thermosensitive Pseudo-Double Networks Prepared by One-Step Procedure. Eur. Polym. J. 2024, 209, 112925. [Google Scholar] [CrossRef]
- Huang, H.; Qi, X.; Chen, Y.; Wu, Z. Thermo-Sensitive Hydrogels for Delivering Biotherapeutic Molecules: A Review. Saudi Pharm. J. 2019, 27, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, Y.; Li, Y.; Tang, C.; He, P.; Liu, X.; Yao, J.; Chu, C.; Xu, B. NIR-Responsive Injectable Magnesium Phosphate Bone Cement Loaded with Icariin Promotes Osteogenesis. J. Mech. Behav. Biomed. Mater. 2024, 150, 106256. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Liu, N.; Xiao, Y.; Liu, Y.; Yan, C.; Wang, G.; Jing, X. In Vitro and In Vivo Osteogenesis Induced by Icariin and Bone Morphogenetic Protein-2: A Dynamic Observation. Front. Pharmacol. 2020, 11, 1058. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Thote, A.J.; Gupta, R.B. Formation of Nanoparticles of a Hydrophilic Drug Using Supercritical Carbon Dioxide and Microencapsulation for Sustained Release. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Filmon, R.; Grizon, F.; Baslé, M.F.; Chappard, D. Effects of Negatively Charged Groups (Carboxymethyl) on the Calcification of Poly(2-Hydroxyethyl Methacrylate). Biomaterials 2002, 23, 3053–3059. [Google Scholar] [CrossRef] [PubMed]
- Klecker, C.; Nair, L.S. Chapter 13—Matrix Chemistry Controlling Stem Cell Behavior; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Sharma, A.; Ashfaq Alvi, M.A.; Raju, R.; Glomm, W.R. A Robust Method to Calculate the Volume Phase Transition Temperature (VPTT) for Hydrogels and Hybrids. RSC Adv. 2017, 7, 53192–53202. [Google Scholar] [CrossRef]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Boutris, C.; Chatzi, E.G.; Kiparissides, C. Characterization of the LCST Behaviour of Aqueous Poly(N-Isopropylacrylamide) Solutions by Thermal and Cloud Point Techniques. Polymer 1997, 38, 2567–2570. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Cao, X.; Zhao, Y. Developing Conductive Hydrogels for Biomedical Applications. Smart Med. 2024, 3, e20230023. [Google Scholar] [CrossRef]
- Yang, S.; Wang, F.; Han, H.; Santos, H.A.; Zhang, Y.; Zhang, H.; Wei, J.; Cai, Z. Fabricated Technology of Biomedical Micro-Nano Hydrogel. Biomed. Technol. 2023, 2, 31–48. [Google Scholar] [CrossRef]
- Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. Phema: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Terao, K. Synthesis and phase behavior of aqueous poly(N-isopropylacrylamide-co-acrylamide), poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate). Colloid Polym. Sci. 2006, 284, 1001–1007. [Google Scholar] [CrossRef]
- Cortez-lemus, N.A.; Licea-claverie, A. Progress in Polymer Science Poly (N-Vinylcaprolactam), a Comprehensive Review on a Thermoresponsive Polymer Becoming Popular. Prog. Polym. Sci. 2016, 53, 1–51. [Google Scholar] [CrossRef]
- Lishchynskyi, O.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Orzechowska, B.; Abalymov, A.; Skirtach, A.G.; Bernasik, A.; Nastyshyn, S.; Budkowski, A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive Poegma Coatings with Embedded Caco3 Nanoparticles on Different Cell Lines. Materials 2021, 14, 1417. [Google Scholar] [CrossRef] [PubMed]
- Prosapio, V.; Reverchon, E.; De Marco, I. Formation of PVP/Nimesulide Microspheres by Supercritical Antisolvent Coprecipitation. J. Supercrit. Fluids 2016, 118, 19–26. [Google Scholar] [CrossRef]
- Abuzar, S.M.; Hyun, S.M.; Kim, J.H.; Park, H.J.; Kim, M.S.; Park, J.S.; Hwang, S.J. Enhancing the Solubility and Bioavailability of Poorly Water-Soluble Drugs Using Supercritical Antisolvent (SAS) Process. Int. J. Pharm. 2018, 538, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zahran, F.; Morère, J.; Cabañas, A.; Renuncio, J.A.R.; Pando, C. Role of Excess Molar Enthalpies in Supercritical Antisolvent Micronizations Using Dimethylsulfoxide as the Polar Solvent. J. Supercrit. Fluids 2011, 60, 45–50. [Google Scholar] [CrossRef]
- Wang, J.; Wen, L.; Jiang, Y.; Zhu, H.; Sun, W.; Dai, G.; Yang, B. Structure, Bioavailability and Physicochemical Properties of Icariin-Soymilk Nanoparticle. Food Sci. Hum. Wellness 2024, 13, 972–981. [Google Scholar] [CrossRef]
- Icariin Product Information. Item No: 13624. Cayman Chemical. Available online: https://www.caymanchem.com/ (accessed on 1 May 2024).
- Cui, P.F.; Zhuang, W.R.; Hu, X.; Xing, L.; Yu, R.Y.; Qiao, J.B.; He, Y.J.; Li, F.; Ling, D.; Jiang, H.L. A New Strategy for Hydrophobic Drug Delivery Using a Hydrophilic Polymer Equipped with Stacking Units. Chem. Commun. 2018, 54, 8218–8221. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Shariff, S.H.; Daik, R.; Haris, M.S.; Ismail, M.W. Hydrophobic Drug Carrier from Polycaprolactone-b-Poly(Ethylene Glycol) Star-Shaped Polymers Hydrogel Blend as Potential for Wound Healing Application. Polymers 2023, 15, 2072. [Google Scholar] [CrossRef]
- Quarles, L.D.; Yohay, D.A.; Lever, L.W.; Caton, R.; Wenstrup, R.J. Distinct Proliferative and Differentiated Stages of Murine MC3T3-E1 Cells in Culture: An in Vitro Model of Osteoblast Development. J. Bone Miner. Res. 1992, 7, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Yang, X.; Tan, S.; Song, L. Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-Osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers. Sci. Rep. 2017, 7, 12549. [Google Scholar] [CrossRef]
Label | HEMA in Feed (Molar%) | VPTT (°C) | Swelling Ratio at (°C) | TOT (°C) | Transmittance (%) at (°C) | |||
---|---|---|---|---|---|---|---|---|
10 | 37 | 55 | 25 | 37 | ||||
0−HEMA | 0-control | 35 | 8.21 ± 0.30 | 1.35 ± 0.08 | 0.57 ± 0.05 | 33 | 68.7 | 15.9 |
1.0−HEMA | 1.0 | 35 | 8.59 ± 0.42 | 1.32 ± 0.10 | 0.54 ± 0.09 | 34 | 79.3 | 45.2 |
2.9−HEMA | 2.9 | 35 | 6.15 ± 0.07 | 1.14 ± 0.02 | 0.54 ± 0.05 | 34 | 84.3 | 56.4 |
5.8−HEMA | 5.8 | 36 | 4.47 ± 0.33 | 0.98 ± 0.02 | 0.48 ± 0.06 | 34 | 93.3 | 78.7 |
8.6−HEMA | 8.6 | 37 | 3.70 ± 0.05 | 0.88 ± 0.05 | 0.44 ± 0.04 | 35 | 93.3 | 92.1 |
11.6−HEMA | 11.6 | 37 | 3.13 ± 0.06 | 0.69 ± 0.10 | 0.43 ± 0.06 | 37 | 96.7 | 96.6 |
Parameter | Conditions | Comments and Labels | NPs Diameter (nm) | Tg (°C) | Encapsulation Efficiency (%) |
---|---|---|---|---|---|
Optimization | |||||
Temperature, T (°C) a | 35 | Selected T | 540 ± 150 | 71 | 76 |
40 | - | No spherical morphology | |||
Pressure, P (bar) | 100 | Selected P | 520 ± 130 | 71 | 76 |
150 | - | 500 ± 230 | 62 | 72 | |
200 | - | 390 ± 120 | 63 | 84 | |
pVCL-ICA/DMSO C (mg/mL) b | 20 | Selected C | 520 ± 130 | 71 | 91 |
25 | - | 650 ± 210 | 57 | 89 | |
30 | - | 580 ± 180 | 58 | 85 | |
pVCL@ICA-NPs prepared for the study | |||||
ICA load (weight%) | 5 | NP5 | 450 ± 130 | 68 | 91 |
10 | NP10 | 520 ± 130 | 71 | 91 | |
20 | NP20 | 590 ± 330 | 53 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sobrino, R.; Casado-Losada, I.; Caltagirone, C.; García-Crespo, A.; García, C.; Rodríguez-Hernández, J.; Reinecke, H.; Gallardo, A.; Elvira, C.; Martínez-Campos, E. Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO2-SAS. Pharmaceutics 2024, 16, 1063. https://doi.org/10.3390/pharmaceutics16081063
García-Sobrino R, Casado-Losada I, Caltagirone C, García-Crespo A, García C, Rodríguez-Hernández J, Reinecke H, Gallardo A, Elvira C, Martínez-Campos E. Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO2-SAS. Pharmaceutics. 2024; 16(8):1063. https://doi.org/10.3390/pharmaceutics16081063
Chicago/Turabian StyleGarcía-Sobrino, Rubén, Isabel Casado-Losada, Carmen Caltagirone, Ana García-Crespo, Carolina García, Juan Rodríguez-Hernández, Helmut Reinecke, Alberto Gallardo, Carlos Elvira, and Enrique Martínez-Campos. 2024. "Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO2-SAS" Pharmaceutics 16, no. 8: 1063. https://doi.org/10.3390/pharmaceutics16081063
APA StyleGarcía-Sobrino, R., Casado-Losada, I., Caltagirone, C., García-Crespo, A., García, C., Rodríguez-Hernández, J., Reinecke, H., Gallardo, A., Elvira, C., & Martínez-Campos, E. (2024). Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO2-SAS. Pharmaceutics, 16(8), 1063. https://doi.org/10.3390/pharmaceutics16081063