Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Preclinical Studies of iPSMA-Lys3-Bombesin (iPSMA-BN) Radioligands
2.1.1. Synthesis and Radiolabeling of iPSMA-BN
2.1.2. Preclinical Evaluation of [99mTc]Tc-iPSMA-BN
- In vitro experiments
- In vivo experiments
- Studies on safety and biocompatibility of iPSMA-BN.
2.2. Clinical Evaluation
2.2.1. Biokinetics and Dosimetry
2.2.2. Imaging in Patients
3. Results
3.1. Preparation and Preclinical Studies of iPSMA-BN Radioligands
3.1.1. Chemical and Radiochemical Results
3.1.2. Preclinical Evaluation of [99mTc]Tc-iPSMA-BN
3.2. Clinical Evaluation of iPSMA-BN Radioligands
3.2.1. Biokinetics and Dosimetry
3.2.2. Imaging in Patients
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available online: https://gco.iarc.who.int/today (accessed on 10 September 2024).
- Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 10 September 2024).
- Scher, H.I.; Morris, M.J.; Stadler, W.M.; Higano, C.; Basch, E.; Fizazi, K.; Antonarakis, E.S.; Beer, T.M.; Carducci, M.A.; Chi, K.N. Trial design and objectives for castration-resistant prostate cancer: Updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 2016, 34, 1402–1418. [Google Scholar] [CrossRef] [PubMed]
- Crawford, E.D.; Koo, P.J.; Shore, N.; Slovin, S.F.; Concepcion, R.S.; Freedland, S.J.; Gomella, L.G.; Karsh, L.; Keane, T.E.; Maroni, P. A clinician’s guide to next generation imaging in patients with advanced prostate cancer (RADAR III). J. Urol. 2019, 201, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Lowrance, W.; Dreicer, R.; Jarrard, D.F.; Scarpato, K.R.; Kim, S.K.; Kirkby, E.; Buckley, D.I.; Griffin, J.C.; Cookson, M.S. Updates to advanced prostate cancer: AUA/SUO guideline (2023). J. Urol. 2023, 209, 1082–1090. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Vargas-Ahumada, J.E.; González-Rueda, S.D.; Sinisterra-Solís, F.A.; Casanova-Triviño, P.; Pitalúa-Cortés, Q.; Soldevilla-Gallardo, I.; Scavuzzo, A.; Jimenez-Ríos, M.A.; García-Pérez, F.O. Diagnostic Performance of [99mTc]Tc-iPSMA SPECT/CT in the Initial Staging of Patients with Unfavorable Intermediate-, High-, and Very High-Risk Prostate Cancer: A Comparative Analysis with 18F-PSMA-1007 PET/CT. Cancers 2023, 15, 5824. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Mitran, B.; Varasteh, Z.; Abouzayed, A.; Rinne, S.S.; Puuvuori, E.; De Rosa, M.; Larhed, M.; Tolmachev, V.; Orlova, A.; Rosenström, U. Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancer. Cancers 2019, 11, 1371. [Google Scholar] [CrossRef]
- Vargas Ahumada, J.; González Rueda, S.D.; Sinisterra Solís, F.A.; Pitalúa Cortés, Q.; Torres Agredo, L.P.; Miguel, J.R.; Scavuzzo, A.; Soldevilla-Gallardo, I.; Álvarez Avitia, M.A.; Sobrevilla, N. Multitarget molecular imaging in metastatic castration resistant adenocarcinoma prostate cancer with therapy induced neuroendocrine differentiation. Diagnostics 2022, 12, 1387. [Google Scholar] [CrossRef]
- Gorica, J.; De Feo, M.S.; Filippi, L.; Frantellizzi, V.; Schillaci, O.; De Vincentis, G. Gastrin-releasing peptide receptor agonists and antagonists for molecular imaging of breast and prostate cancer: From preclinical studies to translational perspectives. Expert. Rev. Mol. Diagn. 2022, 22, 991–996. [Google Scholar] [CrossRef]
- Sandhu, S.; Moore, C.M.; Chiong, E.; Beltran, H.; Bristow, R.G.; Williams, S.G. Prostate cancer. Lancet 2021, 398, 1075–1090. [Google Scholar] [CrossRef]
- Qiao, J.; Grabowska, M.M.; Forestier, I.S.; Mirosevich, J.; Case, T.C.; Chung, D.H.; Cates, J.M.; Matusik, R.J.; Manning, H.C.; Jin, R. Activation of GRP/GRP-R signaling contributes to castration-resistant prostate cancer progression. Oncotarget 2016, 7, 61955. [Google Scholar] [CrossRef] [PubMed]
- Faviana, P.; Boldrini, L.; Erba, P.A.; Di Stefano, I.; Manassero, F.; Bartoletti, R.; Galli, L.; Gentile, C.; Bardi, M. Gastrin-releasing peptide receptor in low grade prostate cancer: Can it be a better predictor than prostate-specific membrane antigen? Front. Oncol. 2021, 11, 650249. [Google Scholar] [CrossRef]
- Case, T.C.; Merkel, A.; Ramirez-Solano, M.; Liu, Q.; Sterling, J.A.; Jin, R. Blocking GRP/GRP-R signaling decreases expression of androgen receptor splice variants and inhibits tumor growth in castration-resistant prostate cancer. Trans. Oncol. 2021, 14, 101213. [Google Scholar] [CrossRef]
- Fernández, R.; Soza-Ried, C.; Iagaru, A.; Stephens, A.; Müller, A.; Schieferstein, H.; Sandoval, C.; Amaral, H.; Kramer, V. Imaging GRPr Expression in Metastatic Castration-Resistant Prostate Cancer with [68Ga]Ga-RM2—A Head-to-Head Pilot Comparison with [68Ga]Ga-PSMA-11. Cancers 2023, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Baratto, L.; Song, H.; Duan, H.; Hatami, N.; Bagshaw, H.P.; Buyyounouski, M.; Hancock, S.; Shah, S.; Srinivas, S.; Swift, P. PSMA-and GRPR-targeted PET: Results from 50 patients with biochemically recurrent prostate cancer. J. Nucl. Med. 2021, 62, 1545–1549. [Google Scholar] [CrossRef]
- Dalm, S.U.; Bakker, I.L.; de Blois, E.; Doeswijk, G.N.; Konijnenberg, M.W.; Orlandi, F.; Barbato, D.; Tedesco, M.; Maina, T.; Nock, B.A. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J. Nucl. Med. 2017, 58, 293–299. [Google Scholar] [CrossRef]
- Nock, B.A.; Kaloudi, A.; Lymperis, E.; Giarika, A.; Kulkarni, H.R.; Klette, I.; Singh, A.; Krenning, E.P.; de Jong, M.; Maina, T. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: Preclinical and first clinical results. J. Nucl. Med. 2017, 58, 75–80. [Google Scholar] [CrossRef]
- Kurth, J.; Krause, B.J.; Schwarzenböck, S.M.; Bergner, C.; Hakenberg, O.W.; Heuschkel, M. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: A radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Figueroa, M.J.; Escudero-Castellanos, A.; Ramirez-Nava, G.J.; Ocampo-García, B.E.; Santos-Cuevas, C.L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M.A. Preparation and preclinical evaluation of 68Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal Nucl. Chem. 2018, 318, 2097–2105. [Google Scholar] [CrossRef]
- Escudero-Castellanos, A.; Ocampo-García, B.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Ávila, E.; Luna-Gutiérrez, M.; Isaac-Olivé, K. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA (inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl. Med. Commun. 2019, 40, 278–286. [Google Scholar] [CrossRef]
- Rivera-Bravo, B.; Ramírez-Nava, G.; Mendoza-Figueroa, M.J.; Ocampo-García, B.; Ferro-Flores, G.; Ávila-Rodríguez, M.A.; Santos-Cuevas, C. [68Ga]Ga-iPSMA-Lys3-Bombesin: Biokinetics, dosimetry and first patient PET/CT imaging. Nucl. Med. Biol. 2021, 96, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1466–1486. [Google Scholar] [CrossRef] [PubMed]
- Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl. Med. Biol. 2017, 48, 36–44. [Google Scholar] [CrossRef]
- Ferro-Flores, G.; de Murphy, C.A.; Rodr, J.; Pedraza-Lo, M. Preparation and evaluation of [99mTc]Tc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl. Med. Commun. 2006, 27, 371–376. [Google Scholar] [CrossRef]
- Hernández-Jiménez, T.; Ferro-Flores, G.; Ocampo-García, B.; Morales-Avila, E.; Escudero-Castellanos, A.; Azorín-Vega, E.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Medina, L.A. 177Lu-DOTA-HYNIC-Lys (Nal)-Urea-Glu: Synthesis and assessment of the ability to target the prostate specific membrane antigen. J. Radioanal. Nucl. Chem. 2018, 318, 2059–2066. [Google Scholar] [CrossRef]
- Coria-Domínguez, L.; Vallejo-Armenta, P.; Luna-Gutiérrez, M.; Ocampo-García, B.; Gibbens-Bandala, B.; García-Pérez, F.; Ramírez-Nava, G.; Santos-Cuevas, C.; Ferro-Flores, G. [99mTc]Tc-iFAP radioligand for SPECT/CT imaging of the tumor microenvironment: Kinetics, radiation dosimetry, and imaging in patients. Pharmaceuticals 2022, 15, 590. [Google Scholar] [CrossRef] [PubMed]
- NCC Guidelines: Prostate Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 10 September 2024).
- Yatsyna, V.; Bakker, D.J.; Feifel, R.; Rijs, A.M.; Zhaunerchyk, V. Far-infrared amide IV-VI spectroscopy of isolated 2-and 4-Methylacetanilide. J. Chem. Phys. 2016, 145, 104309. [Google Scholar] [CrossRef]
- Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Haberkorn, U.; Eisenhut, M.; Kopka, K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 2014, 74, 659–668. [Google Scholar] [CrossRef]
- NCC Cancer Therapy Evaluation Program. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm (accessed on 10 September 2024).
- Use of Ionizing Radiation and Radionuclides on Human Beings for Medical Research, Training and Nonmedical Purposes: Report of a WHO Expert Committee; World Health Organization Technical Report Series 611; World Health Organization: Geneva, Switzerland, 1977.
- UNSCEAR. Ionizing Radiation: Sources and Biological Effects. 1982 Report to the General Assembly, with Annexes; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 1982. [Google Scholar]
- Santos-Cuevas, C.; Ferro-Flores, G.; García-Pérez, F.O.; Jiménez-Mancilla, N.; Ramírez-Nava, G.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Davanzo, J.; Soldevilla-Gallardo, I. 177Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu: Biokinetics, dosimetry, and evaluation in patients with advanced prostate cancer. Contrast. Media Mol. Imaging 2018, 2018, 5247153. [Google Scholar] [CrossRef]
- Nock, B.A.; Kanellopoulos, P.; Joosten, L.; Mansi, R.; Maina, T. Peptide radioligands in cancer theranostics: Agonists and antagonists. Pharmaceuticals 2023, 16, 674. [Google Scholar] [CrossRef]
- Verhoeven, M.; Ruigrok, E.A.; van Leenders, G.J.; van den Brink, L.; Balcioglu, H.E.; van Weerden, W.M.; Dalm, S.U. GRPR versus PSMA: Expression profiles during prostate cancer progression demonstrate the added value of GRPR-targeting theranostic approaches. Front. Oncol. 2023, 13, 1199432. [Google Scholar] [CrossRef] [PubMed]
Patient No. | Age (Years) | Gleason Score | Histology | PSA (ng/mL) at Diagnosis [at the Time of Study] | Status of the Disease [Time Since Diagnosis] | Genetic Alterations | Previous Treatments |
---|---|---|---|---|---|---|---|
1 | 58 | 9 (4 + 5) | Acinar adenocarcinoma. | 108 [14.1] | mCRPC [2 y] | Positive germline HRR PV mutation in ATM gene | Radiotherapy (primary), Gosereline + Enzalutamide, Docetaxel |
2 | 75 | 8 (4 + 4) | Acinar adenocarcinoma. | 40.9 [440.6] | mCRPC [7 y] | No known PV in germline HRR genes, germline VUS in CHEK2 | Leuproreline, Enzalutamide, Abiraterone + predinsone, Docetaxel, Cabazitaxel |
3 | 62 | 9 (4 + 5) | Acinar adenocarcinoma. | 39.8 [96.7] | mCRPC [2 y] | No known PV in germline HRR genes, germline VUS in BRCA | Bicalutamide, Gosereline, Enzalutamide, Docetaxel, Cabazitaxel |
4 | 77 | 9 (4 + 5) | Acinar adenocarcinoma. | 6.0 [11.7] | mCRPC [17 m] | Positive germline HRR PV mutation + somatic mutation in p53 | Bilateral orchiectomy, abiraterone + prednisone, Docetaxel, Cabazitaxel |
5 | 77 | 8 (4 + 4) | Acinar adenocarcinoma. Sarcomatoid differentiation on 2° biopsy 10 years later. | 34.5 [4.0] | mCRPC [11 y] | Positive germline HRR PV mutation in ATM gene | Radiotherapy (primary), Cyproterone, Gosereline, Enzalutamide, Docetaxel |
6 | 73 | 9 (4 + 5) | Acinar adenocarcinoma. | 491.2 [11.1] | mCSPC (de novo) [4 m] | Negative germline HRR mutations | Bicalutamide, Gosereline, Apalutamide |
7 | 78 | N/A | Metastatic acinar adenocarcinoma on bladder and rectum biopsies. | 266.5 [8.9] | mCRPC [2 y] | Negative germline HRR mutations | Radiotherapy (primary), Degarelix, Enzalutamide, Docetaxel |
8 | 72 | 9 (4 + 5) | Acinar adenocarcinoma. | 96 [100.5] | mCRPC [2 m] | Negative germline HRR mutation | Bilateral orchiectomy, Docetaxel |
9 | 64 | 9 (4 + 5) | Acinar adenocarcinoma. | 9.32 [1.3] | mCSPC (de novo, oligo) [4 m] | Negative germline HRR mutation | Gosereline + Enzalutamide |
10 | 63 | 9 (4 + 5) | Acinar adenocarcinoma. | 875.2 [49.0] | mCSPC (de novo) [3 m] | Negative germline HRR mutation | Holep Enucleation, Gosereline, Abiraterone + prednisone, |
11 | 71 | N/A | Acinar adenocarcinoma. | 222 [0.16] | mCSPC (de novo) [5 m] | Negative germline HRR mutation | Bilateral orchiectomy, bicalutamide, carboplatin/paclitaxel |
Organ/Tissue | Time (h) | [99mTc]Tc-iPSMA | [99mTc]Tc-BN | [99mTc]Tc-iPSMA-BN |
---|---|---|---|---|
Blood | 1 | 1.08 ± 0.12 | 1.14 ± 0.09 | 1.02 ± 0.15 |
3 | 0.82 ± 0.10 | 0.75 ± 0.11 | 0.74 ± 0.07 | |
24 | 0.25 ± 0.01 | 0.18 ± 0.01 | 0.14 ± 0.01 | |
Liver | 1 | 3.44 ± 0.48 | 0.75 ± 0.21 | 1.42 ± 0.14 |
3 | 2.29 ± 0.35 | 0.61 ± 0.12 | 1.08 ± 0.12 | |
24 | 1.75 ± 0.24 | 0.11 ± 0.01 | 0.28 ± 0.07 | |
Kidney | 1 | 15.95 ± 1.67 | 18.48 ± 1.92 | 20.41 ± 2.12 |
3 | 10.23 ± 1.42 | 13.56 ± 1.98 | 14.57 ± 1.81 | |
24 | 3.87 ± 0.69 | 7.46 ± 1.02 | 5.12 ± 0.87 | |
Spleen | 1 | 1.78 ± 0.41 | 0.54 ± 0.23 | 0.86 ± 0.34 |
3 | 1.29 ± 0.28 | 0.28 ± 0.11 | 0.32 ± 0.13 | |
24 | 0.95 ± 0.18 | 0.11 ± 0.02 | 0.14 ± 0.01 | |
Lung | 1 | 0.64 ± 0.12 | 0.51 ± 0.18 | 0.58 ± 0.11 |
3 | 0.29 ± 0.08 | 0.22 ± 0.05 | 0.18 ± 0.09 | |
24 | 0.13 ± 0.07 | 0.11 ± 0.02 | 0.12 ± 0.01 | |
Intestine | 1 | 0.63 ± 0.14 | 0.45 ± 0.17 | 0.51 ± 0.12 |
3 | 0.84 ± 0.13 | 0.31 ± 0.10 | 0.49 ± 0.17 | |
24 | 0.75 ± 0.18 | 0.15 ± 0.04 | 0.45 ± 0.08 | |
Pancreas | 1 | 0.21 ± 0.12 | 3.41 ± 0.51 | 3.21 ± 0.28 |
3 | 0.11 ± 0.02 | 2.98 ± 0.32 | 3.02 ± 0.44 | |
24 | 0.08 ± 0.01 | 1.85 ± 0.36 | 1.75 ± 0.30 | |
PC3 Tumor (Unblocking) | 1 | 1.44 ± 0.54 | 6.23 ± 1.27 | 5.25 ± 0.98 |
3 | 0.85 ± 0.18 | 5.72 ± 0.85 | 4.61 ± 0.79 | |
24 | 0.35 ± 0.07 | 3.38 ± 0.69 | 3.13 ± 0.71 | |
LNCaP Tumor (Unblocking) | 1 | 9.32 ± 1.32 | 1.11 ± 0.16 | 10.14 ± 1.25 |
3 | 8.87 ± 1.01 | 0.88 ± 0.11 | 9.33 ± 1.14 | |
24 | 4.95 ± 0.85 | 0.41 ± 0.07 | 5.41 ± 1.02 |
Organ/tissue | [99mTc]Tc-iPSMA | [99mTc]Tc-BN | [99mTc]Tc-PSMA-BN |
---|---|---|---|
Blood | 0.91 ± 0.24 | 0.68 ± 0.09 | 0.82 ± 0.13 |
Liver | 2.63 ± 0.29 | 0.74 ± 0.11 | 1.13 ± 0.18 |
Kidney | 11.47 ± 1.61 | 15.25 ± 1.75 | 14.98 ± 1.69 |
Spleen | 1.14 ± 0.33 | 0.34 ± 0.14 | 0.21 ± 0.14 |
Lung | 0.21 ± 0.12 | 0.17 ± 0.08 | 0.24 ± 0.11 |
Intestine | 1.01 ± 0.17 | 0.52 ± 0.15 | 0.51 ± 0.21 |
Pancreas | 0.13 ± 0.01 | 1.23 ± 0.28 * | 0.88 ± 0.12 * |
PC3 Tumor (Blocking) | 0.57 ± 0.10 * | 2.08 ± 0.44 * | 1.58 ± 0.36 * |
LNCaP Tumor (Blocking) | 2.28 ± 0.52 * | 0.61 ± 0.28 * | 3.62 ± 0.63 * |
Gender | Organ | Biokinetic Model | |
---|---|---|---|
Female | Liver | R2 = 1 | 3.35 × 10−1 ± 8.25 × 10−2 |
Kidneys | R2 = 1 | 7.55 × 10−1 ± 1.27 × 10−1 | |
Urinary Bladder | R2 = 1 | 2.25 × 10−1 ± 1.37 × 10−2 | |
Pancreas | R2 = 1 | 3.85 × 10−2 ± 1.90 × 10−2 | |
Lacrimal glands | R2 = 0.99 | 4.37 × 10−3 ± 2.18 × 10−3 | |
Salivary glands | R2 = 1 | 4.59 × 10−2 ± 8.46 × 10−3 | |
Remainder of the body | R2 = 1 | 1.58 ± 11.91 × 10−1 | |
Male | Liver | R2 = 1 | 3.36 × 10−1 ± 1.11 × 10−2 |
Kidneys | R2 = 1 | 6.76 × 10−1 ± 5.96 × 10−2 | |
Urinary Bladder | R2 = 1 | 2.32 × 10−1 ± 1.22 × 10−1 | |
Pancreas | R2 = 0.99 | 6.38 × 10−2 ± 3.03 × 10−2 | |
Lacrimal glands | R2 = 0.98 | 2.73 × 10−3 ± 1.10 × 10−3 | |
Salivary glands | R2 = 0.99 | 2.93 × 10−2 ± 8.20 × 10−3 | |
Remainder of the body | R2 = 1 | 2.10 ± 3.74 × 10−1 |
Target Organ | Female Equivalent Dose (mSv/MBq) (Mean ± SD) | Male Equivalent Dose (mSv/MBq) (Mean ± SD) |
---|---|---|
Adrenals | 5.81 × 10−5 ± 1.05 × 10−5 | 4.08 × 10−5 ± 6.53 × 10−6 |
Brain | 8.43 × 10−6 ± 1.19 × 10−6 | 8.45 × 10−6 ± 1.26 × 10−6 |
Breasts | 1.04 × 10−4 ± 1.69 × 10−5 | 9.76 × 10−5 ± 1.34 × 10−5 |
Gallbladder Wall | 4.32 × 10−5 ± 9.04 × 10−6 | 3.77 × 10−5 ± 5.56 × 10−6 |
LLI Wall | 2.32 × 10−4 ± 3.21 × 10−5 | 2.14 × 10−4 ± 4.99 × 10−5 |
Small Intestine | 1.33 × 10−5 ± 2.26 × 10−6 | 1.21 × 10−5 ± 2.02 × 10−6 |
Stomach Wall | 2.71 × 10−4 ± 5.23 × 10−5 | 2.49 × 10−4 ± 3.52 × 10−5 |
ULI Wall | 1.37 × 10−5 ± 2.39 × 10−6 | 1.20 × 10−5 ± 1.88 × 10−6 |
Heart Wall | 2.09 × 10−5 ± 3.81 × 10−6 | 1.91 × 10−5 ± 2.40 × 10−6 |
Kidneys | 4.53 × 10−4 ± 1.01 × 10−4 | 3.60 × 10−4 ± 8.52 × 10−5 |
Liver | 3.21 × 10−4 ± 8.00 × 10−5 | 2.49 × 10−4 ± 4.10 × 10−5 |
Lungs | 1.91 × 10−4 ± 2.43 × 10−5 | 1.63 × 10−4 ± 2.11 × 10−5 |
Muscle | 1.72 × 10−5 ± 2.84 × 10−6 | 1.58 × 10−5 ± 2.60 × 10−6 |
Ovaries | 1.64 × 10−4 ± 2.32 × 10−5 | N.A. |
Pancreas | 9.84 × 10−5 ± 3.58 × 10−5 | 1.23 × 10−4 ± 5.15 × 10−5 |
Red Marrow | 1.91 × 10−4 ± 3.38 × 10−5 | 1.76 × 10−4 ± 2.88 × 10−5 |
Osteogenic Cells | 3.39 × 10−5 ± 6.22 × 10−6 | 3.13 × 10−5 ± 5.90 × 10−6 |
Skin | 8.06 × 10−6 ± 1.28 × 10−6 | 7.83 × 10−6 ± 1.22 × 10−6 |
Spleen | 4.18 × 10−5 ± 8.20 × 10−6 | 3.49 × 10−5 ± 5.62 × 10−6 |
Thymus | 1.38 × 10−5 ± 2.08 × 10−6 | 1.33 × 10−5 ± 1.86 × 10−6 |
Thyroid | 4.74 × 10−5 ± 6.71 × 10−6 | 5.45 × 10−5 ± 7.96 × 10−6 |
Urinary Bladder Wall | 7.37 × 10−4 ± 7.48 × 10−5 | 5.27 × 10−4 ± 2.51 × 10−4 |
Uterus | 3.10 × 10−5 ± 4.17 × 10−6 | N.A. |
Salivary glands | 5.58 × 10−5 ± 1.50 × 10−5 | 2.82 × 10−5 ± 1.19 × 10−5 |
Lacrimal glands | 3.47 × 10−5 ± 1.50 × 10−5 | 2.57 × 10−5 ± 8.76 × 10−6 |
Testes | N.A. | 9.43 × 10−5 ± 2.24 × 10−5 |
Prostate | N.A. | 2.86 × 10−5 ± 8.35 × 10−6 |
Effective dose (mSv/MBq) | 3.20 × 10−3 ± 5.49 × 10−4 | 2.62 × 10−3 ± 5.40 × 10−4 |
Effective dose (mSv/740 MBq) | 2.37 ± 0.41 | 1.94 ± 0.39 |
Patient No. | [18F]–PSMA–1007 | [99mTc]Tc–iPSMA–BN | ||
---|---|---|---|---|
Sites of Tumor Lesions (No. Lesions) | TBR (Highest Value) | Sites of Tumor Lesions (No. Lesions) | TBR (Highest Value) | |
1 | P(1), B/R(1), SV(2), LRLN(15), DLN(11) | 146.95 | P(1), SV(2), LRLN(11), DLN(14) | 19 |
2 | P(1), B(>20) | 29.50 | P(1), B(>20) | 39.25 |
3 | P(1), SV(1), B(>20) | 61.61 | P(1), B(>20) | 38.60 |
4 | P(1), B/R(1), SV(2), LRLN(3), DLN(2), B(4) | 160 | P(1), B/R(1), SV(2), LRLN(3), DLN(3) | 41 |
5 | P(1), SV(1), LRLN(6), VD(49) | 25.31 | P(1), SV(1), LRLN(7), B(2), VD(2) | 207 |
6 | P(2), SV(1), LRLN(1), B(17) | 13.75 | P(1), SV(2), LRLN(1), B(16) | 4.52 |
7 | P(2), B/R(1), SV(2), LRLN(1), DLN(4), B(4), VD(1) | 37.80 | P(1), B/R(1), SV(2), LRLN(1), DLN(3), B(5) | 9.90 |
8 | P(1), SV(1), LRLN(4), DLN(3) | 20.39 | P(1), SV(1), LRLN(5), DLN(1) | 78.50 |
9 | P(1), SV(2), LRLN(4), DLN(4) | 16.28 | P(1), SV(4), LRLN(4), DLN(4) | 13.85 |
10 | P(1), LRLN(3), DLN(>20), B(>20) | 23.43 | P(1), LRLN(3), DLN(>20), B(>20) | 24.75 |
11 | P(1), SV(1), DLN(1), B(1) | 4.08 | P(1), LRLN(1), DLN(3) | 5.28 |
Target Organ | Absorbed Dose (mGy/MBq) (Mean ± SD) |
---|---|
Adrenals | 7.20 × 10−3 ± 1.15 × 10−3 |
Brain | 4.63 × 10−3 ± 6.90 × 10−4 |
Breasts | 4.70 × 10−3 ± 6.45 × 10−4 |
Gallbladder Wall | 7.04 × 10−3 ± 1.03 × 10−3 |
LLI Wall | 5.20 × 10−3 ± 1.21 × 10−3 |
Small Intestine | 5.57 × 10−3 ± 9.30 × 10−4 |
Stomach Wall | 5.70 × 10−3 ± 8.06 × 10−4 |
ULI Wall | 5.63 × 10−3 ± 8.82 × 10−4 |
Heart Wall | 5.31 × 10−3 ± 6.67 × 10−4 |
Kidneys | 6.65 × 10−1 ± 1.57 × 10−1 |
Liver | 7.00 × 10−2 ± 1.15 × 10−2 |
Lungs | 5.15 × 10−3 ± 6.67 × 10−4 |
Muscle | 5.06 × 10−3 ± 8.33 × 10−4 |
Pancreas | 1.22 × 10−1 ± 5.11 × 10−2 |
Red Marrow | 4.15 × 10−3 ± 6.79 × 10−4 |
Osteogenic Cells | 1.51 × 10−2 ± 2.85 × 10−3 |
Skin | 4.68 × 10−3 ± 7.29 × 10−4 |
Spleen | 6.54 × 10−3 ± 1.06 × 10−3 |
Thymus | 4.84 × 10−3 ± 6.77 × 10−4 |
Thyroid | 4.74 × 10−3 ± 6.92 × 10−4 |
Urinary Bladder Wall | 9.15 × 10−2 ± 4.36 × 10−2 |
Salivary glands | 3.93 × 10−2 ± 1.19 × 10−2 |
Lacrimal glands | 5.50 × 10−2 ± 1.83 × 10−2 |
Testes | 4.82 × 10−3 ± 1.14 × 10−3 |
Prostate | 5.55 × 10−3 ± 1.62 × 10−3 |
Total body | 9.78 × 10−3 ± 1.54 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rueda, S.; García-Pérez, O.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Ramírez-Nava, G.; Vargas-Ahumada, J.; Azorín-Vega, E.; Ferro-Flores, G.; Meléndez-Alafort, L. Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study. Pharmaceutics 2024, 16, 1358. https://doi.org/10.3390/pharmaceutics16111358
González-Rueda S, García-Pérez O, Luna-Gutiérrez M, Ocampo-García B, Santos-Cuevas C, Ramírez-Nava G, Vargas-Ahumada J, Azorín-Vega E, Ferro-Flores G, Meléndez-Alafort L. Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study. Pharmaceutics. 2024; 16(11):1358. https://doi.org/10.3390/pharmaceutics16111358
Chicago/Turabian StyleGonzález-Rueda, Sofía, Osvaldo García-Pérez, Myrna Luna-Gutiérrez, Blanca Ocampo-García, Clara Santos-Cuevas, Gerardo Ramírez-Nava, Joel Vargas-Ahumada, Erika Azorín-Vega, Guillermina Ferro-Flores, and Laura Meléndez-Alafort. 2024. "Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study" Pharmaceutics 16, no. 11: 1358. https://doi.org/10.3390/pharmaceutics16111358
APA StyleGonzález-Rueda, S., García-Pérez, O., Luna-Gutiérrez, M., Ocampo-García, B., Santos-Cuevas, C., Ramírez-Nava, G., Vargas-Ahumada, J., Azorín-Vega, E., Ferro-Flores, G., & Meléndez-Alafort, L. (2024). Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study. Pharmaceutics, 16(11), 1358. https://doi.org/10.3390/pharmaceutics16111358