Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023)
Abstract
:1. Brief History of EVs, ISEV, and MISEV
2. Analysis, Generalization and Comparison of Three MISEV Versions
2.1. Nomenclature
2.2. Collection and Pre-Processing: Pre-Analytical Variables Through to Storage
2.3. EV Separation and Concentration
2.4. EV Characterization
2.5. EV Release and Uptake
2.6. Functional Studies
2.7. EV Analysis In Vivo
3. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chargaff, E. Cell Structure and the Problem of Blood Coagulation. J. Biol. Chem. 1945, 160, 351–359. [Google Scholar] [CrossRef]
- Chargaff, E.; West, R. The Biological Significance of the Thromboplastic Protein of Blood. J. Biol. Chem. 1946, 166, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Samuels, M.; Giamas, G. MISEV2023: Shaping the Future of EV Research by Enhancing Rigour, Reproducibility and Transparency. Cancer Gene Ther. 2024, 31, 649–651. [Google Scholar] [CrossRef]
- Clancy, J.W.; Boomgarden, A.C.; D’Souza-Schorey, C. Profiling and promise of supermeres. Nat. Cell Biol. 2021, 23, 1217–1219. [Google Scholar] [CrossRef]
- Jeppesen, D.K.; Zhang, Q.; Franklin, J.L.; Coffey, R.J. Extracellular vesicles and nanoparticles: Emerging complexities. Trends Cell Biol. 2023, 33, 667–681. [Google Scholar] [CrossRef]
- Lucien, F.; Gustafson, D.; Lenassi, M.; Li, B.; Teske, J.J.; Boilard, E.; von Hohenberg, K.C.; Falcón-Perez, J.M.; Gualerzi, A.; Reale, A.; et al. MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research. J. Extracell. Vesicles 2023, 12, 12385. [Google Scholar] [CrossRef]
- Erdbrügger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borràs, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcón-Pérez, J.M.; et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- van Royen, M.E.; Soekmadji, C.; Grange, C.; Webber, J.P.; Tertel, T.; Droste, M.; Buescher, A.; Giebel, B.; Jenster, G.W.; Llorente, A.; et al. The quick reference card “Storage of urinary EVs”—A practical guideline tool for research and clinical laboratories. J. Extracell. Vesicles 2023, 12, 12286. [Google Scholar] [CrossRef]
- Hatton, I.A.; Galbraith, E.D.; Merleau, N.S.C.; Miettinen, T.P.; Smith, B.M.; Shander, J.A. The human cell count and size distribution. Proc. Natl. Acad. Sci. USA 2023, 120, e2303077120. [Google Scholar] [CrossRef] [PubMed]
- Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; et al. Methodological Guidelines to Study Extracellular Vesicles. Circ. Res. 2017, 120, 1632–1648. [Google Scholar] [CrossRef] [PubMed]
- Merij, L.B.; da Silva, L.R.; Palhinha, L.; Gomes, M.T.; Dib, P.R.B.; Martins-Gonçalves, R.; Toledo-Quiroga, K.; Raposo-Nunes, M.A.; Andrade, F.B.; de Toledo Martins, S.; et al. Density-based lipoprotein depletion improves extracellular vesicle isolation and functional analysis. J. Thromb. Haemost. 2024, 22, 1372–1388. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, K.S.; Harris, K.; Arian, K.A.; Ma, L.; Schueng Zancanela, B.; Church, K.A.; McAndrews, K.M.; Kalluri, R. High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography. Bioact. Mater. 2024, 40, 683–695. [Google Scholar] [CrossRef]
- Iannotta, D.; A, A.; Lai, A.; Nair, S.; Koifman, N.a.; Lappas, M.; Salomon, C.; Wolfram, J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. Small 2024, 20, 2307240. [Google Scholar] [CrossRef]
- Ter-Ovanesyan, D.; Gilboa, T.; Budnik, B.; Nikitina, A.; Whiteman, S.; Lazarovits, R.; Trieu, W.; Kalish, D.; Church, G.M.; Walt, D.R. Improved isolation of extracellular vesicles by removal of both free proteins and lipoproteins. eLife 2023, 12, e86394. [Google Scholar] [CrossRef]
- Chou, C.Y.; Chiang, P.C.; Li, C.C.; Chang, J.W.; Lu, P.H.; Hsu, W.F.; Chang, L.C.; Hsu, J.L.; Wu, M.S.; Wo, A.M. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads. ACS Appl. Mater. Interfaces 2024, 16, 44386–44398. [Google Scholar] [CrossRef]
- Benedikter, B.J.; Bouwman, F.G.; Vajen, T.; Heinzmann, A.C.A.; Grauls, G.; Mariman, E.C.; Wouters, E.F.M.; Savelkoul, P.H.; Lopez-Iglesias, C.; Koenen, R.R.; et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci. Rep. 2017, 7, 15297. [Google Scholar] [CrossRef]
- Franco, C.; Ghirardello, A.; Bertazza, L.; Gasparotto, M.; Zanatta, E.; Iaccarino, L.; Valadi, H.; Doria, A.; Gatto, M. Size-Exclusion Chromatography Combined with Ultrafiltration Efficiently Isolates Extracellular Vesicles from Human Blood Samples in Health and Disease. Int. J. Mol. Sci. 2023, 24, 3663. [Google Scholar] [CrossRef]
- Zhang, X.; Borg, E.G.F.; Liaci, A.M.; Vos, H.R.; Stoorvogel, W. A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J. Extracell. Vesicles 2020, 9, 1791450. [Google Scholar] [CrossRef] [PubMed]
- Multia, E.; Liangsupree, T.; Jussila, M.; Ruiz-Jimenez, J.; Kemell, M.; Riekkola, M.-L. Automated On-Line Isolation and Fractionation System for Nanosized Biomacromolecules from Human Plasma. Anal. Chem. 2020, 92, 13058–13065. [Google Scholar] [CrossRef] [PubMed]
- Van Deun, J.; Mestdagh, P.; Agostinis, P.; Akay, Ö.; Anand, S.; Anckaert, J.; Martinez, Z.A.; Baetens, T.; Beghein, E.; Bertier, L.; et al. EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 2017, 14, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Van Der Pol, E.; Arkesteijn, G.J.A.; Bremer, M.; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.; Giebel, B.; et al. MIFlowCyt-EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles 2020, 9, 1713526. [Google Scholar] [CrossRef]
- Taylor, C.F.; Paton, N.W.; Lilley, K.S.; Binz, P.-A.; Julian, R.K.; Jones, A.R.; Zhu, W.; Apweiler, R.; Aebersold, R.; Deutsch, E.W.; et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 2007, 25, 887–893. [Google Scholar] [CrossRef]
- Verweij, F.J.; Balaj, L.; Boulanger, C.M.; Carter, D.R.F.; Compeer, E.B.; D’Angelo, G.; El Andaloussi, S.; Goetz, J.G.; Gross, J.C.; Hyenne, V.; et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 2021, 18, 1013–1026. [Google Scholar] [CrossRef]
- Bolmatov, D.; Lavrentovich, M.O.; Reiter, R.J. Molecular interactions of melatonin with lipid rafts. Melatonin Res. 2022, 5, 101–113. [Google Scholar] [CrossRef]
- Collier, C.P.; Bolmatov, D.; Elkins, J.G.; Katsaras, J. Nanoscopic lipid domains determined by microscopy and neutron scattering. Methods 2024, 223, 127–135. [Google Scholar] [CrossRef]
- Bolmatov, D.; McClintic, W.T.; Taylor, G.; Stanley, C.B.; Do, C.; Collier, C.P.; Leonenko, Z.; Lavrentovich, M.O.; Katsaras, J. Deciphering Melatonin-Stabilized Phase Separation in Phospholipid Bilayers. Langmuir 2019, 35, 12236–12245. [Google Scholar] [CrossRef]
- Verweij, F.J.; Bebelman, M.P.; Jimenez, C.R.; Garcia-Vallejo, J.J.; Janssen, H.; Neefjes, J.; Knol, J.C.; de Goeij-de Haas, R.; Piersma, S.R.; Baglio, S.R.; et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol. 2018, 217, 1129–1142. [Google Scholar] [CrossRef]
- Scott, A.; Sueiro Ballesteros, L.; Bradshaw, M.; Power, A.; Lorriman, J.; Love, J.; Paul, D.; Herman, A.; Emanueli, C.; Richardson, R.J. In Vivo Characterization of Endogenous Cardiovascular Extracellular Vesicles in Larval and Adult Zebrafish. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2454–2468. [Google Scholar] [CrossRef] [PubMed]
- Hyenne, V.; Ghoroghi, S.; Collot, M.; Bons, J.; Follain, G.; Harlepp, S.; Mary, B.; Bauer, J.; Mercier, L.; Busnelli, I.; et al. Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev. Cell 2019, 48, 554–572.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rima, X.Y.; Wang, X.; Nguyen, L.T.H.; Huntoon, K.; Ma, Y.; Palacio, P.L.; Nguyen, K.T.; Albert, K.; Duong-Thi, M.-D.; et al. Engineering a tunable micropattern-array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ. J. Extracell. Vesicles 2023, 12, 12369. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Zhivonitko, V.V.; Samoylenko, A.; Zhyvolozhnyi, A.; Viitala, S.; Kankaanpää, S.; Komulainen, S.; Schröder, L.; Vainio, S.J.; Telkki, V.-V. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem. Sci. 2021, 12, 8311–8319. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Qin, M.; Liu, L.; Huang, H.; Chen, N.; Du, H.; Huang, D.; Wang, P.; Zhou, H.; Tong, G. Exosomal microRNA profiling revealed enhanced autophagy suppression and anti-tumor effects of a combination of compound Phyllanthus urinaria and lenvatinib in hepatocellular carcinoma. Phytomedicine 2024, 122, 155091. [Google Scholar] [CrossRef]
- Tian, Y.; Gong, M.; Hu, Y.; Liu, H.; Zhang, W.; Zhang, M.; Hu, X.; Aubert, D.; Zhu, S.; Wu, L.; et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles 2020, 9, 1697028. [Google Scholar] [CrossRef]
- Joshi, B.S.; de Beer, M.A.; Giepmans, B.N.G.; Zuhorn, I.S. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano 2020, 14, 4444–4455. [Google Scholar] [CrossRef]
- O’Brien, K.; Ughetto, S.; Mahjoum, S.; Nair, A.V.; Breakefield, X.O. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep. 2022, 39, 110651. [Google Scholar] [CrossRef]
- Costa Verdera, H.; Gitz-Francois, J.J.; Schiffelers, R.M.; Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release 2017, 266, 100–108. [Google Scholar] [CrossRef]
- Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014, 3, 24641. [Google Scholar] [CrossRef]
- Deb, A.; Gupta, S.; Mazumder, P.B. Exosomes: A new horizon in modern medicine. Life Sci. 2021, 264, 118623. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Qin, Y.; Zhuang, H.; Zhang, Y.; Wu, Z.; Chen, Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics 2023, 15, 1903. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.; O’Driscoll, L.; Théry, C.; Witwer, K.W. MISEV2023: An updated guide to EV research and applications. J. Extracell. Vesicles 2024, 13, e12416. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Zeng, Y.; Liu, C.; Liu, G. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2024, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ju, D.; Zhang, X. Cell Membrane-Derived Vesicle: A Novel Vehicle for Cancer Immunotherapy. Front. Immunol. 2022, 13, 923598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gu, J.; Li, Y.; Shan, W.; Xu, Y.; Chen, Y. Single-vesicle tracking reveals the potential correlation of the movement of cell-bound membrane vesicles (CBMVs) with cell migration. Biochim. Biophys. Acta BBA—Mol. Cell Res. 2020, 1867, 118804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Zhang, W.; Tang, Q.; Zhou, Y.; Li, Y.; Rong, T.; Wang, H.; Chen, Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J. Nanobiotechnol. 2020, 18, 69. [Google Scholar] [CrossRef]
- Kuypers, S.; Smisdom, N.; Pintelon, I.; Timmermans, J.-P.; Ameloot, M.; Michiels, L.; Hendrix, J.; Hosseinkhani, B. Unsupervised Machine Learning-Based Clustering of Nanosized Fluorescent Extracellular Vesicles. Small 2021, 17, 2006786. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Qi, G.-X.; Liu, M.-X.; Yang, Y.-F.; Wang, J.-H.; Yu, Y.-L.; Chen, S. Deep Learning Promotes Profiling of Multiple miRNAs in Single Extracellular Vesicles for Cancer Diagnosis. ACS Sens. 2024, 9, 1555–1564. [Google Scholar] [CrossRef]
- Yin, H.; Xie, J.; Xing, S.; Lu, X.; Yu, Y.; Ren, Y.; Tao, J.; He, G.; Zhang, L.; Yuan, X.; et al. Machine learning-based analysis identifies and validates serum exosomal proteomic signatures for the diagnosis of colorectal cancer. Cell Rep. Med. 2024, 5, 101689. [Google Scholar] [CrossRef]
- Bukva, M.; Dobra, G.; Gyukity-Sebestyen, E.; Boroczky, T.; Korsos, M.M.; Meckes, D.G.; Horvath, P.; Buzas, K.; Harmati, M. Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation—A meta-analysis. Cell Commun. Signal. 2023, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Kugeratski, F.G.; Kalluri, R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 2024, 12, RP90390. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Bao, H.; Bu, F.; Li, X.; Guo, Q.; Liu, M.; Zhu, S.; Meng, J.; Zhang, S.; Wang, S. Machine-Learning-Assisted Procoagulant Extracellular Vesicle Barcode Assay toward High-Performance Evaluation of Thrombosis-Induced Death Risk in Cancer Patients. ACS Nano 2023, 17, 19914–19924. [Google Scholar] [CrossRef] [PubMed]
Nomenclature | |
---|---|
MISEV2014 | Definition: Extracellular vesicles (EVs) are the secreted membrane-enclosed vesicles. No recommendations for nomenclature. |
MISEV2018 | Definition: EVs are particles naturally released from cells that are defined by a lipid bilayer and cannot replicate, i.e., do not contain a functional nucleus. Unless the authors have been able to establish specific markers of subcellular origins that are reliable in their experiments, e.g., real-time imaging techniques that capture the process of EV release, authors are urged to consider the use of operational terms for EV subtypes that refer to (a) the physical characteristics of EVs; (b) the biological constituents; (c) the replacement of terms such as exosomes and microvesicles with descriptions of the conditions or cellular origins. |
MISEV2023 | Definition: EVs refer to particles that are released from cells, are delimited by a lipid bilayer, and cannot replicate on their own (i.e., do not contain a functional nucleus). Authors are recommended to use the generic term “EV” and operational extensions of the term (consistent with MISEV2018) rather than inconsistently defined and sometimes misleading terms such as “exosomes” and “extracellular bodies” associated with difficult-to-establish biogenesis pathways, unless such EV populations have been specifically isolated and characterized. |
Collection and Pre-Processing: Pre-Analytical Variables Through to Storage | |
---|---|
MISEV2014 | - |
MISEV2018 | A range of factors (including the characteristics of the source, how the source material is handled and stored, and experimental conditions) may affect EV recovery. Therefore, it is critical to plan collection and experimental procedures to maximize the number of known, reportable parameters, and then to report as many known pre-analytical parameters as possible. |
MISEV2023 | Report in detail on a range of factors in sample collection, pretreatment, and storage of sources and their derivatives containing EVs that may affect EVs both quantitatively and qualitatively. |
EV Separation and Concentration | |
---|---|
MISEV2014 | (a) There is no single optimal separation method, so choose based on the downstream applications and scientific question. (b) Report all details of the methods for reproducibility. No mentioned techniques/methods. |
MISEV2018 | (a) A categorized review of currently common separation means based on EV recovery and specificity. (b) All details of reproducible methods are reported. ISEV strongly recommends that authors deposit experimental details in EV-TRACK (New in MISEV2018). (c) Recommendations for commercial kits (New in MISEV2018). Mentioned techniques/methods: Differential ultracentrifugation; Density gradients; Precipitation; Filtration; Size exclusion chromatography (SEC); Immunoisolation; Affinity isolation; Tangential flow filtration (TFF); Field-flow fractionation (FFF); Asymmetric flow field-flow fractionation (AF4); Ion exchange chromatography; Deterministic lateral displacement (DLD) arrays; Field-free viscoelastic flow; Alternating current electrophoretics; Acoustics; Microfiltration; Fluorescence-activated sorting; Lipid affinity; Hydrostatic filtration dialysis; Fast protein/high perfomance liquid chromatography (FPLC/HPLC). |
MISEV2023 | The choice of any isolation method should be based on the known properties of the specific EV sources as well as the desired EV yield and specificity. Mentioned techniques/methods: Differential ultracentrifugation; Density gradients; Precipitation; Filter concentration; SEC; Immuno-precipitation (IP); Affinity precipitation (AP); TFF; FFF; AF4; Ion exchange chromatography; Free-flow electrophoresis (FFE); Commercial kits. |
EV Characterization | |
---|---|
MISEV2014 | (a) General characterization. i. At least three EV positive protein markers, including at least one transmembrane/lipid binding protein and cytoplasmic protein. ii. At least one negative protein marker. (b) Characterization of single vesicles: Use of two different but complementary techniques. (c) No quantitative recommendations. Mentioned techniques/methods: Western blots (WB); Flow cytometry (FACS); Global proteomic analysis; Electron microscopy; Atomic force microscopy (AFM); Transmission electron microscopy (TEM). |
MISEV2018 | (a) Both the source and the preparation of the EVs must be quantitatively characterized. (b) General characterization. Continue with the “three positives and one negative” and introduce a five-component framework (New in MISEV2018). (c) Characterization of single vesicles: continue as before, but add more techniques. (d) Determine the topology of components related to EVs (New in MISEV2018). Mentioned techniques/methods: Nanoparticle tracking analysis (NTA); FACS; WB; Electron microscopy; AFM; TEM; High-resolution FACS; Resistive pulse sensing (RPS); Cryo-EM; DLS; Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE); Fourier-transform infrared spectroscopy (FTIR); Capillary electrophoresis; Enzyme-linked immunosorbent assay (ELISA) bead-based FACS; Surface plasmon resonance (SPR); Infrared (IR) spectroscopy; Raman spectroscopy (RS); Fluorescence microscopy; Confocal microscopy; Scanning electron microscopy (SEM); Scanning-probe microscopy (SPM); Super-resolution microscopy; Multi-angle light scattering combined with asymmetric flow field-flow fractionation (AF4-MALS); Fluorescence correlation spectroscopy (FCS); Raman tweezers microscopy; Single-particle interferometric reflectance imaging sensing (SP-IRIS) (New in MISEV2018). |
MISEV2023 | (a) Each EV preparation should be defined by quantitative measures of the source of EVs. (b) Approximations of the abundance of EVs should be made. (c) EV preparations should be tested for the presence of components associated with EV subtypes or EVs generically, depending on desired specificity one wishes to achieve. (d) Establish the degree to which non-vesicular, co-isolated components are present. (e) Provide an indication of the instrument/method limit of detection (LOD) when EVs are characterized with quantitative metrics (New in MISEV2023). Mentioned techniques/methods: RPS; NTA; DLS; FACS; Multi-angle light scattering; cryo-EM; FTIR; Chromatography; Capillary electrophoresis; Isolation kits; Liquid chromatography; SEM; TEM; Cryo-EM; SPM; AFM; Lipid mass spectrometry; RS; Bead-based FACS; Mass spectrometry (MS); Confocal microscopy; WB; SP-IRIS; Genetic protein tagging; Agilent Bioanalyzer pico chip; NanoDrop; Qubit microRNA Assay kit; Triple-quadrupole (QQQ) liquid chromatography (LC)-MS; Total Internal Reflection Microscopy (TIRFM); Light-sheet microscopy; HPLC; Interference reflectance imaging sensor (IRIS); Fluorescent super-resolution microscopy; Quantitative polymerase chain reaction (qPCR); Digital PCR; Droplet digital PCR (ddPCR) (New in MISEV2023). |
Functional Studies | |
---|---|
MISEV2014 | (a) The dose–function relationship should be quantitatively analyzed when isolated EVs are used for in vitro functional studies. (b) Systemic negative controls should show minimal functional impact. (c) Assessing the impact of soluble or non-EV macromolecular components. |
MISEV2018 | (a) Quantitative comparison of activity in conditioned media or biofluids before EV elimination, after EV elimination, and in the EVs is needed, as well as quantitative comparison of activity against the target EV subtype versus the “discarded” EV subtype. (b) Set more stringent negative controls. (c) Functional assays are recommended after rigorous isolation to compare EV and non-EV fractions to determine the proportion of activity associated with each fraction. |
MISEV2023 | (a) Encourage physiologic dose-response and time-course studies. (b) EV negative controls need to be carefully selected to assess the contribution of “background” EV activity and/or non-specific activity other than the EVs of interest. (c) Controls consisting of EV-free, EV-depleted, or enzyme-treated EV isolation fractions can help determine whether a function is EV-specific or associated with co-isolated materials. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lan, M.; Chen, Y. Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023). Pharmaceutics 2024, 16, 1394. https://doi.org/10.3390/pharmaceutics16111394
Zhang Y, Lan M, Chen Y. Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023). Pharmaceutics. 2024; 16(11):1394. https://doi.org/10.3390/pharmaceutics16111394
Chicago/Turabian StyleZhang, Yuan, Mengyi Lan, and Yong Chen. 2024. "Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023)" Pharmaceutics 16, no. 11: 1394. https://doi.org/10.3390/pharmaceutics16111394
APA StyleZhang, Y., Lan, M., & Chen, Y. (2024). Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023). Pharmaceutics, 16(11), 1394. https://doi.org/10.3390/pharmaceutics16111394