Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Automated Synthesis
2.2. Quality Control
2.3. Process Validation
3. Results
3.1. Generator Elution and Reaction Conditions
3.2. ITLC & RP-HPLC Analysis and Stability Testing
3.3. Process Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- Miller, W.R.; Arias, C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- Gerace, E.; Mancuso, G.; Midiri, A.; Poidomani, S.; Zummo, S.; Biondo, C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens 2022, 11, 663. [Google Scholar] [CrossRef]
- Lawal, I.; Zeevaart, J.; Ebenhan, T.; Ankrah, A.; Vorster, M.; Kruger, H.G.; Govender, T.; Sathekge, M. Metabolic Imaging of Infection. J. Nucl. Med. 2017, 58, 1727–1732. [Google Scholar] [CrossRef]
- Sollini, M.; Lauri, C.; Boni, R.; Lazzeri, E.; Erba, P.A.; Signore, A. Current Status of Molecular Imaging in Infections. Curr. Pharm. Des. 2018, 24, 754–771. [Google Scholar] [CrossRef]
- Alberto, S.; Ordonez, A.A.; Arjun, C.; Aulakh, G.K.; Beziere, N.; Dadachova, E.; Ebenhan, T.; Granados, U.; Korde, A.; Jalilian, A.; et al. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J. Nucl. Med. 2023, 64, 1676–1682. [Google Scholar] [CrossRef]
- Hider, R.C.; Kong, X. Chemistry and Biology of Siderophores. Nat. Prod. Rep. 2010, 27, 637–657. [Google Scholar] [CrossRef]
- Skaar, E.P. The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010, 6, e1000949. [Google Scholar] [CrossRef]
- Wandersman, C.; Delepelaire, P. Bacterial Iron Sources: From Siderophores to Hemophores. Annu. Rev. Microbiol. 2004, 58, 611–647. [Google Scholar] [CrossRef]
- Fadeev, E.A.; Luo, M.; Groves, J.T. Synthesis, Structure, and Molecular Dynamics of Gallium Complexes of Schizokinen and the Amphiphilic Siderophore Acinetoferrin. J. Am. Chem. Soc. 2004, 126, 12065–12075. [Google Scholar] [CrossRef]
- Petrik, M.; Umlaufova, E.; Raclavsky, V.; Palyzova, A.; Havlicek, V.; Pfister, J.; Mair, C.; Novy, Z.; Popper, M.; Hajduch, M.; et al. 68Ga-Labelled Desferrioxamine-B for Bacterial Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 372–382. [Google Scholar] [CrossRef]
- Misslinger, M.; Petrik, M.; Pfister, J.; Hubmann, I.; Bendova, K.; Decristoforo, C.; Haas, H. Desferrioxamine B-Mediated Pre-Clinical In Vivo Imaging of Infection by the Mold Fungus Aspergillus Fumigatus. J. Fungi 2021, 7, 734. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F.; Spreckelmeyer, S. Good Practices for 68Ga Radiopharmaceutical Production. EJNMMI Radiopharm. Chem. 2022, 7, 27. [Google Scholar] [CrossRef]
- Kollaard, R.; Zorz, A.; Dabin, J.; Covens, P.; Cooke, J.; Crabbé, M.; Cunha, L.; Dowling, A.; Ginjaume, M.; McNamara, L. Review of Extremity Dosimetry in Nuclear Medicine. J. Radiol. Prot. 2021, 41, R60. [Google Scholar] [CrossRef]
- Boschi, S.; Malizia, C.; Lodi, F. Overview and Perspectives on Automation Strategies in (68)Ga Radiopharmaceutical Preparations. Recent. Results Cancer Res. 2013, 194, 17–31. [Google Scholar] [CrossRef]
- Korde, A.; Mikolajczak, R.; Kolenc, P.; Bouziotis, P.; Westin, H.; Lauritzen, M.; Koole, M.; Herth, M.M.; Bardiès, M.; Martins, A.F.; et al. Practical Considerations for Navigating the Regulatory Landscape of Non-Clinical Studies for Clinical Translation of Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2022, 7, 18. [Google Scholar] [CrossRef]
- Gillings, N.; Hjelstuen, O.; Ballinger, J.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; et al. Guideline on Current Good Radiopharmacy Practice (CGRPP) for the Small-Scale Preparation of Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021, 6, 8. [Google Scholar] [CrossRef]
- European Pharmacopoeia. GALLIUM (68Ga) EDOTREOTIDE INJECTION. 01/2022:2482, 11th ed.; EDQM Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- European Pharmacopoeia. GALLIUM (68Ga) PSMA-11 INJECTION. 04/2021:3044, 11th ed.; EDQM Council of Europe: Strasbourg, France, 2021. [Google Scholar]
- European Pharmacopoeia. DEFEROXAMINE MESILATE. 01/2018:0896, 11th ed.; EDQM Council of Europe: Strasbourg, France, 2018. [Google Scholar]
- Petrik, M.; Zhai, C.; Haas, H.; Decristoforo, C. Siderophores for Molecular Imaging Applications. Clin. Transl. Imaging 2017, 5, 15–27. [Google Scholar] [CrossRef]
- Ioppolo, J.A.; Caldwell, D.; Beiraghi, O.; Llano, L.; Blacker, M.; Valliant, J.F.; Berti, P.J. 67Ga-Labeled Deferoxamine Derivatives for Imaging Bacterial Infection: Preparation and Screening of Functionalized Siderophore Complexes. Nucl. Med. Biol. 2017, 52, 32–41. [Google Scholar] [CrossRef]
- Petrik, M.; Umlaufova, E.; Raclavsky, V.; Palyzova, A.; Havlicek, V.; Haas, H.; Novy, Z.; Dolezal, D.; Hajduch, M.; Decristoforo, C. Imaging of Pseudomonas Aeruginosa Infection with Ga-68 Labelled Pyoverdine for Positron Emission Tomography. Sci. Rep. 2018, 8, 15698. [Google Scholar] [CrossRef]
- Lepareur, N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front. Med. 2022, 9, 812050. [Google Scholar] [CrossRef]
- Petrik, M.; Knetsch, P.A.; Knopp, R.; Imperato, G.; Ocak, M.; von Guggenberg, E.; Haubner, R.; Silbernagl, R.; Decristoforo, C. Radiolabelling of Peptides for PET, SPECT and Therapeutic Applications Using a Fully Automated Disposable Cassette System. Nucl. Med. Commun. 2011, 32, 887–895. [Google Scholar] [CrossRef]
- de Blois, E.; Sze Chan, H.; Naidoo, C.; Prince, D.; Krenning, E.P.; Breeman, W.A.P. Characteristics of SnO2-Based 68Ge/68Ga Generator and Aspects of Radiolabelling DOTA-Peptides. Appl. Radiat. Isot. 2011, 69, 308–315. [Google Scholar] [CrossRef]
- Desferal—Summary of Product Characteristics 2018. Available online: https://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA0013-065-001_09072018160137.pdf (accessed on 20 September 2024).
- Serdons, K.; Verbruggen, A.; Bormans, G. The presence of ethanol in radiopharmaceutical injections. J. Nucl. Med. 2008, 49, 2071. [Google Scholar] [CrossRef]
Parameter | Method | Specification | Testing Schedule | Results for Modular-Lab PharmTracer | Results for GRP 3V |
---|---|---|---|---|---|
Appearance | visual inspection | clear, colourless solution, free from visible particles | prior to release | conforms | conforms |
Volume | visual inspection | 8.5 ± 1 mL for Modular-Lab PharmTracer//17.0 ± 1 mL for GRP 3V | prior to release | 8.5 ± 1 mL | 17.0 ± 1 mL |
pH | pH indicator strip | 4–8 | prior to release | 5.4 ± 0.2 | 5.0 ± 0.1 |
Identity HPLC | RP-HPLC | according to [natGa]Ga-desferrioxamine B standard (relative tR 0.9–1.1) | prior to release | conforms | conforms |
Activity yield | dose calibrator | NLT 200 MBq (at EOS) | prior to release | 405.9 ± 26.3 MBq | 431.6 ± 150.3 MBq |
Radioactivity concentration | dose calibrator | 20–150 MBq/mL for Modular-Lab PharmTracer//10–75 MBq/mL for GRP 3V | prior to release | 47.8 ± 3.1 MBq/mL | 25.4 ± 8.8 MBq/mL |
Radionuclidic identity (t½) | dose calibrator | 68 ± 6 min | during qualification of generator | 68 min | 68 min |
Radionuclidic identity | gamma-ray spectrometry | γ line at 511 keV; γ line at 1022 keV; γ line at 1077 keV (optional) | during qualification of generator | conforms | conforms |
Chemical purity and content | RP-HPLC | desferrioxamine B, Ga-desferrioxamine B and related impurities NMT 150 µg/V | prior to release | 103.7 ± 4.8 µg/V | 96.9 ± 5.2 µg/V |
GC | Ethanol NMT 10% (v/v) | after release | 6.3 ± 0.2% | 5.4 ± 0.4% | |
Radiochemical purity | RP-HPLC | [68Ga]Ga-desferrioxamine B: NLT 95% | prior to release | 98.2 ± 0.5% | 98.6 ± 1.3% |
TLC (ammonium acetate 1 M + methanol 1:1) | colloidal [68Ga]Ga: NMT 3% | prior to release | 0.5 ± 0.3% | 1.2 ± 1.4% | |
Radionuclidic purity | gamma ray spectrometry | 68Ge: NMT 0.001% (after ≥48 h) | after release | conforms (below LoD) | conforms (below LoD) |
Filter integrity | pressure hold test | based on programme of synthesis module | prior to release | conforms | conforms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraihammer, M.; Petřík, M.; Rangger, C.; Gabriel, M.; Haas, H.; Nilica, B.; Virgolini, I.; Decristoforo, C. Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024, 16, 1231. https://doi.org/10.3390/pharmaceutics16091231
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics. 2024; 16(9):1231. https://doi.org/10.3390/pharmaceutics16091231
Chicago/Turabian StyleKraihammer, Martin, Miloš Petřík, Christine Rangger, Michael Gabriel, Hubertus Haas, Bernhard Nilica, Irene Virgolini, and Clemens Decristoforo. 2024. "Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms" Pharmaceutics 16, no. 9: 1231. https://doi.org/10.3390/pharmaceutics16091231
APA StyleKraihammer, M., Petřík, M., Rangger, C., Gabriel, M., Haas, H., Nilica, B., Virgolini, I., & Decristoforo, C. (2024). Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics, 16(9), 1231. https://doi.org/10.3390/pharmaceutics16091231