Targeted Magnetic Nanoparticles for Beta-Amyloid Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Dye Labeling of Aβ1–42
2.2.2. ThT Assay
2.2.3. Synthesis of MNPs
2.2.4. Characterization of Synthesized MNPs
2.2.5. Hydrophilization of MNPs and HAEE-Cy5 Conjugation
2.2.6. Cell Studies
2.2.7. Confocal Microscopy
3. Results
3.1. In Vitro Tests of the HAEE Effectiveness
3.2. Synthesis and Characterization of MNPs
3.3. Coating of MNPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain Imaging in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006213. [Google Scholar] [CrossRef] [PubMed]
- Gaugler, J.; James, B.; Johnson, T.; Scholz, K.; Weuve, J. 2016 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef]
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
- Mitkevich, V.A.; Barykin, E.P.; Eremina, S.; Pani, B.; Katkova-Zhukotskaya, O.; Polshakov, V.I.; Adzhubei, A.A.; Kozin, S.A.; Mironov, A.S.; Makarov, A.A.; et al. Zn-Dependent β-Amyloid Aggregation and Its Reversal by the Tetrapeptide HAEE. Aging Dis. 2023, 14, 309–314. [Google Scholar] [CrossRef]
- Barykin, E.P.; Garifulina, A.I.; Tolstova, A.P.; Anashkina, A.A.; Adzhubei, A.A.; Mezentsev, Y.V.; Shelukhina, I.V.; Kozin, S.A.; Tsetlin, V.I.; Makarov, A.A. Tetrapeptide Ac-HAEE-NH2 Protects A4β2 NAChR from Inhibition by Aβ. Int. J. Mol. Sci. 2020, 21, 6272. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, W.; Zhang, B. Enzyme-Catalyzed Molecular MR Imaging of Tumors. TrAC Trends Anal. Chem. 2024, 178, 117848. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Pirahesh, K.; Aarabi, M.H.; Wennberg, A.; Pini, L. Behavioral and Dysexecutive Variant of Alzheimer’s Disease: Insights from Structural and Molecular Imaging Studies. Heliyon 2024, 10, e29420. [Google Scholar] [CrossRef]
- Chen, X.; Guo, X.; Hao, S.; Yang, T.; Wang, J. Iron Oxide Nanoparticles-Loaded Hyaluronic Acid Nanogels for MRI-Aided Alzheimer’s Disease Theranostics. Arab. J. Chem. 2022, 15, 103748. [Google Scholar] [CrossRef]
- Cai, J.; Dao, P.; Chen, H.; Yan, L.; Li, Y.L.; Zhang, W.; Li, L.; Du, Z.; Dong, C.Z.; Meunier, B. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles-Bound NIR Dyes: Novel Theranostic Agents for Alzheimer’s Disease. Dye. Pigment. 2020, 173, 107968. [Google Scholar] [CrossRef]
- Jović Orsini, N.; Babić-Stojić, B.; Spasojević, V.; Calatayud, M.P.; Cvjetićanin, N.; Goya, G.F. Magnetic and Power Absorption Measurements on Iron Oxide Nanoparticles Synthesized by Thermal Decomposition of Fe(Acac)3. J. Magn. Magn. Mater. 2018, 449, 286–296. [Google Scholar] [CrossRef]
- Maity, D.; Kale, S.N.; Kaul-Ghanekar, R.; Xue, J.M.; Ding, J. Studies of Magnetite Nanoparticles Synthesized by Thermal Decomposition of Iron (III) Acetylacetonate in Tri(Ethylene Glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098. [Google Scholar] [CrossRef]
- Semkina, A.; Nikitin, A.; Ivanova, A.; Chmelyuk, N.; Sviridenkova, N.; Lazareva, P.; Abakumov, M. 3,4-Dihydroxiphenylacetic Acid-Based Universal Coating Technique for Magnetic Nanoparticles Stabilization for Biomedical Applications. J. Funct. Biomater. 2023, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.O.; Cheglakov, I.B.; Ovsepyan, A.A.; Mediannikov, O.Y.; Morozov, A.O.; Telegin, G.B.; Kozin, S.A. Peripherally Applied Synthetic Tetrapeptides HAEE and RADD Slow Down the Development of Cerebral β-Amyloidosis in AβPP/PS1 Transgenic Mice. J. Alzheimer’s Dis. 2015, 46, 849–853. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, M.; Zeng, J.; Huo, L.; Liu, K.; Wei, R.; Ni, K.; Gao, J. Recent Advances in Engineering Iron Oxide Nanoparticles for Effective Magnetic Resonance Imaging. Bioact. Mater. 2022, 12, 214–245. [Google Scholar] [CrossRef] [PubMed]
- Hudson, S.A.; Ecroyd, H.; Kee, T.W.; Carver, J.A. The Thioflavin T Fluorescence Assay for Amyloid Fibril Detection Can Be Biased by the Presence of Exogenous Compounds. FEBS J. 2009, 276, 5960–5972. [Google Scholar] [CrossRef]
- Kovalevich, J.; Langford, D. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [CrossRef]
- Rahmati, S.; David, A.E. A Review of Design Criteria for Cancer-Targeted, Nanoparticle-Based MRI Contrast Agents. Appl. Mater. Today 2024, 37, 102087. [Google Scholar] [CrossRef]
- Vandermeeren, M.; Mercken, M.; Vanmechelen, E.; Six, J.; Van de Voorde, A.; Martin, J.; Cras, P. Detection of Proteins in Normal and Alzheimer’s Disease Cerebrospinal Fluid with a Sensitive Sandwich Enzyme-Linked Immunosorbent Assay. J. Neurochem. 1993, 61, 1828–1834. [Google Scholar] [CrossRef]
- Lu, F.-M.; Yuan, Z. PET/SPECT Molecular Imaging in Clinical Neuroscience: Recent Advances in the Investigation of CNS Diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef]
- Colloby, S.J.; Taylor, J.P.; Firbank, M.J.; McKeith, I.G.; Williams, E.D.; O’Brien, J.T. Covariance 99mTc-Exametazime SPECT Patterns in Alzheimer’s Disease and Dementia with Lewy Bodies: Utility in Differential Diagnosis. J. Geriatr. Psychiatry Neurol. 2010, 23, 54–62. [Google Scholar] [CrossRef]
- Trollor, J.N.; Sachdev, P.S.; Haindl, W.; Brodaty, H.; Wen, W.; Walker, B.M. Regional Cerebral Blood Flow Deficits in Mild Alzheimer’s Disease Using High Resolution Single Photon Emission Computerized Tomography. Psychiatry Clin. Neurosci. 2005, 59, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Dougall, N.J. Systematic Review of the Diagnostic Accuracy of 99mTc-HMPAO-SPECT in Dementia. Am. J. Geriatr. Psychiatry 2004, 12, 554–570. [Google Scholar] [CrossRef]
- Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D.P.; Bergström, M.; Savitcheva, I.; Huang, G.; Estrada, S.; et al. Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of Magnetic Fields and Nanoparticles to Trigger Drug Release and Improve Tumor Targeting. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef]
- Signorelli, L.; Hescham, S.-A.; Pralle, A.; Gregurec, D. Magnetic Nanomaterials for Wireless Thermal and Mechanical Neuromodulation. iScience 2022, 25, 105401. [Google Scholar] [CrossRef]
- Nikitin, A.A.; Ivanova, A.V.; Semkina, A.S.; Lazareva, P.A.; Abakumov, M.A. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 11134. [Google Scholar] [CrossRef]
- Rajan, A.; Sahu, N.K. Review on Magnetic Nanoparticle-Mediated Hyperthermia for Cancer Therapy. J. Nanoparticle Res. 2020, 22, 319. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, X.; Wu, D.; Chen, Q.; Huang, D.; Sun, C.; Xin, J.; Ni, K.; Gao, J. Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chem. Mater. 2015, 27, 3505–3515. [Google Scholar] [CrossRef]
- Ivanova, A.V.; Chmelyuk, N.S.; Nikitin, A.A.; Majouga, A.G.; Chekhonin, V.P.; Abakumov, M.A. Low-Frequency Dynamic Magnetic Fields Decrease Cellular Uptake of Magnetic Nanoparticles. Magnetochemistry 2024, 10, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmelyuk, N.S.; Nikitin, A.A.; Vadekhina, V.V.; Mitkevich, V.A.; Abakumov, M.A. Targeted Magnetic Nanoparticles for Beta-Amyloid Detection. Pharmaceutics 2024, 16, 1395. https://doi.org/10.3390/pharmaceutics16111395
Chmelyuk NS, Nikitin AA, Vadekhina VV, Mitkevich VA, Abakumov MA. Targeted Magnetic Nanoparticles for Beta-Amyloid Detection. Pharmaceutics. 2024; 16(11):1395. https://doi.org/10.3390/pharmaceutics16111395
Chicago/Turabian StyleChmelyuk, Nelly S., Aleksey A. Nikitin, Veronika V. Vadekhina, Vladimir A. Mitkevich, and Maxim A. Abakumov. 2024. "Targeted Magnetic Nanoparticles for Beta-Amyloid Detection" Pharmaceutics 16, no. 11: 1395. https://doi.org/10.3390/pharmaceutics16111395
APA StyleChmelyuk, N. S., Nikitin, A. A., Vadekhina, V. V., Mitkevich, V. A., & Abakumov, M. A. (2024). Targeted Magnetic Nanoparticles for Beta-Amyloid Detection. Pharmaceutics, 16(11), 1395. https://doi.org/10.3390/pharmaceutics16111395