The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization
Abstract
:1. Introduction
2. Materials and Methods
2.1. E-Liquid Formulation
2.2. Respirable Dose Fraction
2.3. Aerodynamic Size Distribution
2.4. Generation of Aerosols
2.5. Quantification of Beclomethasone Dipropionate by High-Pressure Liquid Chromatography–UV
3. Results
3.1. Comparison of Respirable Dose Between the Nebulizer and VDDS
3.2. Comparison of the Duration of the Administration of the Aerosol Between the Nebulizer and VDDS
3.3. Comparison of the Mass Median Aerodynamic Diameter (MMAD) Between the Nebulizer and VDDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Momtazmanesh, S.; Moghaddam, S.S.; Ghamari, S.-H.; Rad, E.M.; Rezaei, N.; Shobeiri, P.; Aali, A.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abdelmasseh, M.; et al. Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990–2019: An Update from the Global Burden of Disease Study 2019. eClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef]
- Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 26 February 2024).
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 2 February 2024).
- Sinyor, B.; Concepcion Perez, L. Pathophysiology of Asthma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rodrigues, S.D.O.; Cunha, C.M.C.D.; Soares, G.M.V.; Silva, P.L.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals 2021, 14, 979. [Google Scholar] [CrossRef] [PubMed]
- Chronic Respiratory Diseases. Available online: https://www.who.int/health-topics/chronic-respiratory-diseases (accessed on 2 February 2024).
- Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; et al. Inhaled Medicines: Past, Present, and Future. Pharmacol. Rev. 2022, 74, 48–118. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.J. History of Aerosol Therapy: Liquid Nebulization to MDIs to DPIs. Respir. Care 2005, 50, 1139–1150. [Google Scholar]
- Reychler, G.; Dessanges, J.F.; Vecellio, L. Aérosols: Présent et futur. Rev. Des Mal. Respir. 2007, 24, 1013–1023. [Google Scholar] [CrossRef]
- Alidou, E. Les Avantages Thérapeutiques et Environnementaux de la Forme Nébulisée dans les Traitements par Voie Inhalée des Maladies Respiratoires. Available online: https://www.unither-pharma.fr/les-avantages-therapeutiques-et-environnementaux-de-la-forme-nebulisee-dans-les-traitements-par-voie-inhalee-des-maladies-respiratoires/ (accessed on 2 February 2024).
- Coste, G. Les Techniques d’aérosolthérapie Par Nébulisation. Actual. Pharm. 2019, 58, 49–53. [Google Scholar] [CrossRef]
- Longest, W.; Spence, B.; Hindle, M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 317–339. [Google Scholar] [CrossRef]
- Varlet, V. Drug Vaping: From the Dangers of Misuse to New Therapeutic Devices. Toxics 2016, 4, 29. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems. Public Health Consequences of E-Cigarettes; Eaton, D.L., Kwan, L.Y., Stratton, K., Eds.; National Academies Press: Washington, DC, USA, 2018; ISBN 978-0-309-46834-3. [Google Scholar]
- Hammond, D.; Reid, J.L.; Rynard, V.L.; Fong, G.T.; Cummings, K.M.; McNeill, A.; Hitchman, S.; Thrasher, J.F.; Goniewicz, M.L.; Bansal-Travers, M.; et al. Prevalence of Vaping and Smoking among Adolescents in Canada, England, and the United States: Repeat National Cross Sectional Surveys. BMJ 2019, 365, l2219. [Google Scholar] [CrossRef]
- Pourchez, J.; de Oliveira, F.; Perinel-Ragey, S.; Basset, T.; Vergnon, J.-M.; Prévôt, N. Assessment of New-Generation High-Power Electronic Nicotine Delivery System as Thermal Aerosol Generation Device for Inhaled Bronchodilators. Int. J. Pharm. 2017, 518, 264–269. [Google Scholar] [CrossRef]
- Casula, L.; Sinico, C.; Valenti, D.; Pini, E.; Pireddu, R.; Schlich, M.; Lai, F.; Maria Fadda, A. Delivery of Beclomethasone Dipropionate Nanosuspensions with an Electronic Cigarette. Int. J. Pharm. 2021, 596, 120293. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, M.; Chevrel, S.; Perinel-Ragey, S.; Prévôt, N.; Pourchez, J. Assessment of High-Power Electronic Nicotine Delivery System as an Alternative Aerosol Device for Terbutaline Delivery. Pharm. Res. 2022, 39, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, M.; Perinel-Ragey, S.; Prevot, N.; Leclerc, L.; Pourchez, J. Technical Features of Vaping Drug Delivery System for Bronchodilator Delivery. Int. J. Pharm. 2022, 628, 122350. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, M.; Fischer, E.; Perinel-Ragey, S.; Prevot, N.; Leclerc, L.; Pourchez, J. Development of a Novel Bronchodilator Vaping Drug Delivery System Based on Thermal Degradation Properties. Pharmaceuticals 2023, 16, 1730. [Google Scholar] [CrossRef] [PubMed]
- Khaled, Z.; Dahmash, E.Z.; Koner, J.; Al Ani, R.; Alyami, H.; Naser, A.Y. Assessment of Vaping Devices as an Alternative Respiratory Drug Delivery System. Drug Dev. Ind. Pharm. 2022, 48, 446–456. [Google Scholar] [CrossRef]
- Buonocore, F.; Barton, S.; Nabhani-Gebara, S.; Calabrese, G. Can ENDS Technology Facilitate the Delivery of Medicines? J. Drug Deliv. Sci. Technol. 2023, 80, 104206. [Google Scholar] [CrossRef]
- Guide Du Parcours de Soins—Bronchopneumopathie Chronique Obstructive. Available online: https://www.has-sante.fr/plugins/ModuleXitiKLEE/types/FileDocument/doXiti.jsp?id=p_3147466 (accessed on 8 March 2024).
- ALD n° 14—Insuffisance Respiratoire Chronique Grave Secondaire à un Asthme. Available online: https://www.has-sante.fr/jcms/c_452137/fr/ald-n-14-insuffisance-respiratoire-chronique-grave-secondaire-a-un-asthme (accessed on 26 February 2024).
- Raherison-Semjen, C.; Guilleminault, L.; Billiart, I.; Chenivesse, C.; De Oliveira, A.; Izadifar, A.; Lorenzo, A.; Nocent, C.; Oster, J.P.; Padovani, M.; et al. Mise À jour des Recommandations (2021) pour la Prise en Charge et le Suivi des Patients Asthmatiques Adultes Sous l’égide de la Société de Pneumologie de Langue Française (SPLF) et de la Société Pédiatrique de Pneumologie et Allergologie (SP2A). Version Longue. Rev. Des Mal. Respir. 2021, 38, 1048–1083. [Google Scholar] [CrossRef]
- Bertrand, P.; Bonnarme, V.; Piccirilli, A.; Ayrault, P.; Lemée, L.; Frapper, G.; Pourchez, J. Physical and Chemical Assessment of 1,3 Propanediol as a Potential Substitute of Propylene Glycol in Refill Liquid for Electronic Cigarettes. Sci. Rep. 2018, 8, 10702. [Google Scholar] [CrossRef]
- 2.9.18. Préparations Pour Inhalation: Évaluation Aérodynamique Des Particules Fines—European Pharmacopoeia 11.5. Available online: https://pheur.edqm.eu/app/11-5/content/11-5/20918F.htm (accessed on 19 February 2024).
- McCallion, O.N.M.; Taylor, K.M.G.; Bridges, P.A.; Thomas, M.; Taylor, A.J. Jet Nebulisers for Pulmonary Drug Delivery. Int. J. Pharm. 1996, 130, 1–11. [Google Scholar] [CrossRef]
- Rau, J.L.; Ari, A.; Restrepo, R.D. Performance Comparison of Nebulizer Designs: Constant-Output, Breath-Enhanced, and Dosimetric. Respir. Care 2004, 49, 174–179. [Google Scholar]
- XP D90-300-3. Available online: https://www.boutique.afnor.org/fr-fr/norme/xp-d903003/cigarettes-electroniques-eteliquides-exigences-et-methodes-dessai-relative/fa197820/319142 (accessed on 28 October 2024).
- Sou, T.; Bergström, C.A.S. Contemporary Formulation Development for Inhaled Pharmaceuticals. J. Pharm. Sci. 2021, 110, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Forest, V.; Pourchez, J. Nano-Delivery to the Lung—By Inhalation or Other Routes and Why Nano When Micro Is Largely Sufficient? Adv. Drug Deliv. Rev. 2022, 183, 114173. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Noguchi, M.; Sato, A.; Ishitsuka, M.; Inaba, Y.; Kunugita, N. Determination of Thermal Decomposition Products Generated from E-Cigarettes. Chem. Res. Toxicol. 2020, 33, 576–583. [Google Scholar] [CrossRef]
- Pleasants, R.A.; Hess, D.R. Aerosol Delivery Devices for Obstructive Lung Diseases. Respir. Care 2018, 63, 708–733. [Google Scholar] [CrossRef] [PubMed]
- Todoroff, J.; Vanbever, R. Fate of Nanomedicines in the Lungs. Curr. Opin. Colloid. Interface Sci. 2011, 16, 246–254. [Google Scholar] [CrossRef]
- Crompton, G.K.; Barnes, P.J.; Broeders, M.; Corrigan, C.; Corbetta, L.; Dekhuijzen, R.; Dubus, J.C.; Magnan, A.; Massone, F.; Sanchis, J.; et al. The Need to Improve Inhalation Technique in Europe: A Report from the Aerosol Drug Management Improvement Team. Respir. Med. 2006, 100, 1479–1494. [Google Scholar] [CrossRef]
- Williams, M.; Talbot, P. Design Features in Multiple Generations of Electronic Cigarette Atomizers. Int. J. Environ. Res. Public Health 2019, 16, 2904. [Google Scholar] [CrossRef]
- Giraud, V.; Roche, N. Misuse of Corticosteroid Metered-Dose Inhaler Is Associated with Decreased Asthma Stability. Eur. Respir. J. 2002, 19, 246–251. [Google Scholar] [CrossRef]
- Madrid Sani, A.T.; Ramos-Rocha, K.L.V.; Sarcinelli, M.A.; Chaves, M.H.D.C.; Rocha, H.V.A.; Léo, P.; Cerize, N.N.P.; Zanin, M.H.A.; Feitosa, V.A.; Rangel-Yagui, C.D.O. Development of a Dry Powder Formulation for Pulmonary Delivery of Azithromycin-Loaded Nanoparticles. J. Pharm. Pharm. Sci. 2024, 27, 13635. [Google Scholar] [CrossRef]
E-Liquid Concentration (mg/mL) | 0.4 | 0.8 | 1.2 | 1.6 |
---|---|---|---|---|
PDO:stock suspension (v/v) | 87.5:12.5 | 87.5:12.5 | 87.5:12.5 | 87.5:12.5 |
E-liquid volume (mL) | 10 | 10 | 10 | 10 |
Stock suspension/deionized water volume (mL) (12.5%) | 1.25 | 1.25 | 1.25 | 1.25 |
PDO volume (mL) (87.5%) | 8.75 | 8.75 | 8.75 | 8.75 |
Stock solution concentration (mg/mL) | 3.2 | N/A | N/A | N/A |
Stock solution volume (mL) | 5 | N/A | N/A | N/A |
Beclomethasone dipropionate mass (mg) | 16 | 8 | 12 | 16 |
Poloxamer 188 mass (mg) | 8 | 4 | 6 | 8 |
Nebulizer | VDDS | |||
---|---|---|---|---|
400 µg/mL | 400 µg/mL | 800 µg/mL | 1200 µg/mL | 1600 µg/mL |
Respirable dose: 157.6 µg/nebulization of 2 mL | Respirable dose: 37.5 µg/40 puffs | Respirable dose: 63.4 µg/40 puffs | Respirable dose: 68.9 µg/40 puffs | Respirable dose: 77.9 µg/40 puffs |
Nebulization time: 14 min 24 s ± 28 s | Equivalent respirable dose of beclomethasone dipropionate delivered by VDDS compared to nebulization | |||
Number of puffs: 168 Aerosol duration: 8 min 24 s Patient administration duration: 91 min 55 s | Number of puffs: 100 Aerosol duration: 4 min 59 s Patient administration duration: 54 min 15 s | Number of puffs: 92 Aerosol duration: 4 min 35 s Patient administration duration: 49 min 52 s | Number of puffs: 81 Aerosol duration: 4 min 03 s Patient administration duration: 44 min 02 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruneau, C.; Mercier, C.; Leclerc, L.; Pourchez, J. The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization. Pharmaceutics 2024, 16, 1396. https://doi.org/10.3390/pharmaceutics16111396
Bruneau C, Mercier C, Leclerc L, Pourchez J. The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization. Pharmaceutics. 2024; 16(11):1396. https://doi.org/10.3390/pharmaceutics16111396
Chicago/Turabian StyleBruneau, Cyrille, Clément Mercier, Lara Leclerc, and Jérémie Pourchez. 2024. "The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization" Pharmaceutics 16, no. 11: 1396. https://doi.org/10.3390/pharmaceutics16111396
APA StyleBruneau, C., Mercier, C., Leclerc, L., & Pourchez, J. (2024). The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization. Pharmaceutics, 16(11), 1396. https://doi.org/10.3390/pharmaceutics16111396