Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications
Abstract
:1. Introduction
2. Synthesis of AgNPs
2.1. Biological Synthesis
- Synthesis of AgNPs based on Bacteria
- ii.
- Synthesis of AgNPs based on Fungi
- iii.
- Synthesis of AgNPs based on yeast
- iv.
- Synthesis of AgNPs based on DNA
- v.
- Green synthesis using plant extracts
- vi.
- Bio-inspired synthesis
2.2. Chemical Synthesis
- Trisodium citrate AgNPs
- ii.
- Alanine/NaOH AgNPs
- iii.
- Oleic acid AgNPs
- iv.
- Carbonyl-containing reducing sugars
- Electrochemical procedures involve reducing silver ions by using an electrode as the reducing agent [110];
- Photochemical reduction: AgNPs can be produced by exposing a solution containing silver ions to ultraviolet (UV) light or other forms of radiation [111];
- Microwave-assisted synthesis: Microwave irradiation can expedite the reduction of silver ions and facilitate the production of AgNPs [112];
- The sol–gel approach involves integrating silver precursors into a sol–gel matrix and then reducing them to generate AgNPs [1].
2.3. Physical Methods
- Pulse Wire Discharge
- ii.
- Ball milling
- iii.
- Evaporation–condensation
- iv.
- Lithographic printing
- v.
- Vapor and Gas Phase Methods
- vi.
- Spray pyrolysis
- vii.
- Pulsed laser ablation
- viii.
- Arc discharge
2.4. A Comparative Analysis of Green Synthesis and Conventional Chemical Methods
Method | Description | Example | Capping Agent | Experimental Conditions | Key Characteristics | Reference |
---|---|---|---|---|---|---|
Chemical Reduction | Reduction of silver salt using a reducing agent and stabilizer | Turkevich: Silver nitrate + sodium citrate | Sodium citrate | Aqueous, heated to boiling | Precise control, uniform size, toxic byproducts | [141,142] |
Polyol Method | Polyol as a solvent and reducing agent | Silver nitrate in ethylene glycol | Polyvinylpyrrolidone (PVP) | Ethylene glycol, heated | Size control, not always environmentally benign | [146,147] |
Microwave-Assisted Synthesis | Microwave irradiation for rapid synthesis | Silver nitrate and glucose solution | None (Glucose acts as both) | Microwave irradiation | Rapid, moderate control, minimal harmful chemicals, equipment needed | [148,149] |
Green Synthesis | Eco-friendly reducing agents | Neem extract reducing silver nitrate | Phytochemicals from plant extract | Room temperature, aqueous | Environmentally friendly, cost-effective, scalability challenges | [139,140] |
Sol–gel Method | Transformation into a gel incorporating nanoparticles | Silver nitrate with sol–gel precursor forms AgNP gel | None specified | Sol–gel process | Controlled synthesis in a gel matrix, energy-intensive | [150,151] |
2.5. The Factors That Influence the Synthesis of AgNPs
- Reducing Agent: The choice of reducing agent or extract used in the synthesis process is crucial. Various plant extracts or biological agents can serve as reducing agents to transform silver ions into AgNPs [14,152]. The reducing agent’s content and concentration can affect the nanoparticles’ dimensions, morphology, and durability [152,153];
- Concentration of Silver Ions: The amount of silver ions (Ag+) in the reaction mixture is another critical component. The presence of Ag+ ions can influence the nucleation and development of nanoparticles, resulting in their size and form changes. The ideal condition for synthesizing AgNPs is a concentration of 1 mM of Ag+ [18];
- The temperature plays a significant role in the formation of AgNPs. It impacts the rate of the reduction reaction and the synthesis of the particles. According to Heydari and Rashidipour (2015), higher temperatures can speed up the reduction process and facilitate the formation and enlargement of nanoparticles. However, excessively elevated temperatures can lead to agglomerates or unwanted enlargement of particles. The ideal temperature for creating AgNPs may vary depending on the technique and circumstances [18];
- The reaction time is an important parameter that influences the synthesis of AgNPs. The time the reaction takes dictates the degree of reduction and the range of sizes of the nanoparticles. Longer reaction durations tend to increase the size of nanoparticles, while shorter reaction times can result in smaller particles [154]. Additionally, the reaction time affects the stability and yield of the nanoparticles [154];
- The pH level is a critical factor that can impact the production of AgNPs. Various pH values can affect the reduction rate, stability, and size distribution of the nanoparticles. The ideal setting for producing AgNPs is an alkaline pH of 9 [18];
- Light: Exposure to light can significantly impact the creation and unique properties of AgNPs. Extensive research has explored how light serves as an energy source and influences both the reduction reaction and formation of nanoparticles [155]. Additionally, studies have investigated the effects of light exposure on the production of AgNPs using various plant extracts, such as Solanum xanthocarpum L. berry extract and Catharanthus roseus Linn. Leaves and Ocimum bacilicum L. leaf extract [153]. Furthermore, researchers have utilized light exposure to assess the photocatalytic activity of AgNPs. These nanoparticles were tested for their ability to decompose methylene blue when exposed to sunlight, highlighting their impressive photocatalytic properties [156];
- Stirring, ultrasonication, and stabilizing agents are crucial factors in producing and preserving AgNPs. Several sources provide valuable insights into these elements. For example, Suci et al. (2022) conducted a study that examined the influence of ultrasonication and stirring on the dispersion of AgNPs. The study found that both procedures contribute to creating a homogeneous distribution of nanoparticles [157]. Similarly, Ameh et al. (2022) outlined a process for creating AgNPs that are stabilized by cetyltrimethylammonium bromide. The study emphasized the use of intense magnetic stirring as a method to enhance the stability of nanoparticles [158].
3. Characterization of AgNPs
3.1. Physical Characterization Techniques
3.1.1. UV-Visible Spectroscopy
- Absorption Measurement: UV-visible spectroscopy is used to measure light absorption by AgNPs, with their size, shape, and concentration affecting the results. The absorption spectrum typically displays a visible peak known as the surface plasmon resonance (SPR) peak, corresponding to the collective movement of conduction electrons within the nanoparticles [168,169];
- When examining AgNPs, analyzing the location and intensity of the SPR peak in the UV-visible spectrum can provide valuable information about their size and concentration. Generally, larger nanoparticles will cause the peak to shift toward longer wavelengths, while smaller ones will shift toward shorter wavelengths. Additionally, the strength of the peak directly corresponds to the quantity of nanoparticles within the sample [168,169];
- Analysis of Shape: By examining the shape of the absorption spectra, it is possible to deduce the morphology and structure of the AgNPs. Various geometrical shapes, such as spheres, rods, or triangles, have distinct absorption characteristics. For instance, anisotropic nanoparticles such as silver nanorods have several absorption peaks due to their unique optical properties [168,169];
- Determining Quantity: UV-visible spectroscopy can calculate the concentration of AgNPs in a sample. This is carried out by comparing the absorbance at the surface plasmon resonance (SPR) peak with a calibration curve generated using standard solutions with known concentrations [170].
3.1.2. Transmission Electron Microscopy (TEM)
- Crystallographic Analysis: TEM can provide valuable information about the crystallographic structure of AgNPs through crystallographic analysis. Using selected area electron diffraction (SAED) patterns obtained from TEM images makes it possible to identify the crystal lattice and determine the crystallinity of nanoparticles [154,176];
- Surface Analysis: Utilizing Transmission Electron Microscopy (TEM) may provide valuable insights into the surface characteristics of AgNPs. Through high-resolution imaging of the nanoparticle surface, one can gather valuable information regarding surface roughness, flaws, and surface coatings [179,180].
3.1.3. Scanning Electron Microscopy (SEM)
3.1.4. X-ray Diffraction (XRD)
- Crystal Structure: XRD is a technique that enables the analysis of the diffraction pattern obtained from X-ray interaction with the crystal lattice. This technique is employed to identify the crystal structure of AgNPs. Information regarding the atomic configuration within the nanoparticles can be obtained by examining the spatial distribution and magnitudes of the diffraction peaks [177];
- Phase Identification: XRD can discern the distinct phases within the AgNPs. The phases of the nanoparticles can be detected by comparing the diffraction pattern with reference patterns from a database [187];
- Crystallite Size: The XRD technique can be utilized to determine the average dimensions of AgNPs by analyzing the broadening of the diffraction peaks. Employing the Scherrer equation or other relevant methods makes it possible to compute the size of crystallites by examining the extent of peak broadening, as previously demonstrated [188];
- Crystallinity: XRD can determine the level of crystallinity exhibited by the AgNPs. The strength and sharpness of the diffraction peaks offer insights into the organization and quality of the crystal lattice [189];
- Phase Transformation is a powerful tool for examining the structural properties of AgNPs, including their crystal structure, phase composition, degree of crystallinity, and any phase changes that may occur. By subjecting the nanoparticles to temperature, pressure, or chemical treatments, XRD can identify phase transformations or alterations in their crystal structure. The presence or absence of diffraction peaks is a vital indicator of phase transitions [190].
3.1.5. Energy-Dispersive X-ray Spectroscopy (EDS)
3.1.6. Dynamic Light Scattering (DLS)
3.1.7. Atomic Force Microscopy (AFM)
3.1.8. Zeta Potential Analysis
3.2. Chemical Characterization Techniques
3.2.1. High-Performance Liquid Chromatography
3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
- Molecular Identification: FTIR spectroscopy can determine the molecular composition of a sample by measuring the absorption and transmission of infrared light. This technique can detect and analyze the functional groups and chemical bonds present in the sample, enabling the identification of various substances [214,215];
- Investigation of Stability and Interactions: FTIR spectroscopy can investigate the stability and interactions of AgNPs. Analyzing variations in the FTIR spectrum over time or in different situations makes it possible to evaluate the stability of the nanoparticles and examine their interactions with other molecules or surfaces [222,223].
3.2.3. Raman Spectroscopy
3.2.4. X-ray Photoelectron Spectroscopy (XPS)
3.2.5. Thermal Analysis Techniques
4. Overview of Biomedical Applications
4.1. Wound Healing
4.2. AgNPs’ Antibacterial Properties
4.3. Anti-Bacterial Mechanisms of AgNPs
- Release of Silver Ions
- 2.
- Interaction with the Bacterial Cell Wall:
- 3.
- DNA Interaction
- 4.
- Generation of Reactive Oxygen Species (ROS)
- 5.
- Protein binding
4.4. Synergistic Effects with Antibiotics
- Increased permeation: AgNPs can increase the permeation of antibiotics into microbial cells, allowing for higher concentrations of drugs within the cells and resulting in better effectiveness [318];
- Increased ROS: AgNPs can amplify the creation of ROS within microbial cells, which induce oxidative stress and damage biological components, making bacteria more vulnerable to the effects of antibiotics [319];
- Utilizing multiple cellular pathways: Combining AgNPs and antibiotics can effectively target multiple cellular pathways in microbes, resulting in a more comprehensive and potent antimicrobial impact [318].
4.5. Anti-Biofilm Activity of AgNPs
4.6. Antiviral Activity of AgNPs
4.7. Anti-Fungi Activity of AgNPs
4.8. Anti-Parasite Activity of AgNPs
4.9. Immune System
4.10. Drug Delivery
4.11. Cancer Treatment
4.12. AgNPs Coating Surfaces
4.13. Food Industry
4.14. AgNPs Coating Implants
4.15. AgNPs Activity Biofouling
5. Host Cell Defense Strategies against AgNP-Induced ROS and Clustering
6. AgNPs Toxicity Issues
7. Barriers to Clinical Use
8. AgNPs’ Specificity and Selectivity
9. Challenges and Future Directions for AgNPs
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Almatroudi, A. Silver Nanoparticles: Synthesis, Characterisation and Biomedical Applications. Open Life Sci. 2020, 15, 819–839. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.L.N.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef]
- Shinde, R.P.; Borle, A.; Dahane, T.; Kambala, S.S. Comparative Evaluation of Antimicrobial Activity of Irreversible Hydrocolloid Impression Material Incorporated with Various Disinfectants—An in-Vitro Study. J. Pharm. Res. Int. 2021, 33, 3274–3280. [Google Scholar] [CrossRef]
- Moaddabi, A.; Soltani, P.; Rengo, C.; Molaei, S.; Mousavi, S.J.; Mehdizadeh, M.; Spagnuolo, G. Comparison of Antimicrobial and Wound-Healing Effects of Silver Nanoparticle and Chlorhexidine Mouthwashes: An in Vivo Study in Rabbits. Odontology 2022, 110, 577–583. [Google Scholar] [CrossRef]
- Gunasekaran, T.; Nigusse, T.; Dhanaraju, M.D. Silver Nanoparticles as Real Topical Bullets for Wound Healing. J. Am. Coll. Clin. Wound Spec. 2011, 3, 82–96. [Google Scholar] [CrossRef]
- Rai, M.; Kon, K.; Ingle, A.P.; Durán, N.; Galdiero, S.; Galdiero, M. Broad-Spectrum Bioactivities of Silver Nanoparticles: The Emerging Trends and Future Prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef]
- Piri, H.; Mohammadi, Z.; Aali, E.; Hosseini, S.A.H.; Naderi, Y.; Gheibi, N. The Effects of Oral Silver Nanoparticles and Propolis on the Level of Lipid Peroxidation in Male Wistar Rats. J. Qazvin Univ. Med. Sci. 2021, 25, 93–98. [Google Scholar] [CrossRef]
- Nambiar, S.S.; Mohanty, A.; Patra, A.; Saini, G.K. Deciphering Therapeutic Efficacy of Mycosynthesized Silver Nanoparticles Using Entomopathogenic Fungi Metarhizium anisopliae Against McF-7 Breast Cancer Cells in Vitro. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ahmad, K.; Noor, R.; Younus, M.; Chohan, A.; Habiba, U.; Asif, H.M.; Chishti, A.W.; Saifullah., S. Green Synthesis and Characterization of Silver Nanoparticles Using Crude Extract of Crotalaria Burhia. RADS J. Pharm. Pharm. Sci. 2020, 8, 209–215. [Google Scholar] [CrossRef]
- Christania, F.S.; Dwiastuti, R.; Yuliani, S.H. Lipid and Silver Nanoparticles Gels Formulation of Tempeh Extract. J. Pharm. Sci. Community 2020, 16, 56–62. [Google Scholar] [CrossRef]
- John, T.; Parmar, K.A.; Tak, P. Biosynthesis and Characterization of Silver Nanoparticles from Tinospora Cordifolia Root Extract. J. Nanosci. Technol. 2019, 5, 622–626. [Google Scholar] [CrossRef]
- Zande, M.v.d.; Vandebriel, R.J.; Doren, E.V.; Kramer, E.; Rivera, Z.H.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.; Hollman, P.C.H.; et al. Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats After 28-Day Oral Exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef]
- Antsiferova, A.A.; Kopaeva, M.Y.; Kochkin, V.; Kashkarov, P.K. Kinetics of Silver Accumulation in Tissues of Laboratory Mice After Long-Term Oral Administration of Silver Nanoparticles. Nanomaterials 2021, 11, 3204. [Google Scholar] [CrossRef]
- Sekar, P.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of Silver Nanoparticles Using Leaves of Catharanthus Roseus Linn. G. Don and Their Antiplasmodial Activities. Asian Pac. J. Trop. Biomed. 2012, 2, 574–580. [Google Scholar] [CrossRef]
- Heydari, R.; Rashidipour, M. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft): Synthesis and in Vitro Cytotoxic Effect on McF-7 Cells. Int. J. Breast Cancer 2015, 2015, 846743. [Google Scholar] [CrossRef]
- Das, V.L.; Thomas, R.; Varghese, R.; Soniya, E.V.; Mathew, J.; Radhakrishnan, E.K. Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated from Industrialized Area. 3Biotech 2013, 4, 121–126. [Google Scholar] [CrossRef]
- Parveen, R.; Maiti, P.K.; Murmu, N.; Datta, A. Preparation of Serum Capped Silver Nanoparticles for Selective Killing of Microbial Cells Sparing Host Cells. Sci. Rep. 2021, 11, 11610. [Google Scholar] [CrossRef]
- Alsharif, S.M.; Salem, S.S.; Abdel-Rahman, M.A.; Fouda, A.; Eid, A.M.; Hassan, S.E.-D.; Awad, M.A.; Mohamed, A.A. Multifunctional Properties of Spherical Silver Nanoparticles Fabricated by Different Microbial Taxa. Heliyon 2020, 6, e03943. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, S.-J.; Wu, X.; Sauve, J.; Lee, I.; Nam, J.; Kim, J.; Dordick, J.S. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle—Cell Wall Binding Domain Conjugates. ACS Appl. Mater. Interfaces 2018, 10, 13317–13324. [Google Scholar] [CrossRef]
- Terzioğlu, E.; Arslan, M.; Balaban, B.G.; Çakar, Z.P. Microbial Silver Resistance Mechanisms: Recent Developments. World J. Microbiol. Biotechnol. 2022, 38, 158. [Google Scholar] [CrossRef]
- Kaiser, K.G.; Delattre, V.; Frost, V.J.; Buck, G.W.; Phu, J.V.; Fernandez, T.G.; Pavel, I.E. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics 2023, 12, 1264. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef]
- Joshi, A.S.; Singh, P.; Mijakovic, I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int. J. Mol. Sci. 2020, 21, 7658. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Sorensen, K.C.; George, R.D.; Sims, P.C.; Obraztsova, A. Surface Enhanced Raman Scattering of Bacteria Using Capped and Uncapped Silver Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118742. [Google Scholar] [CrossRef]
- Kumar, P.; Selvi, S.S.; Prabha, A.L.; Kumar, K.; Ganeshkumar, R.; Govindaraju, M. Synthesis of Silver Nanoparticles from Sargassum Tenerrimum and Screening Phytochemicals for Its Antibacterial Activity. Nano Biomed Eng 2012, 4, 12–16. [Google Scholar] [CrossRef]
- Esmail, R.; Alihosseini, A.; Milani, M.; Akbarzadeh, A.; Akhondi, E. Synthesis of Silver Nanoparticles with High Efficiency and Stability by Culture Supernatant of Bacillus ROM6 Isolated from Zarshouran Gold Mine and Evaluating Its Antibacterial Effects. BMC Microbiol. 2022, 22, 97. [Google Scholar] [CrossRef]
- Sani, N.J.; Aminu, B.M.; Mukhtar, M. Eco-Friendly Synthesis of Silver Nanoparticles Using Lactobacillus delbrueckii Subsp. Bulgaricus Isolated from Kindrimo (Locally Fermented Milk) in Kano State, Nigeria. Bayero J. Pure Appl. Sci. 2018, 10, 481. [Google Scholar] [CrossRef]
- Wilson, J.J.; Harimuralikrishnaa, T.; Ponmanickam, P.; Lakshmi, M.P. Bacterial Silver Nanoparticles: Method, Mechanism of Synthesis and Application in Mosquito Control. In Mosquito Research—Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- El-Shanshoury, A.E.R.; Elsilk, S.E.; Ebeid, M.E. Extracellular Biosynthesis of Silver Nanoparticles Using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and Their Antimicrobial Activities. ISRN Nanotechnol. 2011, 2011, 385480. [Google Scholar] [CrossRef]
- Ashraf, S.; Chatha, M.A.; Ejaz, W.; Janjua, H.A.; Hussain, I. Lysozyme-Coated Silver Nanoparticles for Differentiating Bacterial Strains on the Basis of Antibacterial Activity. Nanoscale Res. Lett. 2014, 9, 565. [Google Scholar] [CrossRef]
- Mumtaz, S.; Wang, L.; Hussain, S.Z.; Abdullah, M.I.; Huma, Z.; Iqbal, Z.; Creran, B.; Rotello, V.M.; Hussain, I. Dopamine Coated Fe3O4 Nanoparticles as Enzyme Mimics for the Sensitive Detection of Bacteria. Chem. Commun. 2017, 53, 12306–12308. [Google Scholar] [CrossRef]
- Chavan, S.; Vigneshwaran, N. Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil. Agronomy 2019, 9, 140. [Google Scholar] [CrossRef]
- Okeniyi, J.O.; Popoola, A.P.I.; Ojewumi, M.E.; Okeniyi, E.T.; Ikotun, J.O. Tectona grandis Capped Silver-Nanoparticle Material Effects on Microbial Strains Inducing Microbiologically Influenced Corrosion. Int. J. Chem. Eng. 2018, 2018, 7161537. [Google Scholar] [CrossRef]
- Ayele, A.; Mujmdar, R.S.; Addisu, T.; Woinue, Y. Green Synthesis of Silver Nanoparticles for Various Biomedical and Agro Industrial Application. J. Nanosci. Technol. 2019, 5, 694–698. [Google Scholar] [CrossRef]
- Santos, T.S.; Passos, E.M.d.; Seabra, M.G.d.J.; Souto, E.B.; Severino, P.; Mendonça, M.d.C. Entomopathogenic Fungi Biomass Production and Extracellular Biosynthesis of Silver Nanoparticles for Bioinsecticide Action. Appl. Sci. 2021, 11, 2465. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Z.; Li, P.; Gajaraj, S. Governing Factors Affecting the Impacts of Silver Nanoparticles on Wastewater Treatment. Sci. Total Environ. 2016, 572, 852–873. [Google Scholar] [CrossRef]
- Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque-Júnior, R.L.C.d.; Zielińska, A.; Souto, E.B.; Severino, P.; Mendonça, M.d.C. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics 2021, 10, 852. [Google Scholar] [CrossRef]
- Khan, T.; Yasmin, A.; Townley, H.E. An Evaluation of the Activity of Biologically Synthesized Silver Nanoparticles Against Bacteria, Fungi and Mammalian Cell Lines. Colloids Surfaces B Biointerfaces 2020, 194, 111156. [Google Scholar] [CrossRef]
- Fonseca, M.S.; Rodrigues, D.M.; Sokolonski, A.R.; Stanisic, D.; Tomé, L.M.R.; Góes-Neto, A.; Azevedo, V.; Meyer, R.; Araújo, D.B.d.; Tasic, L.; et al. Activity of Fusarium Oxysporum-Based Silver Nanoparticles on Candida Spp. Oral Isolates. Nanomaterials 2022, 12, 501. [Google Scholar] [CrossRef]
- Zomorodian, K.; Pourshahid, S.; Sadatsharifi, A.; Mehryar, P.; Pakshir, K.; Rahimi, M.J.; Monfared, A.A. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species. BioMed Res. Int. 2016, 2016, 5435397. [Google Scholar] [CrossRef]
- Mussin, J.E.; Giusiano, G. Biogenic Silver Nanoparticles as Antifungal Agents. Front. Chem. 2022, 10, 1023542. [Google Scholar] [CrossRef]
- Christensen, L.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Biosynthesis of Silver Nanoparticles Using Murraya Koenigii (Curry Leaf): An Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size. Adv. Mater. Lett. 2011, 2, 429–434. [Google Scholar] [CrossRef]
- Eugênio, M.; Müller, N.; Frasés, S.; Almeida-Paes, R.; Lima, L.M.T.R.; Lemgruber, L.; Farina, M.; Souza, W.d.; Sant’Anna, C. Yeast-Derived Biosynthesis of Silver/Silver Chloride Nanoparticles and Their Antiproliferative Activity Against Bacteria. RSC Adv. 2016, 6, 9893–9904. [Google Scholar] [CrossRef]
- Roy, K.; Sarkar, C.K.; Ghosh, C. Photocatalytic Activity of Biogenic Silver Nanoparticles Synthesized Using Yeast (Saccharomyces Cerevisiae) Extract. Appl. Nanosci. 2014, 5, 953–959. [Google Scholar] [CrossRef]
- Alamri, S.; Hashem, M.; Nafady, N.A.; Sayed, M.A.; Alshehri, A.M.; Alshaboury, G.A. Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma Guilliermondii KX008616. J. Microbiol. Biotechnol. 2018, 28, 917–930. [Google Scholar] [CrossRef]
- Aswathy, R.; Gabylis, B.; Anwesha, S.; Bhaskara Rao, K. Green Synthesis and Characterization of Marine Yeast-Mediated Silver and Zinc Oxide Nanoparticles and Assessment of Their Antioxidant Activity. Asian J. Pharm. Clin. Res. 2017, 10, 235. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Elnouby, M.; Taha, T.H.; El-Shafeey, M.; Alshehri, A.; Alamri, S.; Alghamdi, H.A.; Shati, A.A.; Alrumman, S.A.; Alkahtani, M.A.; et al. Potential Decontamination of Drinking Water Pathogens Through K-Carrageenan Integrated Green Bottle Fly Bio-Synthesized Silver Nanoparticles. Molecules 2020, 25, 1936. [Google Scholar] [CrossRef]
- Sun, Q.; Xie, X.; Song, Y.; Sun, L. A Review on Silver-Mediated DNA Base Pairs: Methodology and Application. Biomater. Res. 2022, 26, 9. [Google Scholar] [CrossRef]
- Hu, S.; Yi, T.; Huang, Z.; Liu, B.; Wang, J.; Yi, X.; Liu, J. Etching Silver Nanoparticles Using DNA. Mater. Horizons 2018, 6, 155–159. [Google Scholar] [CrossRef]
- Chupradit, S.; Kavitha, M.; Suksatan, W.; Ansari, M.J.; Al Mashhadani, Z.I.; Kadhim, M.M.; Mustafa, Y.F.; Shafik, S.S.; Kianfar, E. Morphological Control: Properties and Applications of Metal Nanostructures. Adv. Mater. Sci. Eng. 2022, 2022, 1971891. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Liu, F.; Zhu, B.; Ma, Y.; Yan, J.; Lin, B.; Ke, G.; Liu, R.; Zhou, L. DNA-mediated Morphological Control of Silver Nanoparticles. Small 2016, 12, 5449–5487. [Google Scholar] [CrossRef]
- Kasyanenko, N.; Varshavskii, M.; Ikonnikov, E.; Tolstyko, E.; Belykh, R.; Sokolov, P.; Bakulev, V.; Rolich, V.; Lopatko, K. DNA Modified with Metal Nanoparticles: Preparation and Characterization of Ordered Metal-DNA Nanostructures in a Solution and on a Substrate. J. Nanomater. 2016, 2016, 3237250. [Google Scholar] [CrossRef]
- Kukreti, S.; Kaushik, M. Exploring the Potential of Environment Friendly Silver Nanoparticles for DNA Interaction: Physicochemical Approach. J. Photochem. Photobiol. B Biol. 2019, 194, 158–165. [Google Scholar]
- New, S.Y.; Lee, S.T.; Su, X.D. DNA-Templated Silver Nanoclusters: Structural Correlation and Fluorescence Modulation. Nanoscale 2016, 8, 17729–17746. [Google Scholar] [CrossRef]
- Farkhari, N.; Abbasian, S.; Moshaii, A.; Nikkhah, M. Mechanism of Adsorption of Single and Double Stranded DNA on Gold and Silver Nanoparticles: Investigating Some Important Parameters in Bio-Sensing Applications. Colloids Surf. B Biointerfaces 2016, 148, 657–664. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Sarmah, A.K.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Plant-Mediated Synthesis and Applications of Iron Nanoparticles. Mol. Biotechnol. 2017, 60, 154–168. [Google Scholar] [CrossRef]
- Suman, T.Y.; Rajasree, S.R.R.; Ramkumar, R.; Rajthilak, C.; Perumal, P. The Green Synthesis of Gold Nanoparticles Using an Aqueous Root Extract of Morinda citrifolia L. Spectrochim Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 118, 11–16. [Google Scholar] [CrossRef]
- Dada, A.O.; Inyinbor, A.A.; Idu, E.I.; Bello, O.M.; Oluyori, A.P.; Adelani-Akande, T.A.; Okunola, A.A.; Dada, O. Effect of Operational Parameters, Characterization and Antibacterial Studies of Green Synthesis of Silver Nanoparticles Using Tithonia diversifolia. PeerJ 2018, 6, e5865. [Google Scholar] [CrossRef]
- Nayak, S.; Ghugare, P.; Vaidhun, B. Green-Synthesis of Silver Nanoparticles by Hygrophila Auriculata Extract: Innovative Technique and Comprehensive Evaluation. Indian J. Pharm. Educ. Res. 2021, 55, s510–s517. [Google Scholar] [CrossRef]
- Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akande, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; et al. Silver Nanoparticle Synthesis by Acalypha Wilkesiana Extract: Phytochemical Screening, Characterization, Influence of Operational Parameters, and Preliminary Antibacterial Testing. Heliyon 2019, 5, e02517. [Google Scholar] [CrossRef]
- Yasmin, S.; Nouren, S.; Bhatti, H.N.; Iqbal, D.N.; Iftikhar, S.; Majeed, J.; Mustafa, R.; Nisar, N.; Nisar, J.; Nazir, A.; et al. Green Synthesis, Characterization and Photocatalytic Applications of Silver Nanoparticles Using Diospyros Lotus. Green Process. Synth. 2020, 9, 87–96. [Google Scholar] [CrossRef]
- Rawat, V.; Sharma, A.; Bhatt, V.P.; Singh, R.P.; Maurya, I.K. Sunlight Mediated Green Synthesis of Silver Nanoparticles Using Polygonatum Graminifolium Leaf Extract and Their Antibacterial Activity. Mater. Today Proc. 2020, 29, 911–916. [Google Scholar] [CrossRef]
- Chopade, V.; Kamble, D.B. Application of Green Silver Nanoparticles Synthesized Using Leaf Extract of Tridax Procumbens for Preparation of Clinical Antimicrobial Bandages. Int. J. Pharm. Investig. 2021, 11, 10–13. [Google Scholar] [CrossRef]
- Oda, A.M.; Abdulkadhim, H.; Jabuk, S.I.; Hashim, R.; Fadhil, I.; Alaa, D.; Kareem, A. Green Synthesis of Silver Nanoparticle by Cauliflower Extract: Characterisation and Antibacterial Activity Against Storage. IET Nanobiotechnol. 2019, 13, 530–535. [Google Scholar] [CrossRef]
- Kumar, S.A.; Priyadarshini, H.S.; Paramita, A.P.; Samal, P.; Sakshi, G.; Kar, B.R.; Kiran, B.K. Green Synthesis and Biochemical Characterization of Silver Nanoparticles by Using Euphorbia Umbellata Leaf Extract and Analysis of Antimicrobial Activity Against Plant Pathogens. GSC Biol. Pharm. Sci. 2019, 8, 059–069. [Google Scholar] [CrossRef]
- Marzuk, A.F.T.; Adnan, H.; Hussein, N.N.; Oda, A.M.; Kamil, S.A.; Salah, M. Green Synthesis of Silver Nanoparticle by Ficus Cordata Leaf Extract and Study Its Antibacterial Activity. Orient. J. Chem. 2019, 35, 1195–1200. [Google Scholar] [CrossRef]
- Roy, P.; Das, B.; Mohanty, A.; Mohapatra, S. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Leaf Extract and Its Antimicrobial Study. Appl. Nanosci. 2017, 7, 843–850. [Google Scholar] [CrossRef]
- Roy, A. Silver Nanoparticles Synthesis from a Pharmaceutically Important Medicinal Plant Plumbago Zeylanica. MOJ Bioequivalence Bioavailab. 2017, 3, 118–121. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, D. Phytochemical Analysis of Crude Plant Extracts and Laboratory Synthesized Green Nanoparticles from Acacia auriculiformis A. Cunn. Ex Benth. Int. J. Zool. Investig. 2022, 8, 47–58. [Google Scholar] [CrossRef]
- Shiny, K.S.; Sundararaj, R.; Mamatha, N.C.; Lingappa, B. A New Approach to Wood Protection: Preliminary Study of Biologically Synthesized Copper Oxide Nanoparticle Formulation as an Environmental Friendly Wood Protectant Against Decay Fungi and Termites. Maderas-Cienc Tecnol. 2019, 21, 347–356. [Google Scholar] [CrossRef]
- Antony, E.; Sathiavelu, M.; Arunachalam, S. Synthesis of Silver Nanoparticles from the Medicinal Plant Bauhinia Acuminata and Biophytum Sensitivum—A Comparative Study of Its Biological Activities with Plant Extract. Int. J. Appl. Pharm. 2016, 9, 22. [Google Scholar] [CrossRef]
- Lin, J.; Weng, X.; Jin, X.; Megharaj, M.; Naidu, R.; Chen, Z. Reactivity of Iron-Based Nanoparticles by Green Synthesis Under Various Atmospheres and Their Removal Mechanism of Methylene Blue. RSC Adv. 2015, 5, 70874–70882. [Google Scholar] [CrossRef]
- Sun, H.; Cao, L.; Lu, L. Bacteria Promoted Hierarchical Carbon Materials for High-Performance Supercapacitor. Energy Environ. Sci. 2012, 5, 6206–6213. [Google Scholar] [CrossRef]
- Naz, M.; Qureshi, M.Z.; Shahbaz, A.; Haider, A.; Ikram, M.; Nafees, M.; Shahzadi, A.; Bashir, T.; Ali, S.; Blackburn, A.C.; et al. Bio-Inspired Synthesis of Silver Nanoparticles: Anticancer Drug Carrier, Catalytic and Bactericidal Potential. Nanosci. Nanotechnol. Lett. 2018, 10, 889–899. [Google Scholar] [CrossRef]
- Dey, N.; Santhiya, D.; Das, A. Bio-Inspired Synthesis of Hollow Mesoporous Bioactive Glass Nanoparticles Using Calcium Carbonate as Solid Template. ChemistrySelect 2022, 7, e202200392. [Google Scholar] [CrossRef]
- Dey, N.; Santhiya, D.; Das, A. One-Pot Synthesis of Doxorubicin-Bioactive Glass-Ceramic Hybrid Nanoparticles Through a Bio-Inspired Route for Anti-Cancer Therapy. ChemistrySelect 2023, 8, e202203664. [Google Scholar] [CrossRef]
- Zinger, A.; Sushnitha, M.; Naoi, T.; Baudo, G.; Rosa, E.D.; Chang, J.C.; Tasciotti, E.; Taraballi, F. Enhancing Inflammation Targeting Using Tunable Leukocyte-Based Biomimetic Nanoparticles. ACS Nano 2021, 15, 6326–6339. [Google Scholar] [CrossRef]
- Anh, M.N.T.; Sinh, D.T.; Thanh, N.V.K.; Trang, N.T.T.; Phong, N.T.P.; Hai, N.D. Synthesis and Characterization of Silver Nanoplates by a Seed-Mediated Method. Commun. Phys. 2019, 29, 285. [Google Scholar] [CrossRef]
- Fraeyenhoven, P.V.; Glorie, N.; Chiaverini, N.; Mortier, T. An Exploration of the “Sweet Nanochemistry” Synthesis for Silver and Gold Colloids. J. Chem. Educ. 2016, 93, 787–789. [Google Scholar] [CrossRef]
- Ranoszek-Soliwoda, K.; Tomaszewska, E.; Socha, E.; Krzyczmonik, P.; Ignaczak, A.; Orłowski, P.; Krzyżowska, M.; Celichowski, G.; Grobelny, J. The Role of Tannic Acid and Sodium Citrate in the Synthesis of Silver Nanoparticles. J. Nanopart. Res. 2017, 19, 273. [Google Scholar] [CrossRef]
- Kuzharov, A.A.; Milov, A.A.; Gerasina, J.S.; Soldatov, M.A.; Butova, V.V.; Soldatov, A.V. Effect of a Stabilizer on the Structure, Synthesis, and Tribological Properties of Silver Nanoparticles. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023, 237, 601–610. [Google Scholar] [CrossRef]
- Barani, H.; Mahltig, B. Using Microwave Irradiation to Catalyze the In-Situ Manufacturing of Silver Nanoparticles on Cotton Fabric for Antibacterial and UV-Protective Application. Cellulose 2020, 27, 9105–9121. [Google Scholar] [CrossRef]
- Kinhal, K.V.; Sinha, S.; Ravisankar, A.; Bhatt, N.; Pushpavanam, S. Simultaneous Synthesis and Separation of Nanoparticles Using Aqueous Two-Phase Systems. ACS Sustain. Chem. Eng. 2020, 8, 3013–3025. [Google Scholar] [CrossRef]
- Capek, I.; Capek, I. Noble Metal Nanoparticles. Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties; Springer: Berlin/Heidelberg, Germany, 2017; pp. 125–210. [Google Scholar]
- Kurian, S.; Gande, V.V.; Subramaniam, P.; Bauri, R. Synthesis and Separation of Silver Nanoparticles Using an Aqueous Two-Phase System with Citrate as Reducing Agent. J. Nanopart. Res. 2024, 26, 51. [Google Scholar] [CrossRef]
- Aragaw, B.A.; Alula, M.T.; Majoni, S.; King’ondu, C.K. Chemical Synthesis of Silver Nanoparticles. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 21–53. [Google Scholar]
- Bhargava, A.; Dev, A.; Mohanbhai, S.J.; Pareek, V.; Jain, N.; Choudhury, S.R.; Panwar, J.; Karmakar, S. Pre-Coating of Protein Modulate Patterns of Corona Formation, Physiological Stability and Cytotoxicity of Silver Nanoparticles. Sci. Total Environ. 2021, 772, 144797. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.; Ding, J. The Interaction between Nanoparticles-Protein Corona Complex and Cells and Its Toxic Effect on Cells. Chemosphere 2020, 245, 125624. [Google Scholar] [CrossRef]
- Rashid, M.; Sabir, S. Biosynthesis of Self-Dispersed Silver Colloidal Particles Using the Aqueous Extract of P. peruviana for Sensing Dl-Alanine. ISRN Nanotechnol. 2014, 2014, 670780. [Google Scholar] [CrossRef]
- Yaseen, B.; Gangwar, C.; Kumar, I.; Sarkar, J.; Naik, R.M. Detailed Kinetic and Mechanistic Study for the Preparation of Silver Nanoparticles by a Chemical Reduction Method in the Presence of a Neuroleptic Agent (Gabapentin) at an Alkaline PH and Its Characterization. ACS Omega 2022, 7, 5739–5750. [Google Scholar] [CrossRef]
- Pramesti, E.S.; Febriani, N.A.; ‘Aisy, R.N.; Salsabila, S.; Rachmawati, V.P.N.; Susilowati, E. Synthesis of Silver/K-Caragenan Nanocomposites Assisted with Microwave Iradiation as a Potential Antibacterial Material. J. Phys. Conf. Ser. 2022, 2190, 012004. [Google Scholar] [CrossRef]
- Sadeeq, H.A.; Awad, M.I.; Kassem, M.A. Insight into Amino Acids-Stabilized Silver Nanoparticles as a Probe for Quantification of Methionine. J. Mol. Liq. 2024, 398, 124272. [Google Scholar] [CrossRef]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Kubiński, K.; Górka, K.; Janeczko, M.; Martyna, A.; Kwaśnik, M.; Masłyk, M.; Zięba, E.; Kowalczuk, J.; Kuśtrowski, P.; Borkowski, M. Silver Is Not Equal to Silver: Synthesis and Evaluation of Silver Nanoparticles with Low Biological Activity, and Their Incorporation into C12Alanine-Based Hydrogel. Molecules 2023, 28, 1194. [Google Scholar] [CrossRef]
- Li, L.; Hu, F.; Xu, D.; Shen, S.; Wang, Q. Metal Ion Redox Potential Plays an Important Role in High-Yield Synthesis of Monodisperse Silver Nanoparticles. Chem. Commun. 2012, 48, 4728–4730. [Google Scholar] [CrossRef]
- Li, D.; Hong, B.; Fang, W.; Guo, Y.; Lin, R. Preparation of Well-Dispersed Silver Nanoparticles for Oil-Based Nanofluids. Ind. Eng. Chem. Res. 2010, 49, 1697–1702. [Google Scholar] [CrossRef]
- Sarkar, A.; Kapoor, S.; Mukherjee, T. Oleic Acid-Assisted Phase Transfer of Nanosized Silver Colloids. Res. Chem. Intermed. 2010, 36, 403–410. [Google Scholar] [CrossRef]
- Streich, C.; Stein, F.; Jakobi, J.; Ingendoh-Tsakmakidis, A.; Heine, N.; Rehbock, C.; Winkel, A.; Grade, S.; Kühnel, M.; Migunov, V. The Origin of the Intracellular Silver in Bacteria: A Comprehensive Study Using Targeting Gold–Silver Alloy Nanoparticles. Adv. Health Mater. 2023, 12, e2302084. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle Processing: Understanding and Controlling Aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Menelaou, M.; Fiuza-Maneiro, N.; Zheng, G.; Wei, S.; Pérez-Juste, J.; Polavarapu, L.; Sofer, Z. Oleic Acid/Oleylamine Ligand Pair: A Versatile Combination in the Synthesis of Colloidal Nanoparticles. Nanoscale Horizons 2022, 7, 941–1015. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Cabrera, L.; Xu, L.; Berensmeier, S.; Fraga-García, P. Competition at the Bio-Nano Interface: A Protein, a Polysaccharide, and a Fatty Acid Adsorb onto Magnetic Nanoparticles. ACS Appl. Bio Mater. 2022, 6, 146–156. [Google Scholar] [CrossRef]
- Sabira, O.; Drisya, N.; Ajaykumar, A.P.; Mathew, A.; Narayanan Jayaraj, K.; Binitha, V.S.; Zeena, K.V.; Roy, K.B.; Janish, P.A.; Sheena, P. From Ficus Recemosa Leaf Galls to Therapeutic Silver Nanoparticles: Antibacterial and Anticancer Applications. Pharmaceutics 2024, 16, 1025. [Google Scholar] [CrossRef]
- Madani, M.; Hosny, S.; Alshangiti, D.M.; Nady, N.; Alkhursani, S.A.; Alkhaldi, H.; Al-Gahtany, S.A.; Ghobashy, M.M.; Gaber, G.A. Green Synthesis of Nanoparticles for Varied Applications: Green Renewable Resources and Energy-Efficient Synthetic Routes. Nanotechnol. Rev. 2022, 11, 731–759. [Google Scholar] [CrossRef]
- Rosman, N.S.R.; Harun, N.A.; Idris, I.; Wan Ismail, W.I. Nanobiotechnology: Nature-Inspired Silver Nanoparticles towards Green Synthesis. Energy Environ. 2021, 32, 1183–1206. [Google Scholar] [CrossRef]
- Yadav, S.; Chamoli, S.; Kumar, P.; Maurya, P.K. Structural and Functional Insights in Polysaccharides Coated Cerium Oxide Nanoparticles and Their Potential Biomedical Applications: A Review. Int. J. Biol. Macromol. 2023, 246, 125673. [Google Scholar] [CrossRef]
- Caschera, D.; Toro, R.G.; Federici, F.; Montanari, R.; de Caro, T.; Al-Shemy, M.T.; Adel, A.M. Green Approach for the Fabrication of Silver-Oxidized Cellulose Nanocomposite with Antibacterial Properties. Cellulose 2020, 27, 8059–8073. [Google Scholar] [CrossRef]
- Shukla, A. Facile Synthesis of Silver Nanoparticle and Their Potential Application. Am. J. Nanosci. Nanotechnol. 2014, 2, 84. [Google Scholar] [CrossRef]
- Abid, J.-P.; Wark, A.W.; Brevet, P.-F.; Girault, H.H. Preparation of Silver Nanoparticles in Solution from a Silver Salt by Laser Irradiation. Chem. Commun. 2002, 7, 792–793. [Google Scholar] [CrossRef]
- Torras, M.; Roig, A. From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis. ACS Omega 2020, 5, 5731–5738. [Google Scholar] [CrossRef]
- Ranjan, P.; Nguyen, D.H.; Tanaka, K.; Suematsu, H.; Jayaganthan, R.; Sarathi, R. Synthesis, Characterisation and Formation Mechanism of Sn-0.75 Cu Solder Nanoparticles by Pulsed Wire Discharge. Appl. Nanosci. 2019, 9, 341–352. [Google Scholar] [CrossRef]
- Pfeiffer, T.V.; Feng, J.; Schmidt-Ott, A. New Developments in Spark Production of Nanoparticles. Adv. Powder Technol. 2014, 25, 56–70. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Zhao, J.; Yan, W.; Zhang, L.; Wang, Z.; Tie, W. Study on Characteristics of Nanopowders Synthesized by Nanosecond Electrical Explosion of Thin Aluminum Wire in the Argon Gas. IEEE Trans. Plasma Sci. 2013, 41, 2221–2226. [Google Scholar] [CrossRef]
- Krishnia, L.; Thakur, P.; Thakur, A. Synthesis of Nanoparticles by Physical Route. In Synthesis and Applications of Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2022; pp. 45–59. [Google Scholar]
- Mishra, D.; Manohar, A.; Pal, M.; Chaudhary, K.; Nath, N.; Kumar, N.; Bhati, G.; Khan, I.A.; Husain, S.Q. An Innovative Review on the Oscillating Drum Ball Milling Process. In International Conference on Production and Industrial Engineering; Springer: Berlin/Heidelberg, Germany, 2023; pp. 19–27. [Google Scholar]
- Gorrasi, G.; Sorrentino, A. Mechanical Milling as a Technology to Produce Structural and Functional Bio-Nanocomposites. Green Chemistry 2015, 17, 2610–2625. [Google Scholar] [CrossRef]
- Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.; Trompeta, A.-F.; Markakis, V. Manufacturing Nanomaterials: From Research to Industry. Manuf. Rev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Salama, A.; Abouzeid, R.E.; Owda, M.E.; Cruz-Maya, I.; Guarino, V. Cellulose–Silver Composites Materials: Preparation and Applications. Biomolecules 2021, 11, 1684. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef]
- Vishwanath, R.; Negi, B. Conventional and Green Methods of Synthesis of Silver Nanoparticles and Their Antimicrobial Properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Park, D.H.; Joe, Y.H.; Hwang, J.; Byeon, J.H. Evaporation-Condensation in the Presence of Unipolar Ionic Flow for Solvent-Free Production of Ultrasmall Antibacterial Particles. Chem. Eng. J. 2020, 381, 122639. [Google Scholar] [CrossRef]
- Ruan, W.; Zhou, T.; Hui, G.; Wang, Y.; Chong, X.; Wang, X.; Song, W.; Han, X.; Zhao, B. Particle Lithography-Based Patterning of Polyelectrolyte Template Films and Their Application in Fabrication of Gold/Silver Nanoparticle Assembly. J. Colloid Interface Sci. 2014, 432, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Stokes, K.; Clark, K.; Odetade, D.; Hardy, M.; Goldberg Oppenheimer, P. Advances in Lithographic Techniques for Precision Nanostructure Fabrication in Biomedical Applications. Discover Nano 2023, 18, 153. [Google Scholar] [CrossRef] [PubMed]
- Capitaine, A.; Bochet-Modaresialam, M.; Poungsripong, P.; Badie, C.; Heresanu, V.; Margeat, O.; Santinacci, L.; Grosso, D.; Garnett, E.; Sciacca, B. Nanoparticle Imprint Lithography: From Nanoscale Metrology to Printable Metallic Grids. ACS Nano 2023, 17, 9361–9373. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Lai, Y.; Chi, L. Advanced Colloidal Lithography: From Patterning to Applications. Nano Today 2018, 22, 36–61. [Google Scholar] [CrossRef]
- Tien, C.-L. Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”. Coatings 2023, 13, 467. [Google Scholar] [CrossRef]
- Popok, V.N.; Kylián, O. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano 2020, 1, 4. [Google Scholar] [CrossRef]
- Yadav, H.K.S.; Usman, S.; Ghanem, K.A.F.; Beevi, R. Synthesis of Nanomaterials for Drug Delivery. In Functionalized Nanomaterials II; CRC Press: Boca Raton, FL, USA, 2021; pp. 23–44. [Google Scholar]
- Escorcia-Díaz, D.; García-Mora, S.; Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials 2023, 13, 2586. [Google Scholar] [CrossRef]
- Majerič, P.; Rudolf, R. Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles. Materials 2020, 13, 3485. [Google Scholar] [CrossRef]
- Meierhofer, F.; Fritsching, U. Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics. Energy Fuels 2021, 35, 5495–5537. [Google Scholar] [CrossRef]
- Naser, H.; Alghoul, M.A.; Hossain, M.K.; Asim, N.; Abdullah, M.F.; Ali, M.S.; Alzubi, F.G.; Amin, N. The Role of Laser Ablation Technique Parameters in Synthesis of Nanoparticles from Different Target Types. J. Nanopart. Res. 2019, 21, 249. [Google Scholar] [CrossRef]
- Subhan, A.; Mourad, A.-H.I.; Al-Douri, Y. Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. Nanomaterials 2022, 12, 2144. [Google Scholar] [CrossRef]
- Nominé, A.V.; Gries, T.; Noel, C.; Nominé, A.; Milichko, V.; Belmonte, T. Synthesis of Nanomaterials by Electrode Erosion Using Discharges in Liquids. J. Appl. Phys. 2021, 130, 151101. [Google Scholar] [CrossRef]
- Mehta, T.; Mishra, R.; Pansara, C.; Dhal, C.; Dhas, N.; Hariharan, K.; Patel, J.K. Manufacturing Techniques for Carbon Nanotubes, Gold Nanoparticles, and Silver Nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 397–420. [Google Scholar]
- Nene, A.; Galluzzi, M.; Hongrong, L.; Somani, P.; Ramakrishna, S.; Yu, X.-F. Synthetic Preparations and Atomic Scale Engineering of Silver Nanoparticles for Biomedical Applications. Nanoscale 2021, 13, 13923–13942. [Google Scholar] [CrossRef]
- Ghazali, S.Z.; Mohamed Noor, N.R.; Mustaffa, K.M.F. Anti-Plasmodial Activity of Aqueous Neem Leaf Extract Mediated Green Synthesis-Based Silver Nitrate Nanoparticles. Prep. Biochem. Biotechnol. 2022, 52, 99–107. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.B.M.S.; Ong, H.C. Green Approaches in Synthesising Nanomaterials for Environmental Nanobioremediation: Technological Advancements, Applications, Benefits and Challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Z.; Zhang, L.; Tayebee, R.; Pourmojahed, S.; Shahri, E.E.; Chen, X. Studying Loading of 5-Fluorouracil onto the Surface of Gold–Silver Nanocomposite Utilizing DLS and UV–Vis Spectroscopy. Chem. Pap. 2023, 77, 6135–6145. [Google Scholar] [CrossRef]
- Velidandi, A.; Dahariya, S.; Pabbathi, N.P.P.; Kalivarathan, D.; Baadhe, R.R. A Review on Synthesis, Applications, Toxicity, Risk Assessment and Limitations of Plant Extracts Synthesized Silver Nanoparticles. NanoWorld J. 2020, 6, 35–60. [Google Scholar] [CrossRef]
- Zulfiqar, Z.; Khan, R.R.M.; Summer, M.; Saeed, Z.; Pervaiz, M.; Rasheed, S.; Shehzad, B.; Kabir, F.; Ishaq, S. Plant-Mediated Green Synthesis of Silver Nanoparticles: Synthesis, Characterization, Biological Applications, and Toxicological Considerations: A Review. Biocatal. Agric. Biotechnol. 2024, 57, 103121. [Google Scholar] [CrossRef]
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Chang, M.-C.; Chien, H.-W. Effect of Codeposition of Polydopamine with Polyethylenimine or Poly (Ethylene Glycol) Coatings on Silver Nanoparticle Synthesis. Langmuir 2023, 39, 6895–6904. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Khan, M.N.; Hayat, K.; Ahmad, T.; Shams, D.F.; Khan, W.; Tirth, V.; Rehman, G.; Muhammad, W.; Elhadi, M. Investigating the Antibacterial and Anti-Inflammatory Potential of Polyol-Synthesized Silver Nanoparticles. ACS Omega 2024, 9, 13208–13216. [Google Scholar] [CrossRef] [PubMed]
- Albulym, O.; Hussien, M.S.A.; Kilany, M.; Zahran, H.Y.; Eid, R.A.; Yahia, I.S.; Abutalib, M.M. 5-Minute Synthesis of Gelatinous Silver Nanoparticles Using Microwave Radiation: Plasmonic Optical Spectroscopy and Antimicrobial Activity. Optik (Stuttg) 2021, 228, 166139. [Google Scholar] [CrossRef]
- Zhang, Y.; Larionov, K.S.; Zhang, S.; Sobolev, N.A.; Konstantinov, A.I.; Volkov, D.S.; Suslova, E.V.; Chernov, V.E.; Poloskov, A.I.; Glushakov, R.I. Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications. Polymers 2024, 16, 587. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, S.; Liao, K.-S.; Wang, A.J.; Zhu, Z.; McElhenny, B.P.; Bao, J.; Curran, S.A. Sol-Gel Synthesis of Stabilized Silver Nanoparticles in an Organosiloxane Matrix and Its Optical Nonlinearity. Chem. Phys. 2020, 532, 110610. [Google Scholar] [CrossRef]
- Srinivasan, L.V.; Rana, S.S. A Critical Review of Various Synthesis Methods of Nanoparticles and Their Applications in Biomedical, Regenerative Medicine, Food Packaging, and Environment. Discov. Appl. Sci. 2024, 6, 371. [Google Scholar] [CrossRef]
- Thathapudi, J.J.; Shobini, J. A Plausible Antibacterial Green Synthesized AgNPs from Tridax Procumbens Leaf-Flower Extract. J. Pure Appl. Microbiol. 2018, 12, 2135–2142. [Google Scholar] [CrossRef]
- Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.; Rashid, U. Green Synthesis of Silver Nanoparticles Through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities Against Helicobacter Pylori. Int. J. Mol. Sci. 2012, 13, 9923–9941. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Mohamed, S.R.; El-Naggar, K. Green Synthesis of Silver Nanoparticles Using Egyptian Propolis Extract and Its Antimicrobial Activity. Egypt. J. Chem. 2021, 65, 453–464. [Google Scholar] [CrossRef]
- Lade, B.D.; Shanware, A. Phytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles. In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Le, H.T.; Nguyen, L.A. Biosynthesis, Characterization and Photocatalytic Activity of Silver Nanoparticles Produced from AgNO3 Solution Using Aqueous Extract of Ocimum bacilicum L. Leaf as the Reducing Agent. GSC Adv. Res. Rev. 2023, 14, 151–158. [Google Scholar] [CrossRef]
- Suci, A.; Sabarudin, A.; Masruri, M.; Sumitro, S.B. Characterization and Antibacterial Application of Biosynthesized Silver Nanoparticles Using Piper Retrofractum Vahl Fruit Extract as Bioreductor. J. Appl. Pharm. Sci. 2022, 12, 103–114. [Google Scholar] [CrossRef]
- Ameh, T.; Gibb, M.; Stevens, D.; Pradhan, S.H.; Braswell, W.E.; Sayes, C.M. Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. Nanomaterials 2022, 12, 2402. [Google Scholar] [CrossRef]
- Tailor, G.; Yadav, B.; Chaudhary, J.; Joshi, M.; Suvalka, C. Green Synthesis of Silver Nanoparticles Using Ocimum Canum and Their Anti-Bacterial Activity. Biochem. Biophys. Rep. 2020, 24, 100848. [Google Scholar] [CrossRef]
- Balashanmugam, P.; Prabhu, D.; Devasena, T.; Song, H.J.; Jung, Y.; Kim, H.J.; Rangarajulu, S.K. Facile Synthesis of Silver Nanoparticles Using Asian Spider Flower and Its in Vitro Cytotoxic Activity Against Human Breast Carcinoma Cells. Processes 2020, 8, 430. [Google Scholar] [CrossRef]
- Erdoğan, Ö.; Paşa, S.; Çevik, Ö. Green Synthesis and Characterization of Anticancer Effected Silver Nanoparticles with Silverberry (Elaeagnus angustifolia) Fruit Aqueous Extract. Int. J. Pure Appl. Sci. 2021, 7, 391–400. [Google Scholar] [CrossRef]
- Akinsipo, O.B.; Mustapha, T.O.; Adams, A.N. Biosynthesis and Characterization of Silver Nanoparticles Using the Aqueous Extract of Acanthus Montanus Leaves Extract. J. Chem. Soc. Niger. 2022, 47, 203–213. [Google Scholar] [CrossRef]
- Vijayakumar; Manjunath, B.R.; Hiregoudar, S.; Dinesha, B.L.; Vidya, M.; Pramod, G. Characterization and Antibacterial Efficacy of Silver Nanoparticles Extracted from Neem (Azadirachta indica) Leaf Extract. Int. J. Chem. Stud. 2021, 9, 1033–1038. [Google Scholar] [CrossRef]
- Widdatallah, M.O.; Mohamed, A.A.; Alrasheid, A.A.; Widatallah, H.A.; Yassin, L.F.; Eltilib, S.H.; Ahmed, S. Green Synthesis of Silver Nanoparticles Using Nigella sativa Seeds and Evaluation of Their Antibacterial Activity. Adv. Nanopart. 2020, 9, 41–48. [Google Scholar] [CrossRef]
- Joshi, S.C.; Kaushik, U.; Upadhyaya, A.; Sharma, P. Green Technology Mediated Synthesis of Silver Nanoparticles from Momordica Charantia Fruit Extract and Its Bactericidal Activity. Asian J. Pharm. Clin. Res. 2017, 10, 196. [Google Scholar] [CrossRef]
- Qayyum, A.; Malik, T.; Mushtaq, M.; Ali, S.R. Rosemarinus Officinalis Mediated Synthesis of Silver Nanoparticles and Its Activity Against Pathogenic Fungal Strains. TJNPR 2020, 4, 249–254. [Google Scholar] [CrossRef]
- Bagyalakshmi, J.; Haritha, H. Green Synthesis and Characterization of Silver Nanoparticles Using Pterocarpus Marsupium and Assessment of Its in Vitro Antidiabetic Activity. Am. J. Adv. Drug Deliv. 2017, 5, 118–130. [Google Scholar] [CrossRef]
- Venkatadri, B.; Shanparvish, E.; Rameshkumar, M.R.; Arasu, M.V.; Al-Dhabi, N.A.; Ponnusamy, V.K.; Agastian, P. Green Synthesis of Silver Nanoparticles Using Aqueous Rhizome Extract of Zingiber Officinale and Curcuma Longa: In-Vitro Anti-Cancer Potential on Human Colon Carcinoma HT-29 Cells. Saudi J. Biol. Sci. 2020, 27, 2980–2986. [Google Scholar] [CrossRef] [PubMed]
- Vetrivel, C.; Balasubramanian, B.; Durairaj, K.; Park, S.; Maluventhan, V.; Kaul, T.; Liu, W.C.; Maruthupandian, A. Biological Mediated Ag Nanoparticles from Barleria longiflora for Antimicrobial Activity and Photocatalytic Degradation Using Methylene Blue. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2424–2430. [Google Scholar] [CrossRef]
- Sohail; Amara, U.; Shad, S.; Ilyas, N.; Manaf, A.; Raja, N.I.; Mashwani, Z.-R. In Vitro Germination and Biochemical Profiling of Brassica napus in Response to Biosynthesised Zinc Nanoparticles. IET Nanobiotechnol. 2018, 13, 46–51. [Google Scholar] [CrossRef]
- Moond, M.; Singh, S.; Sangwan, S.; Devi, P.; Beniwal, A.; Rani, J.; Kumari, A.; Rani, S. Biosynthesis of Silver Nanoparticles Utilizing Leaf Extract of Trigonella foenum-graecum L. for Catalytic Dyes Degradation and Colorimetric Sensing of Fe3+/Hg2+. Molecules 2023, 28, 951. [Google Scholar] [CrossRef]
- Adamčík, J.; Jung, J.-M.; Flakowski, J.; Rios, P.D.L.; Dietler, G.; Mezzenga, R. Understanding Amyloid Aggregation by Statistical Analysis of Atomic Force Microscopy Images. Nat. Nanotechnol. 2010, 5, 423–428. [Google Scholar] [CrossRef]
- Mohammed, G.M.; Hawar, S.N. Green Biosynthesis of Silver Nanoparticles from Moringa Oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. Int. J. Biomater. 2022, 2022, 4136641. [Google Scholar] [CrossRef]
- Shobana, N.; Prakash, P.; Samrot, A.V.; Saigeetha, S.; Sathiyasree, M.; Ramanathan, T.; Visvanathan, S.; Mohanty, B.K.; Sabesan, G.S.; Dhiva, S.; et al. Evaluation of the Toxic Effect of Bauhinia Purpurea Mediated Synthesized Silver Nanoparticles Against In-Vitro and in-Vivo Models. Toxics 2022, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha Indica Linn: Biogenic Synthesis of Silver and Gold Nanoparticles and Their Cytotoxic Effects Against MDA-MB-231, Human Breast Cancer Cells. Biotechnol. Rep. 2014, 4, 42–49. [Google Scholar] [CrossRef]
- Mohamed, D.S.; El-Baky, R.M.A.; Sandle, T.; Mandour, S.; Ahmed, E.F. Antimicrobial Activity of Silver-Treated Bacteria Against Other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics 2020, 9, 181. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Yang, D.C. The Development of a Green Approach for the Biosynthesis of Silver and Gold Nanoparticles by Using Panax ginseng root Extract, and Their Biological Applications. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1–8. [Google Scholar] [CrossRef]
- Chavva, S.R.; Deshmukh, S.K.; Kanchanapally, R.; Tyagi, N.; Coym, J.W.; Singh, A.P.; Singh, S. Epigallocatechin Gallate-Gold Nanoparticles Exhibit Superior Antitumor Activity Compared to Conventional Gold Nanoparticles: Potential Synergistic Interactions. Nanomaterials 2019, 9, 396. [Google Scholar] [CrossRef]
- Segura, R.; Vasquez, G.; Colson, E.; Gerbaux, P.; Frischmon, C.; Nesic, A.; García, D.E.; Cabrera-Barjas, G. Phytostimulant Properties of Highly Stable Silver Nanoparticles Obtained with Saponin Extract from Chenopodium quinoa. J. Sci. Food Agric. 2020, 100, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Qin, S.; Wei, Y.; Liu, S.; Peng, H.; Li, Q.; Luo, L.; Lv, M. Silver Nanoparticles Exert Concentration-dependent Influences on Biofilm Development and Architecture. Cell Prolif. 2019, 52, e12616. [Google Scholar] [CrossRef]
- Jahangir, H.S.; Kumar, T.; Concelia, M.M.; Alamelu, R. Green Synthesis, Characterization & Antibacterial Studies of Silver (Ag) and Zinc Oxide (Zno) Nanoparticles. J. Pure Appl. Microbiol. 2020, 14, 1999–2008. [Google Scholar] [CrossRef]
- El-Alfy, W.; Ismaiel, O.A.; El-Mammli, M.Y.; Shalaby, A. Application of Silver Nanoparticles for the Spectrophotometric Determination of Cefdinir and Cefepime HCl in Pharmaceutical Preparations and Human Urine Samples. Nano Biomed. Eng. 2019, 11, 381–390. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiao, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of Silver Nanoparticles Using Endophytic Bacteria and Their Role in Inhibition of Rice Pathogenic Bacteria and Plant Growth Promotion. RSC Adv. 2019, 9, 29293–29299. [Google Scholar] [CrossRef]
- Ranjan, R.; Dandapat, S.; Kumar, M.; Sinha, M. Synthesis and Characterization of Cuscuta Reflexa (Roxb.) Aqueous Extract Mediated Silver Nanoparticles. J. Anal. Pharm. Res. 2019, 8, 80–83. [Google Scholar] [CrossRef]
- Pipriya, S.; Kundu, N.; Tiwari, U. Green Synthesis, Characterization and Antioxidant Activity of Silver Nanoparticles in Extracts of Acorus Calamus and Agaricus Bisporus. Int. J. Biochem. Res. Rev. 2018, 21, 1–15. [Google Scholar] [CrossRef]
- Han, J.S.; Gurunathan, S.; Choi, Y.-J.; Kim, J.-H. Dual Functions of Silver Nanoparticles in F9 Teratocarcinoma Stem Cells, a Suitable Model for Evaluating Cytotoxicity- and Differentiation-Mediated Cancer Therapy. Int. J. Nanomed. 2017, 12, 7529–7549. [Google Scholar] [CrossRef]
- Ansari, M.S.; Gupta, N.P.; Hemal, A.K.; Dogra, P.N.; Seth, A.; Aron, M.; Singh, T.P. Spectrum of Stone Composition: Structural Analysis of 1050 Upper Urinary Tract Calculi from Northern India. Int. J. Urol. 2005, 12, 12–16. [Google Scholar] [CrossRef]
- Azizi, M.; Sedaghat, S.; Tahvildari, K.; Derakhshi, P.; Ghaemi, A. Synthesis of Silver Nanoparticles Using Peganum harmala Extract as a Green Route. Green Chem. Lett. Rev. 2017, 10, 420–427. [Google Scholar] [CrossRef]
- Dorniani, D.; Hussein, M.Z.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Ahmad, Z. Preparation of Fe3O4 Magnetic Nanoparticles Coated with Gallic Acid for Drug Delivery. Int. J. Nanomed. 2012, 7, 5745–5756. [Google Scholar] [CrossRef]
- Saka, A.; Shifera, Y.; Jule, L.T.; Badassa, B.; Nagaprasad, N.; Shanmugam, R.; Dwarampudi, L.P.; Seenivasan, V.; Ramaswamy, K. Biosynthesis of TiO2 Nanoparticles by Caricaceae (Papaya) Shell Extracts for Antifungal Application. Sci. Rep. 2022, 12, 15960. [Google Scholar] [CrossRef]
- Lian, W.; Gan, M. Fabrication of Folic Acid-Cysteamine Modified AgNPs as Promising Contrast Agent for CT Imaging. Preprint 2023, 1, 1–21. [Google Scholar] [CrossRef]
- Kousar, S.; Iqbal, A.; Rasool, S.; Iqbal, H.M. Role of Nanoparticles in Elimination of Biofilm Produced by Pathogenic Bacteria. J. Contemp. Pharm. 2022, 6, 23–31. [Google Scholar] [CrossRef]
- Sudhakar, C.; Selvam, K.; Govarthanan, M.; Balakrishnan, S.; Sudalai, A.; Stalin, M.; Selvankumar, T. Acorus Calamus Rhizome Extract Mediated Biosynthesis of Silver Nanoparticles and Their Bactericidal Activity Against Human Pathogens. J. Genet. Eng. Biotechnol. 2015, 13, 93–99. [Google Scholar] [CrossRef]
- Salmen, S.H. Characterization and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using (Indigofera Oblongifolia) Leaves Extract. Appl. Ecol. Environ. Res. 2019, 17, 12869–12876. [Google Scholar] [CrossRef]
- Rajarathinam, M.; Girilal, M.; Peter, M.K.; Kalaichelvan, P.T. Augmenting Potential Antifungal Activity of Gandhaka Rasayana (A Siddha Compound) Using Green Synthesized Silver Nanoparticles from Couroupita Guianensis Leaf Extract Against Selected Pathogenic Strains. Int. Res. J. Pharm. 2013, 4, 234–239. [Google Scholar] [CrossRef]
- Murdock, R.C.; Braydich-Stolle, L.K.; Schrand, A.M.; Schlager, J.J.; Hussain, S.M. Characterization of Nanomaterial Dispersion in Solution Prior to in Vitro Exposure Using Dynamic Light Scattering Technique. Toxicol. Sci. 2007, 101, 239–253. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Nhi, T.T.Y.; Nhi, N.T.V.; Cuc, T.T.T.; Tuan, P.M.; Nguyen, D.H. Comparative Study of the Silver Nanoparticle Synthesis Ability and Antibacterial Activity of the Piper betle L. and Piper Sarmentosum Roxb. Extracts. J. Nanomater. 2021, 2021, 5518389. [Google Scholar] [CrossRef]
- Chavan, A.B.; Goyal, S.; Patel, A.M. Formulation of Silver Nanoparticles Using Gymnema Sylvestre Leaf Extract and In-Vitro Anti-Diabetic Activity. J. Pharm. Res. Int. 2022, 34, 39–49. [Google Scholar] [CrossRef]
- Sugunakar, Y.J.; Shankar, C.P. Green Synthesis of Silver Nanoparticles from Fractionated Annona Reticulata Leaf Extract in Different Solvents and Analysis of Its Antioxidant and Antibacterial Activity. Curr. Trends Biotechnol. Pharm. 2020, 14, 289–301. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Biswas, K.; Jena, S.K.; Hashem, A.; Abd_Allah, E.F.; Mohanta, T.K. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front. Microbiol. 2020, 11, 1143. [Google Scholar]
- Kumar, D.G. Antioxidant, Antibacterial, Antidiabetic Potential and Genotoxicity of Silver Nanoparticles Using Leaf Extract of Curcuma Longa: A Novel Green Approach. Int. Res. J. Pharm. 2019, 10, 127–135. [Google Scholar] [CrossRef]
- Samoilova, N.A.; Krayukhina, M.A.; Vyshivannaya, O.V.; Blagodatskikh, I.V. Investigation of the Binding of Lectins with Polymer Glycoconjugates and the Glycoconjugates Containing Silver Nanoparticles by Means of Optical Spectroscopy and Light Scattering. Polym. Sci. Ser. A 2022, 64, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Haase, K.; Pelling, A.E. Investigating Cell Mechanics with Atomic Force Microscopy. J. R. Soc. Interface 2015, 12, 20140970. [Google Scholar] [CrossRef]
- Paulkumar, K.; Radhamani, J.; Parvathiraja, C.; Muthusamy, N.; Thangapandi, E.J.J.S.B.; Thangapandi, J.R.; Balakrishnan, S.; Rajeshkumar, S. Green Synthesis of Multifaceted Silver Nanoparticles Using the Flower Extract of Aerva lanata and Evaluation of Its Biological and Environmental Applications. ChemistrySelect 2020, 5, 2322–2331. [Google Scholar] [CrossRef]
- Satyavani, K.; Selvaraj, G.; Ramanathan, T.; Balasubramanian, T. Biomedical Potential of Silver Nanoparticles Synthesized from Calli Cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 2011, 9, 43. [Google Scholar] [CrossRef]
- George, S.; Lin, S.; Ji, Z.; Thomas, C.R.; Li, L.; Mecklenburg, M.; Meng, H.; Wang, X.; Zhang, H.; Xia, T.; et al. Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano 2012, 6, 3745–3759. [Google Scholar] [CrossRef]
- Jagtap, R.R.; Garud, A.; Puranik, S.S.; Rudrapal, M.; Ansari, M.A.; Alomary, M.N.; Alshamrani, M.; Salawi, A.; Almoshari, Y.; Khan, J.; et al. Biofabrication of Silver Nanoparticles (AgNPs) Using Embelin for Effective Therapeutic Management of Lung Cancer. Front. Nutr. 2022, 9, 960674. [Google Scholar] [CrossRef]
- Charghadchi, M.; Gharari, Z.; Sadighian, S.; Yazdinezhad, A.; Sharafi, A. Green Synthesized Silver Nanostructure Using Rhus Coriaria Fruit Extract Inhibits the Growth of Malignant McF-7 Cell Line. Braz. Arch. Biol. Technol. 2021, 64, e21210069. [Google Scholar] [CrossRef]
- Lade, B.D.; Shanware, A.; Barapatre, R.M. Synthesis, Characterization of Dichlorofluorescein Silver Nanoparticles (DCF-SNPs) and Their Effect on Seed Germination of Vigna radiata. In Silver Micro-Nanoparticles—Properties, Synthesis, Characterization, and Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Adebayo, I.A.; Usman, A.I.; Shittu, F.B.; Ismail, N.Z.; Arsad, H.; Muftaudeen, T.K.; Samian, M.R. Boswellia dalzielii-Mediated Silver Nanoparticles Inhibited Acute Myeloid Leukemia (AML) Kasumi-1 Cells by Inducing Cell Cycle Arrest. Bioinorg. Chem. Appl. 2020, 2020, 8898360. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Mehalingam, P.; Selvam, G.S. Biosynthesis and Characterization of Silver Nanoparticles Using Ginger Spent and Their Antibacterial Activity. Curr. Bot. 2021, 12, 174–179. [Google Scholar] [CrossRef]
- Juling, S.; Niedzwiecka, A.; Böhmert, L.; Lichtenstein, D.; Selve, S.; Braeuning, A.; Thünemann, A.F.; Krause, E.; Lampen, A. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects. J. Proteome Res. 2017, 16, 4020–4034. [Google Scholar] [CrossRef]
- Sandhoff, R.; Gröne, H.J. Rat Kidney Lipid Composition Addressed by Mass Spectrometry Imaging. Kidney Int. 2016, 90, 1129–1130. [Google Scholar] [CrossRef]
- Haris, P.I.; Chapman, D. The Conformational Analysis of Peptides Using Fourier Transform IR Spectroscopy. Biopolymers 1995, 37, 251–263. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus Through ROS-Mediated Signaling Pathways. ACS Appl. Mater. Interfaces 2016, 8, 24385–24393. [Google Scholar] [CrossRef] [PubMed]
- Downes, A.; Mouras, R.; Elfick, A. Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation. J. Biomed. Biotechnol. 2010, 2010, 101864. [Google Scholar] [CrossRef]
- Rakovitsky, N.; Frenk, S.; Kon, H.; Schwartz, D.; Temkin, E.; Solter, E.; Paikin, S.; Cohen, R.; Schwaber, M.J.; Carmeli, Y.; et al. Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: A Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella Pneumoniae Outbreak in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2020, 58, e00098-20. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, K.; Trevisan, J.; Owens, G.; Keating, P.; Wood, N.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F. Fourier-Transform Infrared Spectroscopy Coupled with a Classification Machine for the Analysis of Blood Plasma or Serum: A Novel Diagnostic Approach for Ovarian Cancer. Analyst 2013, 138, 3917–3926. [Google Scholar] [CrossRef]
- Alkhuder, K. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy: A Universal Analytical Technique with Promising Applications in Forensic Analyses. Int. J. Leg. Med. 2022, 136, 1717–1736. [Google Scholar] [CrossRef]
- Viana, M.R.P.; Melo, I.M.A.; Batista, N.J.C.; Raniero, L.; Canevari, R.d.A. Micronucleus and FTIR Spectroscopy Analysis as Screening Tests for HPV Vírus Detection. Res. Soc. Dev. 2022, 11, e20111636823. [Google Scholar] [CrossRef]
- Keren-Paz, A.; Najjar-Debbiny, R. Analysis of Four Carbapenem-Resistant Acinetobacter baumannii Outbreaks Using Fourier-Transform Infrared Spectroscopy. Infect. Control. Hosp. Epidemiol. 2022, 44, 991–993. [Google Scholar] [CrossRef]
- Lin, S.-Y. Current and Potential Applications of Simultaneous DSC-FTIR Microspectroscopy for Pharmaceutical Analysis. J. Food Drug Anal. 2021, 29, 182. [Google Scholar] [CrossRef]
- Arble, C.; Guo, H.; Matruglio, A.; Gianoncelli, A.; Vaccari, L.; Birarda, G.; Kolmakov, A. Addressable Graphene Encapsulation of Wet Specimens on a Chip for Optical, Electron, Infrared and X-Ray Based Spectromicroscopy Studies. Lab Chip 2021, 21, 4618–4628. [Google Scholar] [CrossRef]
- Eskandari, V.; Sahbafar, H.; Zeinalizad, L.; Mahmoudi, R.; Karimpour, F.; Hadi, A.; Bardania, H. Coating of Silver Nanoparticles (AgNPs) on Glass Fibers by a Chemical Method as Plasmonic Surface-Enhanced Raman Spectroscopy (SERS) Sensors to Detect Molecular Vibrations of Doxorubicin (DOX) Drug in Blood Plasma. Arab. J. Chem. 2022, 15, 104005. [Google Scholar] [CrossRef]
- Tian, L.; Song, X.; Liu, T.; Li, A.; Ning, Y.; Hua, X.; Liang, D. A Review of Spectroscopic Probes Constructed from Aptamer-Binding Gold/Silver Nanoparticles or Their Dimers in Environmental Pollutants’ Detection. Anal. Sci. 2022, 38, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Vasil’kov, A.; Batsalova, T.; Dzhambazov, B.; Naumkin, A. XPS Study of Silver and Copper Nanoparticles Demonstrated Selective Anticancer, Proapoptotic, and Antibacterial Properties. Surf. Interface Anal. 2021, 54, 189–202. [Google Scholar] [CrossRef]
- Gudz, K.Y.; Matveev, A.T.; Permyakova, E.S.; Bondarev, A.V.; Slukin, P.V.; Ignatov, S.G.; Shtansky, D.V. Nanostructured Hexagonal BN Coating-Supported Silver and Iron Oxide Nanoparticles and Related Bactericidal and Fungicidal Activities. Appl. Surf. Sci. 2022, 603, 154418. [Google Scholar] [CrossRef]
- Talabani, R.F.; Hamad, S.M.; Barzinjy, A.A.; Demir, U. Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation. Nanomaterials 2021, 11, 2421. [Google Scholar] [CrossRef]
- Vasquez, E.S.; Prehn, E.M.; Walters, K.B. Assessing Magnetic Iron Oxide Nanoparticle Properties under Different Thermal Treatments. J. Therm. Anal. Calorim. 2019, 143, 35–46. [Google Scholar] [CrossRef]
- Jayawardena, H.S.N.; Liyanage, S.H.; Rathnayake, K.; Patel, U.; Yan, M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal. Chem. 2021, 93, 1889–1911. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, E.; Banash, M. Thermal Analysis of Nanoparticles: Methods, Kinetics, and Recent Advances. In Modeling, Characterization, and Production of Nanomaterials; Woodhead Publishing: Sawston, UK, 2023; pp. 535–547. [Google Scholar]
- Rodríguez-Estupiñán, P.; Miranda-Carvajal, I.; Campos, P.C.; Guerrero-Fajardo, C.A.; Giraldo, L.; Moreno-Piraján, J.C. Graphene-Based Materials: Analysis through Calorimetric Techniques. J. Therm. Anal. Calorim. 2022, 147, 9301–9351. [Google Scholar] [CrossRef]
- Seifi, H.; Gholami, T.; Seifi, S.; Ghoreishi, S.M.; Salavati-Niasari, M. A Review on Current Trends in Thermal Analysis and Hyphenated Techniques in the Investigation of Physical, Mechanical and Chemical Properties of Nanomaterials. J. Anal. Appl. Pyrolysis 2020, 149, 104840. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Kim, I.S.; Ni, Q.Q. A Comparative Study on Synthesis of AgNPs on Cellulose Nanofibers by Thermal Treatment and DMF for Antibacterial Activities. Mater. Sci. Eng. C 2019, 98, 1179–1195. [Google Scholar] [CrossRef]
- Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) Against Multidrug-Resistant Pathogens. Bioinorg. Chem. Appl. 2019, 2019, 4649506. [Google Scholar] [CrossRef]
- Hendi, S.S.; Shiri, M.; Poormoradi, B.; Alikhani, M.Y.; Afshar, S.; Farmani, A. Antibacterial Effects of a 940 Nm Diode Laser with/ without Silver Nanoparticles Against Enterococcus faecalis. J. Lasers Med. Sci. 2021, 12, e73. [Google Scholar] [CrossRef]
- Nayyar, P.; Sethi, A.; Thakur, D.; Khullar, S.; Gayati, S.; Adarsh, K. Antibacterial Effect of Silver Nanoparticle Gel as an Intracanal Medicament in Combination with Other Medicaments Against Enterococcus Faecalis: An in Vitro Study. J. Pharm. Bioallied Sci. 2021, 13, S408–S411. [Google Scholar] [CrossRef]
- Pandian, S.R.K.; Deepak, V.; Kalishwaralal, K.; Viswanathan, P.C.; Gurunathan, S. Mechanism of Bactericidal Activity of Silver Nitrate—A Concentration Dependent Bi-Functional Molecule. Braz. J. Microbiol. 2010, 41, 805–809. [Google Scholar] [CrossRef]
- Pramod, G.; Sharma, K.; Malviya, R. Toxicity and Application of Nano-Silver in Multi-Drug Resistant Therapy. Lett. Appl. NanoBioSci. 2020, 9, 824–829. [Google Scholar] [CrossRef]
- Allemailem, K.S.; Khadri, H.; Azam, M.; Khan, M.A.; Rahmani, A.H.; Alrumaihi, F.; Khateef, R.; Ansari, M.A.; Alatawi, E.A.; Alsugoor, M.H. Ajwa-Dates (Phoenix Dactylifera)-Mediated Synthesis of Silver Nanoparticles and Their Anti-Bacterial, Anti-Biofilm, and Cytotoxic Potential. Appl. Sci. 2022, 12, 4537. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.M.; Huang, C. Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection. Nanoscale 2016, 8, 3040–3048. [Google Scholar] [CrossRef] [PubMed]
- Lara, H.H.; Ayala-Núñez, N.V.; Ixtepan-Turrent, L.; Rodríguez-Padilla, C. Mode of Antiviral Action of Silver Nanoparticles Against HIV-1. J. Nanobiotechnol. 2010, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Krishnan, S.; Hii, Y.S.; Pan, S.; Chan, Y.S.; Acquah, C.; Danquah, M.K.; Rodrigues, J. Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites. J. Nanostruct. Chem. 2022, 12, 809–831. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Lara, H.H.; Romero-Urbina, D.; Pierce, C.G.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; José–Yacamán, M. Effect of Silver Nanoparticles on Candida Albicans Biofilms: An Ultrastructural Study. J. Nanobiotechnol. 2015, 13, 91. [Google Scholar] [CrossRef]
- Mann, R.; Holmes, A.; McNeilly, O.; Cavaliere, R.; Sotiriou, G.A.; Rice, S.A.; Gunawan, C. Evolution of Biofilm-Forming Pathogenic Bacteria in the Presence of Nanoparticles and Antibiotic: Adaptation Phenomena and Cross-Resistance. J. Nanobiotechnol. 2021, 19, 291. [Google Scholar] [CrossRef] [PubMed]
- Dudek-Wicher, R.; Junka, A.; Migdał, P.; Korzeniowska-Kowal, A.; Wzorek, A.; Bartoszewicz, M. The Antibiofilm Activity of Selected Substances Used in Oral Health Prophylaxis. BMC Oral Health 2022, 22, 509. [Google Scholar] [CrossRef]
- Almatroudi, A.; Khadri, H.; Azam, M.; Rahmani, A.H.; Khaleefah, A.; Khaleefah, F.; Khateef, R.; Ansari, M.A.; Allemailem, K.S. Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella Sativa. Processes 2020, 8, 388. [Google Scholar] [CrossRef]
- Yousef, M.K.; Al-Ramahi, S.K. Use of Silver Biosynthesized Nanoparticles from Bacteria Pseudomonas Aeruginosa in the Treatment of Induced Bacterial Injury Infection. Int. J. Health Sci. 2022, 6, 12087–12095. [Google Scholar] [CrossRef]
- Dhoolappa, M.; Prasad, R.; Lakshmishree, K.T.; Sundareshan, S.; Choudari, M.; Nayak, U.Y. NanoBioscaffolds as Wound Healing Biomaterials in Animals. Indian J. Anim. Res. 2021, 56, 1149–1153. [Google Scholar] [CrossRef]
- Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minireview. J. Nanomater. 2016, 2016, 7614753. [Google Scholar] [CrossRef]
- Prasetyo, B.C.; Sugiharti, R.J.; Mahendra, I.N.B.; Halimah, I.; Widyasar, E.M.; Rusminah, N.; Mustika, N.I.K. Evaluation of Silver Nanoparticles Addition in Periodontal Dressing for Wound Tissue Healing by 99mTc-Ciprofloxacin. J. Young-Pharm. 2018, 11, 17–20. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Choi, Y.; Tae, J.; Park, C.; Hong, K.; Kim, J.; Song, H. Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses? Nanomaterials 2020, 10, 1645. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, S.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Bagavan, A.; Zahir, A.A.; Elango, G.; Kamaraj, C. Evaluation of Green Synthesized Silver Nanoparticles Against Parasites. Parasitol. Res. 2010, 108, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.O.; Oliveira, J.W.d.F.; Moreno, C.J.G.; Medeiros, M.J.C.d.; Fernandes-Negreiros, M.M.; Souza, F.R.M.; Pontes, D.L.; Silva, M.S.; Rocha, H.A.O. Silver Nanoparticles Containing Fucoidan Synthesized by Green Method Have Anti-Trypanosoma Cruzi Activity. Nanomaterials 2022, 12, 2059. [Google Scholar] [CrossRef]
- Ahmad, A.; Syed, F.; Shah, A.A.; Khan, Z.; Tahir, K.; Khan, A.U.; Yuan, Q. Silver and Gold Nanoparticles from Sargentodoxa Cuneata: Synthesis, Characterization and Antileishmanial Activity. RSC Adv. 2015, 5, 73793–73806. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Murata, Y.; Sugi, T.; Kato, K. Inorganic Nanoparticles Kill Toxoplasma gondii Via Changes in Redox Status and Mitochondrial Membrane Potential. Int. J. Nanomed. 2017, 12, 1647–1661. [Google Scholar] [CrossRef]
- Soni, N.; Prakash, S. Green Nanoparticles for Mosquito Control. Sci. World J. 2014, 2014, 496362. [Google Scholar] [CrossRef]
- Soni, N.; Prakash, S. Efficacy of Fungus Mediated Silver and Gold Nanoparticles Against Aedes Aegypti Larvae. Parasitol. Res. 2011, 110, 175–184. [Google Scholar] [CrossRef]
- Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic Acid-Modified Silver Nanoparticles as a Novel Therapeutic Agent Against Acanthamoeba. Parasitol. Res. 2018, 117, 3519–3525. [Google Scholar] [CrossRef]
- KarimiPourSaryazdi, A.; Ghaffarifar, F.; Tavakoli, P.; KarimiPourSaryazdi, Y.; Zaki, L.; Bahadory, S. Anti-Parasitic Effects of Herbal Extract-Based Silver Nanoparticles on the Trophozoite and Cystic Forms of Acanthamoeba Protozoa. Int. J. Enteric Pathog. 2020, 8, 84–88. [Google Scholar] [CrossRef]
- KarimiPourSaryazdi, A.; Tavakoli, P.; Barati, M.; Ghaffarifar, F.; Ghaffari, A.; KarimiPourSaryazdi, Y. Anti-Toxoplasma Effects of Silver Nanoparticles Based on Ginger Extract: An in Vitro Study. J. Arch. Mil. Med. 2020, 7, e104248. [Google Scholar] [CrossRef]
- Alavijeh, A.A.; Barati, M.; Barati, M.; Dehkordi, H.A. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv. Pharm. Bull. 2019, 9, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.-H.; Hong, K. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci. 2018, 19, 2269. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Noman, M.; Niazi, M.B.K.; Zubair, M.; Almatroudi, A.; Khurshid, M.; Tariq, F.; Mumtaz, R.; Li, B. Bioprospecting a Native Silver-Resistant Bacillus Safensis Strain for Green Synthesis and Subsequent Antibacterial and Anticancer Activities of Silver Nanoparticles. J. Adv. Res. 2020, 24, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Asiri, S.M.M.; Alzohairy, M.A.; Alomary, M.N.; Almatroudi, A.; Khan, F.A. Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents. Pharmaceuticals 2021, 14, 139. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; López-Cota, A.G.; Moreno-Vásquez, M.J.; Graciano-Verdugo, A.Z.; Quintero-Reyes, I.E.; Del-Toro-Sánchez, C.L.; Tapia-Hernández, J.A. Sustainable-Green Synthesis of Silver Nanoparticles Using Safflower (Carthamus tinctorius L.) Waste Extract and Its Antibacterial Activity. Heliyon 2021, 7, e06923. [Google Scholar] [CrossRef]
- Olmos, D.; Pontes-Quero, G.M.; Corral, A.; González-Gaitano, G.; González-Benito, J. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries. Nanomaterials 2018, 8, 60. [Google Scholar] [CrossRef]
- Ahari, H.; Karim, G.; Anvar, A.A.; Pooyamanesh, M.; Sajadis, A.; Mostaghim, A.; Heydari, S. Synthesis of the Silver Nanoparticle by Chemical Reduction Method and Preparation of Nanocomposite Based on AgNPS. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, MCM’18, Madrid, Spain, 16–18 August 2018. [Google Scholar] [CrossRef]
- Lambré, C.; Baviera, J.M.B.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; et al. Safety Assessment of the Substance Silver Nanoparticles for Use in Food Contact Materials. EFSA J. 2021, 19, e06790. [Google Scholar] [CrossRef]
- Rus, A.; Leordean, V.D.; Berce, P. Silver Nanoparticles (AgNP) Impregnated Filters in Drinking Water Disinfection. MATEC Web Conf. 2017, 137, 07007. [Google Scholar] [CrossRef]
- Tankhiwale, R.; Bajpai, S. Silver-nanoparticle-loaded Chitosan Lactate Films with Fair Antibacterial Properties. J. Appl. Polym. Sci. 2009, 115, 1894–1900. [Google Scholar] [CrossRef]
- Osanloo, M.; Assadpour, S.; Mehravaran, A.; Abastabar, M.; Akhtari, J. Niosome-Loaded Antifungal Drugs as an Effective Nanocarrier System: A Mini Review. Curr. Med. Mycol. 2019, 4, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, M.; Yang, Z.; Lin, W.-S.; Chen, L.; Tan, J. Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation. J. Funct. Biomater. 2023, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Haugen, H.J.; Makhtari, S.; Ahmadi, S.; Hussain, B. The Antibacterial and Cytotoxic Effects of Silver Nanoparticles Coated Titanium Implants: A Narrative Review. Materials 2022, 15, 5025. [Google Scholar] [CrossRef]
- Tian, T.; Dang, B.; Li, F.; Yang, K.; Wei, D.; Zhang, P. Microstructure, Mechanical and Antibacterial Properties of TiNb-Based Alloy Implanted by Silver Ions. Coatings 2021, 11, 1213. [Google Scholar] [CrossRef]
- Geng, H.; Poologasundarampillai, G.; Todd, N.M.; Devlin-Mullin, A.; Moore, K.L.; Golrokhi, Z.; Gilchrist, J.B.; Jones, E.S.; Potter, R.J.; Sutcliffe, C.; et al. Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone. ACS Appl. Mater. Interfaces 2017, 9, 21169–21180. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Kmeth, R.; Obermeier, A.; Bauer, A.; Halter, N.; Kümpel, K.; Schneider, M.; Wixforth, A.; Gollwitzer, H.; Burgkart, R.; et al. Silver Nanoparticle-Enriched Diamond-Like Carbon Implant Modification as a Mammalian Cell Compatible Surface with Antimicrobial Properties. Sci. Rep. 2016, 6, 22849. [Google Scholar] [CrossRef]
- Motas, J.G.; Gorji, N.E.; Nedelcu, D.; Brabazon, D.; Quadrini, F. XPS, SEM, DSC and Nanoindentation Characterization of Silver Nanoparticle-Coated Biopolymer Pellets. Appl. Sci. 2021, 11, 7706. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Luo, X.; Ding, Y.H. Enhancing Antibacterial Property of Porous Titanium Surfaces with Silver Nanoparticles Coatings via Electron-Beam Evaporation. J. Mater. Sci. Mater. Med. 2022, 33, 57. [Google Scholar] [CrossRef]
- Kanthasamy, R.; Algarni, M.; Leo, C.P.; Zakaria, N.A.C.; Zwawi, M. The Effects of Solvent on Superhydrophobic Polyurethane Coating Incorporated with Hydrophilic SiO2 Nanoparticles as Antifouling Paint. Polymers 2023, 15, 1328. [Google Scholar] [CrossRef]
- Jo, Y.-W.; Seo, J.H.; Choi, B.-H.; Kim, B.J.; Shin, H.H.; Hwang, B.H.; Joon, H. Surface-Independent Antibacterial Coating Using Silver Nanoparticle-Generating Engineered Mussel Glue. ACS Appl. Mater. Interfaces 2014, 6, 20242–20253. [Google Scholar] [CrossRef] [PubMed]
- Mpenyana-Monyatsi, L.; Mthombeni, N.H.; Momba, M.N.B. Cost-Effective Filter Materials Coated with Silver Nanoparticles for the Removal of Pathogenic Bacteria in Groundwater. nt. J. Environ. Res. Public Health 2012, 9, 244–271. [Google Scholar] [CrossRef]
- Gunell, M.; Haapanen, J.; Brobbey, K.J.; Saarinen, J.J.; Toivakka, M.; Mäkelä, J.M.; Huovinen, P.; Eerola, E. Antimicrobial Characterization of Silver Nanoparticle-Coated Surfaces by Touch Test Method. Nanotechnol. Sci. Appl. 2017, 10, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-C.; Mi, C. Improved Hydrothermal Aging Performance of Glass Fiber-reinforced Polymer Composites via Silica Nanoparticle Coating. J. Appl. Polym. Sci. 2019, 137, 48652. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhao, I.S.; Mei, M.L.; Li, Q.; Yu, O.Y.; Chu, C.H. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int. J. Nanomed. 2020, 15, 3181–3191. [Google Scholar] [CrossRef]
- Corrêa, J.M.; Mori, M.; Sanches, H.L.; Cruz, A.D.d.; Poiate, E.; Poiate, I.A.V.P. Silver Nanoparticles in Dental Biomaterials. Int. J. Biomater. 2015, 2015, 485275. [Google Scholar] [CrossRef] [PubMed]
- Fernandéz, C.C.; Sokolonski, A.R.; Fonseca, M.S.; Stanisić, D.; Araújo, D.B.d.; Azevedo, V.; Portela, R.W.; Tasić, L. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int. J. Mol. Sci. 2021, 22, 2485. [Google Scholar] [CrossRef]
- Lubojanski, A.; Nowak, N.; Rewak-Soroczynska, J.; Sztyler, K.; Zakrzewski, W.; Dobrzyński, W.; Szymonowicz, M.; Rybak, Z.; Wiglusz, K.; Wiglusz, R.J. Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry. Nanomaterials 2021, 11, 259. [Google Scholar] [CrossRef]
- Gandhimathi, C.; Chandrasekharan, S.; Koh, T.-W.; Bhatnagar, S.P. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles from Azadirachta Indica. Front. Microbiol. 2021, 12, 611560. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, S.; Zhang, Q.; Gao, W.; Mu, S.; Wang, B. Wound Healing Potential of Silver Nanoparticles from Hybanthus Enneaspermus on Rats. Heliyon 2024, 10, e36118. [Google Scholar] [CrossRef]
- Su, H.; Chen, Y.; Jing, X.; Zhao, X.; Sun, H.; Liu, Z.; Qiu, Y.; Zhang, Z.; Guan, H.; Meng, L. Antimicrobial, Antioxidant, and Anti-Inflammatory Nanoplatform for Effective Management of Infected Wounds. Adv. Healthc. Mater. 2024, 13, 2302868. [Google Scholar] [CrossRef] [PubMed]
- Naseer, F.; Ahmed, M.; Majid, A.; Kamal, W.; Phull, A.R. Green Nanoparticles as Multifunctional Nanomedicines: Insights into Anti-Inflammatory Effects, Growth Signaling and Apoptosis Mechanism in Cancer. Semin. Cancer Biol. 2022, 86, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Bozorgi, A.; Khazaei, M.; Soleimani, M.; Jamalpoor, Z. Application of Nanoparticles in Bone Tissue Engineering; a Review on the Molecular Mechanisms Driving Osteogenesis. Biomater. Sci. 2021, 9, 4541–4567. [Google Scholar] [CrossRef]
- Rani, G.N.; Rao, B.N.; Shamili, M.; Padmaja, J. Combined Effect of Silver Nanoparticles and Honey in Experimental Wound Healing Process in Rats. Biomed. Res. 2018, 29, 3074–3078. [Google Scholar] [CrossRef]
- Es-haghi, A.; Mashreghi, M.; Bazaz, M.R.; Tabrizi, M.H.; Darroudi, M. Fabrication of Biopolymer Based Nanocomposite Wound Dressing: Evaluation of Wound Healing Properties and Wound Microbial Load. IET Nanobiotechnol. 2017, 11, 517–522. [Google Scholar] [CrossRef]
- Banerjee, P.; Satapathy, M.K.; Mukhopahayay, A.; Das, P. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour. Bioprocess. 2014, 1, 3. [Google Scholar] [CrossRef]
- Akpınar, I.; Ünal, M.; Sar, T. Potential Antifungal Effects of Silver Nanoparticles (AgNPs) of Different Sizes against Phytopathogenic Fusarium Oxysporum F. Sp. Radicis-Lycopersici (FORL) Strains. SN Appl. Sci. 2021, 3, 506. [Google Scholar] [CrossRef]
- Mosidze, E.; Mshvildadze, V.; Legault, J.; Berashvili, D.; Jokhadze, M.; Bakuridze, L.; Bakuridze, A. Green Synthesis Os Silver Nanoparticles Using Methanolic Extracts of Gentiana Septemfida, Erysimum Contractum and Chelidonium Majus and Evaluation of Antibacterial, Antifungal and Cytotoxic Activities of Obtained Agnps. Exp. Clin. Med. Ga. 2022, 7, 1–7. [Google Scholar] [CrossRef]
- Arif, R.; Uddin, R. A Review on Recent Developments in the Biosynthesis of Silver Nanoparticles and Its Biomedical Applications. Med. Devices Sens. 2020, 4, e10158. [Google Scholar] [CrossRef]
- Antony, V.S.; Silky, V.; Raji, P.; SaiPriya, C.; Selvarani, J.A. Bioactivity Studies of Datura Metel, Aegle Marmelos, Annona Reticulata and Saraca Indica and Their Green Synthesized Silver Nanoparticle. J. Pure Appl. Microbiol. 2019, 13, 329–338. [Google Scholar] [CrossRef]
- Romero-Urbina, D.; Lara, H.H.; Velázquez-Salazar, J.J.; Arellano-Jiménez, M.J.; Larios, E.; Srinivasan, A.; Lopez-Ribot, J.L.; Yacamán, M.J. Ultrastructural Changes in Methicillin-Resistant Staphylococcus aureus induced by Positively Charged Silver Nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.J.; Shafii, S.M.; Ko, F.; Donate, G.; Wright, T.E.; Mannari, R.J.; Payne, W.G.; Smith, D.J.; Robson, M.C. Comparative Evaluation of Silver-containing Antimicrobial Dressings and Drugs. Int. Wound J. 2007, 4, 114–122. [Google Scholar] [CrossRef]
- Daphedar, A.; Taranath, T.C. Characterization and Cytotoxic Effect of Biogenic Silver Nanoparticles on Mitotic Chromosomes of Drimia Polyantha (Blatt. & McCann) Stearn. Toxicol. Rep. 2018, 5, 910–918. [Google Scholar] [CrossRef]
- Asharani, P.V.; Mun, G.L.K.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2008, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Farahani, Z.A.; Parivar, K.; Roodbari, N.H.; Farhadi, M. Comparative Study of the Cytotoxic Effect of Silver Nanoparticles on Human Lymphocytes and HPB-ALL Cell Line: As an in Vitro Study. Iran. Red Crescent Med. J. 2020, 22, e98803. [Google Scholar] [CrossRef]
- Nashaat, Y.M.; Hassan, S.A.; Labib, A.H.; Elaasar, M.S.; Negm, A. Comparative Study of the Cytotoxicty and Genotoxicity of Silver Zeolite and Nano Silver. Egypt. Dent. J. 2018, 64, 3995–4002. [Google Scholar] [CrossRef]
- Maki, A.; Lin, Y.; Aoyama, M.; Sato, K.; Gao, J.; Tsujino, H.; Nagano, K.; Higashisaka, K.; Tsutsumi, Y. Silver Nanoparticles Induce DNA Hypomethylation Through Proteasome-Mediated Degradation of DNA Methyltransferase 1. Biol. Pharm. Bull. 2020, 43, 1924–1930. [Google Scholar] [CrossRef]
- Baras, B.H.; Melo, M.A.S.; Thumbigere-Math, V.; Tay, F.R.; Fouad, A.F.; Oates, T.W.; Weir, M.D.; Cheng, L.; Xu, H.H. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. Materials 2020, 13, 1096. [Google Scholar] [CrossRef]
- Shah, K.N.; Shah, P.; Mullen, A.R.; QingQuan, C.; Southerland, M.R.; Chirra, B.; DeBerardinis, R.J.; Cannon, C.L. N-Acetyl Cysteine Abrogates Silver-Induced Reactive Oxygen Species in Human Cells without Altering Silver-Based Antimicrobial Activity. Toxicol. Lett. 2020, 332, 118–129. [Google Scholar] [CrossRef]
- Foldbjerg, R.; Dang, D.A.; Autrup, H. Cytotoxicity and Genotoxicity of Silver Nanoparticles in the Human Lung Cancer Cell Line, A549. Arch. Toxicol. 2010, 85, 743–750. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Liu, L.; Wang, Y.; Jiang, Y.; Zeng, C.; Lu, Z.; Xie, D.; Guo, J. Zinc-Based Tannin-Modified Composite Microparticulate Scaffolds with Balanced Antimicrobial Activity and Osteogenesis for Infected Bone Defect Repair. Adv. Healthc. Mater. 2023, 12, e2300303. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.; Hussain, S.M.; Schrand, A.M.; Braydich-Stolle, L.K.; Hess, K.L.; Jones, R.L.; Schlager, J.J. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. J. Phys. Chem. B 2008, 112, 13608–13619. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yang, D.-X.; Li, Y.; Bi, G.; Qian, M.; Li, Y.; Zhu, Y.; Chen, L.; Luo, W.-X. Nano-Silver Medical Antibacterial Dressing Combined with High-Flow Oxygen Therapy Facilitates Ulcer Wound Healing of Superficial Malignant Tumors. Cancer Manag. Res. 2021, 13, 9007–9013. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Lü, Z.; Lebrun, R.; Gontero, B.; Li, W. Interaction Between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. Small 2019, 15, e1900860. [Google Scholar] [CrossRef]
- Abo-Elmaaty, S.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Sheraba, N.S.; Hassan, M.; Badawy, M.S.E.M.; Ghareeb, A.; Hamed, A.A.; Gabr, E. Biofilm Inhibitory Activity of Actinomycete-Synthesized AgNPs with Low Cytotoxic Effect: Experimental and in Silico Study. Microorganisms 2022, 11, 102. [Google Scholar] [CrossRef]
- Phan, K.S.; Le, T.T.H.; Nguyen, T.M.H.; Trang, T.T.; Hoang, P.H.; To, X.T.; Nguyen, T.T.; Kim, D.P.; Ha, P.T. Co-delivery of Doxycycline, Florfenicol and Silver Nanoparticles Using Alginate/Chitosan Nanocarriers. ChemistrySelect 2022, 7, e202201954. [Google Scholar] [CrossRef]
- Kapadia, C.; Alhazmi, A.; Patel, N.; Elesawy, B.H.; Sayyed, R.Z.; Lokhandwala, F.; Haque, S.; Datta, R. Nanoparticles Combined with Cefixime as an Effective Synergistic Strategy Against Salmonella Enterica Typhi. Saudi J. Biol. Sci. 2021, 28, 4164–4172. [Google Scholar] [CrossRef]
- Zou, L.; Wang, J.; Gao, Y.; Ren, X.; Rottenberg, M.E.; Lu, J.; Holmgren, A. Synergistic Antibacterial Activity of Silver with Antibiotics Correlating with the Upregulation of the ROS Production. Sci. Rep. 2018, 8, 11131. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Mandal, M. Attenuation of Biofilm and Quorum Sensing Regulated Virulence Factors of an Opportunistic Pathogen Pseudomonas Aeruginosa by Phytofabricated Silver Nanoparticles. Microb. Pathog. 2023, 185, 106433. [Google Scholar] [CrossRef]
- Liu, S.; Cao, S.; Guo, J.; Luo, L.; Zhou, Y.; Lin, C.; Shi, J.; Fan, C.; Lv, M.; Wang, L. Graphene Oxide–Silver Nanocomposites Modulate Biofilm Formation and Extracellular Polymeric Substance (EPS) Production. Nanoscale 2018, 10, 19603–19611. [Google Scholar] [CrossRef]
- Ahmed, B.; Hashmi, A.; Khan, M.S.; Musarrat, J. ROS Mediated Destruction of Cell Membrane, Growth and Biofilms of Human Bacterial Pathogens by Stable Metallic AgNPs Functionalized from Bell Pepper Extract and Quercetin. Adv. Powder Technol. 2018, 29, 1601–1616. [Google Scholar] [CrossRef]
- Moreno Ruiz, Y.P.; de Almeida Campos, L.A.; Alves Agreles, M.A.; Galembeck, A.; Macário Ferro Cavalcanti, I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics 2023, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.; Matsui, T.; Ishihara, M. Antiviral Activity of Silver Nanoparticle/Chitosan Composites Against H1N1 Influenza a Virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) Against Various Plant Pathogenic Fungi. Mycobiology 2012, 40, 53–58. [Google Scholar] [CrossRef]
- Almansob, A.; Bahkali, A.H.; Albarrag, A.; Alshomrani, M.; Binjomah, A.; Hailan, W.A.; Ameen, F. Effective Treatment of Resistant Opportunistic Fungi Associated with Immuno-Compromised Individuals Using Silver Biosynthesized Nanoparticles. Appl. Nanosci. 2022, 12, 3871–3882. [Google Scholar] [CrossRef]
- Shi, H.; Ding, J.; Chen, C.; Yao, Q.; Zhang, W.; Fu, Y.; Wang, X.; Ruan, J. Antimicrobial Action of Biocompatible Silver Microspheres and Their Role in the Potential Treatment of Fungal Keratitis. ACS Biomater. Sci. Eng. 2021, 7, 5090–5098. [Google Scholar] [CrossRef]
- Ashrafi, M.; Bayat, M.; Mortazavi, P.; Hashemi, S.J.; Meimandipour, A. Antimicrobial Effect of Chitosan–Silver–Copper Nanocomposite on Candida Albicans. J. Nanostruct. Chem. 2020, 10, 87–95. [Google Scholar] [CrossRef]
- Hameed, A.A.; Alheety, M.A. Synthesis, Characterization and Antifungal Activity of Coated Silver Nanoparticles-Nystatin and Coated Silver Nanoparticles-Clotrimazol. Tikrit J. Pure Sci. 2018, 23, 63–70. [Google Scholar] [CrossRef]
- Al-Obaidi, H.; Petraityte, I.; Hibbard, T.; Majumder, M.; Kalgudi, R.; Zariwala, M.G. Antifungal Nanosuspensions with Surfactants and Silver for the Treatment of Onychomycosis. Eur. J. Pharm. Biopharm. 2022, 179, 194–205. [Google Scholar] [CrossRef]
- Palanisamy, D.; Gounder, B.S.; Selvaraj, K.; Kandhasamy, S.; Alqahtani, T.; Alqahtani, A.; Chidambaram, K.; Arunachalam, K.; Alkahtani, A.M.; Chandramoorthy, H.C.; et al. Synergistic Antibacterial and Mosquitocidal Effect of Passiflora Foetida Synthesized Silver Nanoparticles. Braz. J. Biol. 2024, 84, e263391. [Google Scholar] [CrossRef]
- Zein, R.; Alghoraibi, I.; Soukkarieh, C.; Alahmad, A. Investigation of Cytotoxicity of Biosynthesized Colloidal Nanosilver Against Local Leishmania Tropica: In Vitro Study. Materials 2022, 15, 4880. [Google Scholar] [CrossRef] [PubMed]
- Gajera, G.; Godse, C.; DeSouza, A.; Mehta, D.; Kothari, V. Potent Anthelmintic Activity of a Colloidal Nano-Silver Formulation (Silversol®) Against the Model Worm Caenorhabditis Elegans. BMC Res. Notes 2023, 16, 130. [Google Scholar] [CrossRef] [PubMed]
- Goel, V.; Kaur, P.; Singla, L.D.; Choudhury, D. Biomedical Evaluation of Lansium Parasiticum Extract-Protected Silver Nanoparticles Against Haemonchus Contortus, a Parasitic Worm. Front. Mol. Biosci. 2020, 7, 595646. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.; Anwar, M.M.; Saeed, H. Nanomaterials for Application in Wound Healing: Current State-of-the-Art and Future Perspectives. J. Polym. Res. 2022, 29, 91. [Google Scholar] [CrossRef]
- Kim, S.; Choi, I.H. Phagocytosis and Endocytosis of Silver Nanoparticles Induce Interleukin-8 Production in Human Macrophages. Yonsei Med. J. 2012, 53, 654–657. [Google Scholar] [CrossRef]
- Elsabahy, M.; Wooley, K.L. Cytokines as Biomarkers of Nanoparticle Immunotoxicity. Chem. Soc. Rev. 2013, 42, 5552–5576. [Google Scholar] [CrossRef]
- Morris, D.R.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R.P. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019, 11, 732. [Google Scholar] [CrossRef]
- Elfaky, M.A.; Sirwi, A.; Ismail, S.H.; Awad, H.H.; Gad, S.S. Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin. Curr. Issues Mol. Biol. 2022, 44, 2923–2938. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Control of Adaptive Immunity by the Innate Immune System. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef]
- Aderibigbe, B.A. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017, 22, 1370. [Google Scholar] [CrossRef]
- Yahya, E.B.; Jummaat, F.; Adnan, A.S.; Olaiya, N.G.; Amirul, A.-A.A.; Rizal, S.; Haafiz, M.K.M.; Khalil, H.P.S.A. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics 2020, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.K.; Kesharwani, K.; Kaul, G.; Akhir, A.; Saxena, D.; Singh, R.; Mishra, N.K.; Pandey, A.; Chopra, S.; Joshi, K.B. Amyloid-β Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents. ChemMedChem 2022, 17, e202200251. [Google Scholar] [CrossRef] [PubMed]
- Sanati, M.; Afshari, A.R.; Kesharwani, P.; Sukhorukov, V.N.; Sahebkar, A. Recent Trends in the Application of Nanoparticles in Cancer Therapy: The Involvement of Oxidative Stress. J. Control. Release 2022, 348, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Elmetwalli, A.; Abdel-Monem, M.O.; El-Far, A.H.; Ghaith, G.S.; Albalawi, N.A.N.; Hassan, J.; Ismail, N.F.; El-Sewedy, T.; Alnamshan, M.M.; ALaqeel, N.K. Probiotic-Derived Silver Nanoparticles Target MTOR/MMP-9/BCL-2/Dependent AMPK Activation for Hepatic Cancer Treatment. Med. Oncol. 2024, 41, 106. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Hameed, S.; Dai, Z. Recent Advances in Anti-Angiogenic Nanomedicines for Cancer Therapy. Nanoscale 2018, 10, 5393–5423. [Google Scholar] [CrossRef] [PubMed]
- Sambhy, V.; MacBride, M.M.; Peterson, B.R.; Sen, A. Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. J. Am. Chem. Soc. 2006, 128, 9798–9808. [Google Scholar] [CrossRef]
- Becaro, A.A.; Puti, F.C.; Corrêa, D.S.; Paris, E.C.; Marconcini, J.M.; Ferreira, M.D. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties. J. Nanosci. Nanotechnol. 2015, 15, 2148–2156. [Google Scholar] [CrossRef]
- Ahmed, O.; Sibuyi, N.R.S.; Fadaka, A.O.; Madiehe, M.A.; Maboza, E.; Meyer, M.; Geerts, G. Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics 2022, 14, 380. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Shi, Q.; Guo, G.; Wang, Q.; Tang, J.; Shen, H.; Liu, X.; Zhang, X.; Chu, P.K. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection. ACS Appl. Mater. Interfaces 2016, 8, 11162–11178. [Google Scholar] [CrossRef]
- Casolaro, M.; Casolaro, I.; Akimoto, J.; Ueda, M.; Ito, Y. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on A-Amino Acid Residues. Gels 2018, 4, 42. [Google Scholar] [CrossRef]
- Krupa, A.N.D.; Raghavan, V. AgNPs Doped TEOS Sol–Gel Coatings to Prevent the Adhesion of Marine Fouling Organisms. IET Nanobiotechnol. 2017, 12, 99–105. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials 2022, 15, 3251. [Google Scholar] [CrossRef] [PubMed]
- Malindi, Z.; Barth, S.; Abrahamse, H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022, 10, 2158. [Google Scholar] [CrossRef] [PubMed]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid. Med. Cell. Longev. 2021, 2021, 9912436. [Google Scholar] [CrossRef]
- Noga, M.; Milan, J.; Frydrych, A.; Jurowski, K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci. 2023, 24, 5133. [Google Scholar] [CrossRef]
- Mao, B.-H.; Chen, Z.-Y.; Wang, Y.-J.; Yan, S.-J. Silver Nanoparticles Have Lethal and Sublethal Adverse Effects on Development and Longevity by Inducing ROS-Mediated Stress Responses. Sci. Rep. 2018, 8, 2445. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q. Effects of Polyethylene Glycol on the Surface of Nanoparticles for Targeted Drug Delivery. Nanoscale 2021, 13, 10748–10764. [Google Scholar] [CrossRef]
- Bhandi, S.; Mehta, D.S.; Mashyakhy, M.; Chohan, H.; Testarelli, L.; Thomas, J.; Dhillon, H.; Raj, A.T.; Balaji, T.M.; Varadarajan, S.; et al. Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review. J. Clin. Med. 2021, 10, 1152. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S.D. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles Against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Suárez, V.T.; Karepina, E.; Chevallet, M.; Gallet, B.; Cottet-Rousselle, C.; Charbonnier, P.; Moriscot, C.; Michaud-Soret, I.; Bal, W.; Fuchs, A.H.; et al. Nuclear Translocation of Silver Ions and Hepatocyte Nuclear Receptor Impairment Upon Exposure to Silver Nanoparticles. Environ. Sci. Nano 2020, 7, 1373–1387. [Google Scholar] [CrossRef]
- Deng, N.; Li, H.; Li, Y.; Mo, F.; Wang, M.; Li, Z.; Chen, X.; Xu, J.; Chai, R.; Wang, H. Physiological Homeostasis Alteration and Cellular Structure Damage of Chlorella Vulgaris Exposed to Silver Nanoparticles with Various Microstructure Morphologies. Environ. Sci. Pollut. Res. 2022, 29, 26011–26020. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gupta, A.; Patade, V.Y.; Balakrishna, G.; Pandey, H.K.; Singh, A.K. Synthesis of Silver Nanoparticles Using Extract of Ocimum Kilimandscharicum and Its Antimicrobial Activity Against Plant Pathogens. SN Appl. Sci. 2019, 1, 1652. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Sajjad, W.; Zhang, Q.; Khan, I.; Ullah, K.; Wang, W. Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus carpio). Environ. Sci. Eur. 2021, 33, 14. [Google Scholar] [CrossRef]
- Younus, A.I.; Yousef, M.I.; Abdel-NabiKamel, M.; Alrawi, R.; Abdulrahman, J.M. Changes in Semen Characteristics and Sex Hormones of Rats Treated with Iron Oxide Nanoparticles, Silver Nanoparticles and Their Mixture. GSC Biol. Pharm. Sci. 2020, 12, 229–237. [Google Scholar] [CrossRef]
- Smith, J.N.; Thomas, D.; Jolley, H.; Kodali, V.; Littke, M.H.; Munusamy, P.; Baer, D.R.; Gaffrey, M.J.; Thrall, B.D.; Teeguarden, J.G. All That Is Silver Is Not Toxic: Silver Ion and Particle Kinetics Reveals the Role of Silver Ion Aging and Dosimetry on the Toxicity of Silver Nanoparticles. Part. Fibre Toxicol. 2018, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Oliaei, R.; Keshtmand, Z.; Shabani, R. The Effect of Lactobacillus casei and Bacillus coagulans Probiotics on Liver Damage Induced by Silver Nanoparticles and Expression of Bax, Bcl2 and Caspase 3 Genes in Male Rats. Eur. J. Transl. Myol. 2022, 33, 10673. [Google Scholar] [CrossRef]
- Calcaterra, H.; Shin, N.; Quirk, P.L.; Tsai, C.S. Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products. Atmosphere 2020, 11, 403. [Google Scholar] [CrossRef]
- Fehaid, A.; Elazab, S.T.; Elhadidy, M.G.; Nashar, E.M.E.; Abdalla, A.M.; Al-Khater, K.M.; Alghamdi, M.A.; Elalfy, M.M. Zinc Chloride Ameliorates the Adverse Effects of Silver Nitrates Compared to Silver Nanoparticle in Post-Natal Model of Toxicity. Mater. Sci. Res. India 2022, 19, 17–25. [Google Scholar] [CrossRef]
- Sabitha, Y.; Fatima, S. Evaluatoin of Genotoxicity of Ricinus Communis (Leaves and Seeds) by Their Silver Nano-Particles Using Comet Assay. J. Adv. Sci. Res. 2022, 13, 146–150. [Google Scholar] [CrossRef]
- Liu, L.; Kong, L. Research Progress on the Carcinogenicity of Metal Nanomaterials. J. Appl. Toxicol. 2021, 41, 1334–1344. [Google Scholar] [CrossRef]
- Gonca, S.; Özidemir, S.; Isik, Z.; M’barek, I.; Shaik, F.; Dizge, N. Synthesis of Silver Nanoparticles from Red and Green Parts of the Pistachio Hulls and Their Various In-Vitro Biological Activities. Food Chem. Toxicol. 2022, 165, 113170. [Google Scholar] [CrossRef] [PubMed]
- Dove, A.S.; Dzurny, D.I.; Dees, W.R.; Qin, N.; Nunez Rodriguez, C.C.; Alt, L.A.; Ellward, G.L.; Best, J.A.; Rudawski, N.G.; Fujii, K. Silver Nanoparticles Enhance the Efficacy of Aminoglycosides against Antibiotic-Resistant Bacteria. Front. Microbiol. 2023, 13, 1064095. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez-Gómez, R.; Arellano-García, M.E.; Toledano-Magaña, Y.; García-Ramos, J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Pestryakov, A.; Bogdanchikova, N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. Nanomaterials 2022, 12, 1066. [Google Scholar] [CrossRef]
- Chávez-Hernández, J.A.; Velarde-Salcedo, A.J.; Navarro-Tovar, G.; Gonzalez, C. Safe Nanomaterials: From Their Use, Application and Disposal to Regulations. Nanoscale Adv. 2024, 6, 1583–1610. [Google Scholar] [CrossRef]
- Sudarman, F.; Shiddiq, M.; Armynah, B.; Tahir, D. Silver Nanoparticles (AgNPs) Synthesis Methods as Heavy-Metal Sensors: A Review. Int. J. Environ. Sci. Technol. 2023, 20, 9351–9368. [Google Scholar] [CrossRef]
- Bashiri, G.; Padilla, M.S.; Swingle, K.L.; Shepherd, S.J.; Mitchell, M.J.; Wang, K. Nanoparticle Protein Corona: From Structure and Function to Therapeutic Targeting. Lab Chip 2023, 23, 1432–1466. [Google Scholar] [CrossRef]
- Baruah, K.; Konthoujam, I.; Lyndem, S.; Aguan, K.; Roy, A.S. Complexation of Turmeric and Curcumin Mediated Silver Nanoparticles with Human Serum Albumin: Further Investigation into the Protein-Corona Formation, Anti-Bacterial Effects and Cell Cytotoxicity Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122540. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.A. Clinical Translation of Silver Nanoparticles into the Market. In Silver Nanoparticles for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2024; pp. 395–432. [Google Scholar]
- Chen, L.; Wu, H.; Le, L.; Yang, P.; Fu, F.; Liu, W.; Xu, H. Exposure to Silver Nanoparticles Induces Immunological Dysfunction in Pregnant Mice. Environ. Toxicol. 2020, 35, 1161–1169. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.-B.; Cai, L. Smart Nanoparticles for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef]
- Al-Serwi, R.H.; Eladl, M.A.; El-Sherbiny, M.; Saleh, M.A.; Othman, G.; Alshahrani, S.M.; Alnefaie, R.; Jan, A.M.; Alnasser, S.M.; Albalawi, A.E. Targeted Drug Administration onto Cancer Cells Using Hyaluronic Acid–Quercetin-Conjugated Silver Nanoparticles. Molecules 2023, 28, 4146. [Google Scholar] [CrossRef]
- Rajawat, S.; Koutu, V.; Saha, S.; Malik, M.M. Biopolymers as Silver Nanoparticle Carriers for Targeted Drug Delivery. Mater. Today Proc. 2023; in press. [Google Scholar]
- Kaushal, A.; Khurana, I.; Yadav, P.; Allawadhi, P.; Banothu, A.K.; Neeradi, D.; Thalugula, S.; Barani, P.J.; Naik, R.R.; Navik, U. Advances in Therapeutic Applications of Silver Nanoparticles. Chem.-Biol. Interact. 2023, 382, 110590. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.R.; Shaheen, F.; Rafique, R.; Bal, J.; Waseem, S.; Park, T.J. Grass-Mediated Biogenic Synthesis of Silver Nanoparticles and Their Drug Delivery Evaluation: A Biocompatible Anti-Cancer Therapy. Chem. Eng. J. 2020, 407, 127202. [Google Scholar] [CrossRef]
- Pawar, A.B.; Korde, S.K.; Rakshe, D.S.; William, P.; Jawale, M.A.; Deshpande, N. Analysis of Silver Nanoparticles as Carriers of Drug Delivery System. J. Nano-Electron. Phys. 2023, 15, 04015. [Google Scholar] [CrossRef]
- Karami, M.H.; Abdouss, M.; Maleki, B. The State of the Art Metal Nanoparticles in Drug Delivery Systems: A Comprehensive Review. Nanomed. J. 2024, 11, 222. [Google Scholar]
- Singh, S.K.; Parihar, S.; Jain, S.; Ho, J.-A.A.; Vankayala, R. Light-Responsive Functional Nanomaterials as Pioneering Therapeutics: A Paradigm Shift to Combat Age-Related Disorders. J Mater. Chem. B 2024, 12, 8212–8234. [Google Scholar] [CrossRef] [PubMed]
- Abashkin, V.; Pędziwiatr-Werbicka, E.; Horodecka, K.; Zhogla, V.; Ulashchik, E.; Shmanai, V.; Shcharbin, D.; Bryszewska, M. Silver Nanoparticles Modified by Carbosilane Dendrons and PEG as Delivery Vectors of Small Interfering RNA. Int. J. Mol. Sci. 2023, 24, 840. [Google Scholar] [CrossRef]
- Dubey, A.K.; Mostafavi, E. Biomaterials-Mediated CRISPR/Cas9 Delivery: Recent Challenges and Opportunities in Gene Therapy. Front. Chem. 2023, 11, 1259435. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef]
- Pop, D.; Buzatu, R.; Moacă, E.-A.; Watz, C.; Pinzaru, S.C.; Tudoran, L.B.; Nekvapil, F.; Avram, S.; Dehelean, C.; Cretu, M.; et al. Development and Characterization of Fe3O4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. Materials 2021, 14, 3556. [Google Scholar] [CrossRef]
- Paladini, F. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef]
- May, A.; Kopecki, Z.; Carney, B.; Cowin, A.J. Antimicrobial Silver Dressings: A Review of Emerging Issues for Modern Wound Care. ANZ J. Surg. 2021, 92, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef] [PubMed]
Technique | Property Characterized | Description | References |
---|---|---|---|
UV-Vis Spectroscopy | Optical Properties | Analyzes the absorption and scattering of light, which can be related to the size and concentration of the nanoparticles. | [1] |
Transmission Electron Microscopy (TEM) | Size, Shape, Morphology | High-resolution images to determine the size and shape at the nanoscale. | [159] |
Scanning Electron Microscopy (SEM) | Surface Morphology | Provides surface detail and composition information. | [160] |
X-ray Diffraction (XRD) | Crystal Structure | Identifies the crystalline phases and orientation, providing insights into the structural properties. | [161] |
Energy-Dispersive X-ray Spectroscopy (EDS) | Elemental Composition | Provides elemental analysis and chemical characterization. | [162,163] |
Dynamic Light Scattering (DLS) | Hydrodynamic Size | Measures the size distribution of particles in suspension based on light scattering. | [164,165] |
Atomic Force Microscopy (AFM) | Surface Topography | Gives a 3D profile of the surface at the nanoscale. | [166] |
Zeta Potential Analysis | Surface Charge | Determines the surface charge and stability of nanoparticles in suspension. | [167] |
Application Area | Description | Clinical Insights | Setting | References |
---|---|---|---|---|
Antibacterial | AgNPs are used in coatings and textiles to inhibit bacterial infections, especially against antibiotic-resistant strains. | AgNPs, in combination with antibiotics, enhance effectiveness against multidrug-resistant bacterial infections. | In vitro | [235,236,237,238,239,240] |
Antiviral | AgNPs demonstrate antiviral capabilities against viruses such as coronaviruses, HIV-1, influenza, herpes simplex, and hepatitis B. | AgNPs act as virucidal agents and show synergistic effects with antiviral drugs such as oseltamivir against H1N1. | In vitro | [215,241,242,243] |
Antibiofilm | AgNPs are incorporated into coatings to prevent biofilm formation and disrupt established biofilms. | Effective against antibiotic-resistant bacteria biofilms, such as those formed by Staphylococcus aureus and Escherichia coli. | In vitro | [200,244,245,246,247,248] |
Antifungal | AgNPs exhibit antifungal properties against various fungi, including those causing plant diseases and infections in immunocompromised individuals. | Used to treat drug-resistant fungal infections and enhance the effectiveness of antifungal treatments. | In vitro | [38,40,246,247,249,250,251,252,253] |
Antiparasitic | AgNPs show potential against parasites such as malaria vectors, leishmaniasis, and Acanthamoeba. | Demonstrate efficacy against parasites at different lifecycle stages when produced using various green synthesis methods. | In vitro | [254,255,256,257,258,259,260,261,262] |
Anticancer and Antitumor | AgNPs induce cytotoxicity in cancer cells and enhance targeted drug delivery. | Used alone or with other anticancer drugs, they increase the therapeutic efficacy of treatments such as chemotherapy. | In vitro | [5,263,264,265,266] |
Food Industry | AgNPs are used in the food industry for their antibacterial properties, including food packaging, coatings, and films to prevent food spoilage and contamination. | AgNPs enhance the antimicrobial properties of food packaging materials, helping to prevent the growth of drug-resistant bacteria in food products. | In vitro | [267,268,269,270,271,272] |
Drug Delivery | AgNPs improve drug stability and bioavailability, offering controlled release for enhanced treatment efficacy. | Can penetrate biological barriers, such as the blood-brain barrier, facilitating targeted drug delivery. | In vitro | [5,273] |
Medical Implants | AgNPs are used to coat medical implants, enhancing their antibacterial properties and longevity. | Reduce infection rates in implanted devices, show minimal cytotoxicity, and promote osseointegration. | In vitro | [274,275,276,277,278] |
Surface Coatings | AgNPs in surface coatings offer antibacterial properties and thermal enhancements, effectively fighting bacteria in air and water… | AgNPs enhance the antibacterial properties of surfaces, including porous titanium, and can modify surfaces for better microbial resistance. | In vitro | [99,279,280,281,282,283,284,285] |
Dentistry and dental industry | AgNPs are utilized in dental materials to prevent biofilm formation, crucial for oral health. | Improve antibacterial properties in various dental applications, supporting sterile environments. | In vitro and In vivo | [244,286,287,288,289] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almatroudi, A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024, 16, 1232. https://doi.org/10.3390/pharmaceutics16091232
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics. 2024; 16(9):1232. https://doi.org/10.3390/pharmaceutics16091232
Chicago/Turabian StyleAlmatroudi, Ahmad. 2024. "Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications" Pharmaceutics 16, no. 9: 1232. https://doi.org/10.3390/pharmaceutics16091232
APA StyleAlmatroudi, A. (2024). Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics, 16(9), 1232. https://doi.org/10.3390/pharmaceutics16091232