Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of ITZ-HA-GLY
2.3. Experimental Design
2.4. ITZ-HA-GLY Characterization and Optimization
2.4.1. Analysis of Entrapment Efficiency (EE)
2.4.2. Analysis of Vesicle Size, Polydispersity Index, and Zeta Potential of ITZ-HA-GLY
2.4.3. Optimization of ITZ-HA-GLY
2.5. Characterization of the Optimized Formulation
2.5.1. Transmission Electron Microscopy (TEM)
2.5.2. In Vitro Drug Release Study
2.5.3. In Vivo Study
Animals
ITZ Biodistribution
Plasma and Organs
Chromatographic Conditions
Analysis of ITZ Plasma and Tissue Samples
2.5.4. Cytotoxicity Evaluation Utilizing Sulforhodamine B Colorimetric Assay (SRB)
Cell Culture
Anticancer Activity
Cytotoxicity on Human Normal Cell Line (HSF-1)
2.6. Statistical Analysis
3. Results
3.1. Fabrication of ITZ-HA-GLY
3.2. Experimental Design and Optimization
3.2.1. Analysis of Entrapment Efficiency (EE)
3.2.2. Determination of Vesicle Size, Polydispersity Index and Zeta Potential of ITZ-HA-GLY
VS and PDI Analysis
ZP
3.2.3. Selection of the Optimal Formulation
3.3. Morphology of ITZ-HA-GLY
3.4. In Vitro Drug Release
3.5. In Vivo Biodistribution Study
ITZ Biodistribution Studies
3.6. In Vitro Cytotoxicity
Cytotoxicity on Normal Cells and Duration of Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Gorain, B.; Alhakamy, N.A.; Md, S. Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. J. Drug Target. 2020, 28, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.; Rajkumar, S.V. The high cost of cancer drugs and what we can do about it. Mayo Clin. Proc. 2012, 87, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Elsaady, M.T.; Gouda, A.M.; Edrees, F.H.; Gawad, N.M.A. Design, synthesis and biological evaluation of some novel Schiff base derivatives as potential anticancer agents. J. Chem. Pharm. Res. 2016, 8, 273–282. [Google Scholar]
- Li, C.L.; Fang, Z.X.; Wu, Z.; Hou, Y.Y.; Wu, H.T.; Liu, J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed. Pharmacother. 2022, 154, 113616. [Google Scholar] [CrossRef]
- Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Beachy, P.A. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 2010, 17, 388–399. [Google Scholar] [CrossRef]
- Wang, X.; Wei, S.; Zhao, Y.; Shi, C.; Liu, P.; Zhang, C.; Zhang, H. Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer Lett. 2017, 385, 128–136. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brahmer, J.R.; Juergens, R.A.; Hann, C.L.; Ettinger, D.S.; Sebree, R.; Liu, J.O. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non–small-cell lung cancer. J. Thorac. Oncol. 2013, 8, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett. 2017, 14, 1240–1246. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Sun, X. Intratracheal delivery of nano-and microparticles and hyperpolarized gases: A promising strategy for the imaging and treatment of respiratory disease. Chest 2020, 157, 1579–1590. [Google Scholar] [CrossRef]
- Zi, Y.; Yang, K.; He, J.; Wu, Z.; Liu, J.; Zhang, W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 2022, 188, 114449. [Google Scholar] [PubMed]
- Elkomy, M.H.; El Menshawe, S.F.; Kharshoum, R.M.; Abdeltwab, A.M.; Hussein, R.R.; Hamad, D.S.; Aboud, H.M. Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: Statistical optimization and comparative in vitro/in vivo evaluation. Drug Deliv. 2022, 29, 2058–2071. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zaru, M.; Manca, M.L.; Fadda, A.M.; Orsini, G. Glycerosomes and Use Thereof in Pharmaceutical and Cosmetic Preparations for Topical Applications. U.S. Patent US8778367B2, 15 July 2014. [Google Scholar]
- Ghadiri, M.; Young, P.M.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics 2019, 11, 113. [Google Scholar] [CrossRef]
- Gupta, P.; Mazumder, R.; Padhi, S. Glycerosomes: Advanced Liposomal Drug Delivery System. Indian J. Pharm. Sci. 2020, 82, 385–397. [Google Scholar] [CrossRef]
- Lalevée, G.; Sudre, G.; Montembault, A.; Meadows, J.; Malaise, S.; Crépet, A.; Delair, T. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydr. Polym. 2016, 154, 86–95. [Google Scholar] [CrossRef]
- Tripodo, G.; Trapani, A.; Torre, M.L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416. [Google Scholar] [CrossRef]
- Pignataro, L.; Marchisio, P.; Ibba, T.; Torretta, S. Topically administered hyaluronic acid in the upper airway: A narrative review. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418766739. [Google Scholar] [CrossRef]
- Marengo, A.; Forciniti, S.; Dando, I.; Dalla Pozza, E.; Stella, B.; Tsapis, N.; Arpicco, S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta BBA Gen. Subj. 2019, 1863, 61–72. [Google Scholar] [CrossRef]
- Naor, D.; Sionov, R.V.; Ish-Shalom, D. CD44: Structure, function and association with the malignant process. Adv. Cancer Res. 1997, 71, 241–319. [Google Scholar]
- Thapa, R.; Wilson, G.D. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int. 2016, 2016, 2087204. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.M.; Teng, E.; Chong, H.S.; Lopez, K.A.P.; Tay, A.Y.L.; Salto-Tellez, M.; Chan, S.L. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014, 74, 2630–2641. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Nafady, M.M.; Khallaf, R.A.; Abdel-Sattar, A.R.; Abdel-Sattar, H.H.; Eissa, E.M. Implementing losartan potassium-laden pegylated nanocubic vesicles as a novel nanoplatform to alleviate cisplatin-induced nephrotoxicity via blocking apoptosis and activating the wnt/β-catenin/TCF-4 pathway. Life Sci. 2024, 354, 122955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: Optimization, characterization, and evaluation in vitro and in vivo. Int. J. Nanomed. 2017, 12, 3521–3532. [Google Scholar] [CrossRef] [PubMed]
- Khallaf, R.A.; Aboud, H.M.; Sayed, O.M. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J. Liposome Res. 2020, 30, 163–173. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Orfali, R.; Hamad, D.S.; Rateb, M.E.; Farouk, H.O. Sustainable release of propranolol hydrochloride laden with biconjugated-ufasomes chitosan hydrogel attenuates cisplatin-induced sciatic nerve damage in in vitro/in vivo evaluation. Pharmaceutics 2022, 14, 1536. [Google Scholar] [CrossRef]
- Alhowyan, A.A.; Altamimi, M.A.; Kalam, M.A.; Khan, A.A.; Badran, M.; Binkhathlan, Z.; Alshamsan, A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by Vitamin-E TPGS: In vitro and ex vivo studies. J. Microbiol. Methods 2019, 161, 87–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Öztürk, A.; Aygül, A. Design of cefaclor monohydrate containing nanoparticles with extended antibacterial effect by nano-spray dryer: A nanoenglobing study. J. Res. Pharm. 2020, 24, 100–111. [Google Scholar] [CrossRef]
- Mitidieri, E.; Visaggio, D.; Frangipani, E.; Turnaturi, C.; Vanacore, D.; Provenzano, R.; di Villa Bianca, R.D.E. Intra-tracheal administration increases gallium availability in lung: Implications for antibacterial chemotherapy. Pharmacol. Res. 2021, 170, 105698. [Google Scholar] [CrossRef]
- Wang, J.; Huang, G. Preparation of itraconazole-loaded liposomes coated by carboxymethyl chitosan and its pharmacokinetics and tissue distribution. Drug Deliv. 2011, 18, 631–638. [Google Scholar] [PubMed]
- Cunha-Azevedo, E.P.; Py-Daniel, K.R.; Siqueira-Moura, M.P.; Bocca, A.L.; Felipe, M.S.; Tedesco, A.C.; Azevedo, R.B. In vivo evaluation of the efficacy, toxicity and biodistribution of PLGA-DMSA nanoparticles loaded with itraconazole for treatment of paracoccidioidomycosis. J. Drug Deliv. Sci. Technol. 2018, 45, 135–141. [Google Scholar] [CrossRef]
- Py-Daniel, K.R.; Pires Junior, O.R.; Cordova, C.M.I.; Fascineli, M.L.; Tedesco, A.C.; Azevedo, R.B. HPLC-FLD method for itraconazole quantification in poly lactic-co-glycolic acid nanoparticles, plasma and tissue. J. Braz. Chem. Soc. 2014, 25, 697–703. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- De Lima, L.S.; Araujo, M.D.M.; Quináia, S.P.; Migliorine, D.W.; Garcia, J.R. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem. Eng. J. 2011, 166, 881–889. [Google Scholar] [CrossRef]
- DeLoach, R.; Ulbrich, N. A comparison of two balance calibration model building methods. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; p. 147. [Google Scholar]
- Yusuf, M.; Sharma, V.; Pathak, K. Nanovesicles for transdermal delivery of felodipine: Development, characterization, and pharmacokinetics. Int. J. Pharm. Investig. 2014, 4, 119. [Google Scholar]
- Aboud, H.M.; Hassan, A.H.; Ali, A.A.; Abdel-Razik, A.R.H. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug Deliv. 2018, 25, 1328–1339. [Google Scholar] [CrossRef]
- Vinarov, Z.; Gancheva, G.; Burdzhiev, N.; Tcholakova, S. Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: Interplay of amphiphile structure, pH and electrostatic interactions. J. Drug Deliv. Sci. Technol. 2020, 57, 101688. [Google Scholar] [CrossRef]
- Kutbi, H.I.; Asfour, H.Z.; Kammoun, A.K.; Sirwi, A.; Cavalu, S.; Gad, H.A. Optimization of Hyaluronate-Based Liposomes to Augment the Oral Delivery and the Bioavailability of Berberine. Materials 2021, 14, 5759. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Vanić, Ž.; Flaten, G.E.; Mattsson, S.; Tho, I.; Škalko-Basnet, N. Pectosomes and chitosomes as delivery systems for metronidazole: The one-pot preparation method. Pharmaceutics 2013, 5, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Zubaydah, W.O.S.; Andriani, R.; Suryani, S.; Indalifiani, A.; Jannah, S.R.N.; Hidayati, D. Optimization of Soya Phosphatidylcholine and Tween 80 As A Preparation of Diclofenac Sodium Transfersome Vesicles Using Design-Expert. J. Farm. Galen. (Galen. J. Pharm.) 2023, 9, 84–98. [Google Scholar] [CrossRef]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Sun, C.; Dai, L.; Yang, S.; Wei, Y.; Gao, Y. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef]
- Alotaibi, K.M.; Shukla, A.K.; Bajuayfir, E.; Alotaibi, A.A.; Mrad, M.H.; Gomaa, F.A.; Alswieleh, A.M. Ultrasound-assisted synthesis of MSNs/PS nanocomposite membranes for effective removal of Cd2+ and Pb2+ ions from aqueous solutions. Ultrason. Sonochem. 2023, 98, 106497. [Google Scholar] [CrossRef] [PubMed]
- El Menshawe, S.F.; Shalaby, K.; Elkomy, M.H.; Aboud, H.M.; Ahmed, Y.M.; Abdelmeged, A.A.; El Sisi, A.M. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int. J. Pharm. X 2024, 7, 100225. [Google Scholar] [CrossRef]
- Manca, M.L.; Peris, J.E.; Melis, V.; Valenti, D.; Cardia, M.C.; Lattuada, D.; Manconi, M. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitro–in vivo suitability as pulmonary delivery systems. RSC Adv. 2015, 5, 105149–105159. [Google Scholar] [CrossRef]
- Ramli, N.A.; NORA’AINI, A.L.I.; Hamzah, S. Physicochemical characterization of quercetin-loaded liposomes prepared by sonication for functional food application. J. Sustain. Sci. Manag. 2020, 15, 15–27. [Google Scholar] [CrossRef]
- Almalik, A.; Donno, R.; Cadman, C.J.; Cellesi, F.; Day, P.J.; Tirelli, N. Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. J. Control. Release 2013, 172, 1142–1150. [Google Scholar] [CrossRef]
- Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: Development, characterization, and evaluation. J. Drug Target. 2010, 18, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.; Abd El-Alim, S.H.; Shamma, R.N.; Awad, G.E. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J. Liposome Res. 2013, 23, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Hakamivala, A.; Moghassemi, S.; Omidfar, K. Modeling and optimization of the niosome nanovesicles using response surface methodology for delivery of insulin. Biomed. Phys. Eng. Express 2019, 5, 045041. [Google Scholar] [CrossRef]
- Al-Mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm. 2017, 522, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Casey-Power, S.; Ryan, R.; Behl, G.; McLoughlin, P.; Byrne, M.E.; Fitzhenry, L. Hyaluronic acid: Its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes. Pharmaceutics 2022, 14, 1479. [Google Scholar] [CrossRef]
- Zarepour, A.; Egil, A.C.; Cokol Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Zarrabi, A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers 2023, 15, 298. [Google Scholar] [CrossRef]
- El-Sheridy, N.A.; El-Moslemany, R.M.; Ramadan, A.A.; Helmy, M.W.; El-Khordagui, L.K. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv. 2021, 28, 906–919. [Google Scholar] [CrossRef]
- Mahmoud, M.O.; Aboud, H.M.; Hassan, A.H.; Ali, A.A.; Johnston, T.P. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J. Control. Release 2017, 254, 10–22. [Google Scholar] [CrossRef]
- Zhou, Y.; He, C.; Chen, K.; Ni, J.; Cai, Y.; Guo, X.; Wu, X.Y. A new method for evaluating actual drug release kinetics of nanoparticles inside dialysis devices via numerical deconvolution. J. Control. Release 2016, 243, 11–20. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Patel, S.K.; Palmer, K.E.; Devlin, B.; Rohan, L.C. Design of poly (lactic-co-glycolic acid)(PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics 2019, 11, 184. [Google Scholar] [CrossRef]
- Öztürk, A.A.; Namlı, İ.; Güleç, K.; Kıyan, H.T. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc. Res. 2020, 130, 103991. [Google Scholar] [CrossRef] [PubMed]
- Pivato, R.V.; Rossi, F.; Ferro, M.; Castiglione, F.; Trotta, F.; Mele, A. β-Cyclodextrin nanosponge hydrogels as drug delivery nanoarchitectonics for multistep drug release kinetics. ACS Appl. Polym. Mater. 2021, 3, 6562–6571. [Google Scholar] [CrossRef]
- McConville, J.T.; Overhoff, K.A.; Sinswat, P.; Vaughn, J.M.; Frei, B.L.; Burgess, D.S.; Williams, R.O. Targeted high lung concentrations of itraconazole using nebulized dispersions in a murine model. Pharm. Res. 2006, 23, 901–911. [Google Scholar] [CrossRef]
- Ohara, Y.; Oda, T.; Yamada, K.; Hashimoto, S.; Akashi, Y.; Miyamoto, R.; Ohkohchi, N. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells. Int. J. Cancer 2012, 131, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.; Shi, W.; Lutz, J.D.; Kunze, K.L.; Liu, J.O.; Nelson, W.L.; Isoherranen, N. Stereospecific metabolism of itraconazole by CYP3A4: Dioxolane ring scission of azole antifungals. Drug Metab. Dispos. 2012, 40, 426–435. [Google Scholar] [CrossRef]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 20. [Google Scholar] [CrossRef]
- Willems, L.; Van der Geest, R.; De Beule, K. Itraconazole oral solution and intravenous formulations: A review of pharmacokinetics and pharmacodynamics. J. Clin. Pharm. Ther. 2001, 26, 159–169. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Yang, L.; Wang, R. Insights into the Role of Oxidative Stress in Hepatocellular Carcinoma Development. Front. Biosci. -Landmark 2023, 28, 286. [Google Scholar] [CrossRef]
- Lollo, G.; Matha, K.; Bocchiardo, M.; Bejaud, J.; Marigo, I.; Virgone-Carlotta, A.; Benoit, J.P. Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules. J. Drug Target. 2019, 27, 634–645. [Google Scholar] [CrossRef]
- Buggins, T.R.; Dickinson, P.A.; Taylor, G. The effects of pharmaceutical excipients on drug disposition. Adv. Drug Deliv. Rev. 2007, 59, 1482–1503. [Google Scholar] [CrossRef]
- El-Menshawe, S.F.; Sayed, O.M.; Abou Taleb, H.A.; Saweris, M.A.; Zaher, D.M.; Omar, H.A. The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: A systematic study. J. Drug Deliv. Sci. Technol. 2020, 56, 101569. [Google Scholar] [CrossRef]
- Kesharwani, P.; Chadar, R.; Sheikh, A.; Rizg, W.Y.; Safhi, A.Y. CD44-targeted nanocarrier for cancer therapy. Front. Pharmacol. 2022, 12, 800481. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-L. Phospholipids as multidrug resistance modulators of the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochem. Pharmacol. 2000, 60, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Chelakkot, V.S.; Shin, Y.; Song, K. Modulating glycolysis to improve cancer therapy. Int. J. Mol. Sci. 2023, 24, 2606. [Google Scholar] [CrossRef] [PubMed]
Variable | Design Level | |
---|---|---|
Low (−1) | High (+1) | |
Independent variables | ||
A = Soybean phosphatidylcholine concentration (%) | 2 | 4 |
B = HA concentration (%) | 0.1 | 0.2 |
C = Tween 80 concentration (%) | 0.1 | 0.2 |
D = Sonication time (min) | 5 | 15 |
Dependent variables | Constraints | |
Y1 = EE (%) | Maximize | |
Y2 = VS (nm) | Minimize | |
Y3 = ZP (mW) | Maximize |
Formulation | Independent Variables | Dependent Variables | PDI | |||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Y1: EE | Y2: VS | Y3: ZP | ||
1 | 2 | 0.2 | 0.2 | 15 | 70.25 ± 0.31 | 429.63 ± 6.5 | 27.74 ± 0.78 | 0.23 |
2 | 2 | 0.1 | 0.1 | 15 | 63.46 ± 0.62 | 465.36 ± 9.14 | 31.93 ± 0.54 | 0.19 |
3 | 4 | 0.2 | 0.2 | 15 | 79.07 ± 0.61 | 484.87 ± 7.07 | 39.16 ± 0.30 | 0.21 |
4 | 2 | 0.2 | 0.2 | 5 | 77.92 ± 0.53 | 475.65 ± 12.0 | 25.63 ± 0.83 | 0.31 |
5 | 4 | 0.1 | 0.2 | 15 | 75.32 ± 0.40 | 187.43 ± 4.49 | 42.52 ± 0.25 | 0.34 |
6 | 2 | 0.1 | 0.2 | 5 | 72.58 ± 0.34 | 420.12 ± 5.96 | 26.46 ± 0.66 | 0.18 |
7 | 2 | 0.1 | 0.2 | 15 | 66.45 ± 0.42 | 381.43 ± 9.89 | 30.26 ± 0.45 | 0.11 |
8 | 4 | 0.2 | 0.2 | 5 | 83.97 ± 1.23 | 495.34 ± 9.03 | 33.59 ± 0.53 | 0.13 |
9 | 4 | 0.1 | 0.2 | 5 | 80.07 ± 0.53 | 230.54 ± 8.48 | 36.53 ± 0.44 | 0.19 |
10 | 2 | 0.2 | 0.1 | 15 | 69.35 ± 0.31 | 520.34 ± 10.0 | 28.51 ± 0.57 | 0.15 |
11 | 2 | 0.1 | 0.1 | 5 | 74.61 ± 1.15 | 491.02 ± 12.4 | 26.79 ± 0.68 | 0.21 |
12 | 4 | 0.2 | 0.1 | 15 | 72.65 ± 0.20 | 285.43 ± 7.16 | 40.76 ± 0.41 | 0.12 |
13 | 2 | 0.2 | 0.1 | 5 | 73.78 ± 0.14 | 566.54 ± 9.65 | 25.49 ± 0.83 | 0.17 |
14 | 4 | 0.1 | 0.1 | 15 | 70.94 ± 0.95 | 201.78 ± 8.86 | 43.23 ± 0.43 | 0.15 |
15 | 4 | 0.1 | 0.1 | 5 | 78.45 ± 0.71 | 225.45 ± 6.03 | 37.59 ± 0.75 | 0.16 |
16 | 4 | 0.2 | 0.1 | 5 | 79.84 ± 0.52 | 335.65 ± 7.37 | 34.83 ± 0.79 | 0.10 |
Parameters | DF | SS | MS | F | p-Value |
---|---|---|---|---|---|
EE% | |||||
Regression | 10 | 438.18 | 43.82 | 20.27 | 0.002 |
Residual | 5 | 10.81 | 2.92 | 1.35 | - |
Total | 15 | 448.98 | - | - | - |
Vesicle size | |||||
Regression | 10 | 2.26 × 105 | 22,639.95 | 10.93 | 0.0083 |
Residual | 5 | 10,360.01 | 2072.002 | - | - |
Total | 15 | 2.37 × 105 | - | - | |
Zeta potential | |||||
Regression | 10 | 577.02 | 57.7 | 178.28 | 0.0001 |
Residual | 5 | 1.62 | 0.32 | - | - |
Total | 15 | 578.64 | - | - | - |
Factor | Optimal Value | Response Variable | Actual Value | Predicted Value | % Prediction Error a |
---|---|---|---|---|---|
A: Soybean phosphatidylcholine (%) | 4 | EE % | 73.65 ± 1.76 | 74.77 | −1.5 |
B: HA (%) | 0.1 | VS nm | 210.23 ± 6.43 | 204.57 | 2.65 |
C: Tween 80 (%) | 0.2 | ZP mV | 41.06 ± 2.62 | 42.36 | −3.16 |
D: Sonication time (min) | 15 | - | - | - | - |
Model and Equation | Evaluation Criteria | |||||
---|---|---|---|---|---|---|
ITZ-HA-GLY at pH 5.5 | ITZ-HA-GLY at pH 7.4 | |||||
R2 | AIC | MSC | R2 | AIC | MSC | |
First-order F = 100 [1 − Exp (−k1 × t)] | 0.9706 | 35.1519 | 3.2404 | 0.9535 | 36.7450 | 2.7817 |
Higuchi F = kH × t0.5 | 0.9785 | 32.9635 | 3.5530 | 0.9591 | 35.8460 | 2.9101 |
Korsmeyer-Peppas F = kKP × tn | 0.9820 | 33.7057 | 3.4470 | 0.9742 | 34.6096 | 3.0868 |
Hopfenberg F = 100 × [1 − (1 − kHB × t)n] | 0.9706 | 37.1573 | 2.9539 | 0.9534 | 38.7493 | 2.4954 |
Peppas-Sahlin F = k1 × tm + k2 × t2m | 0.9934 | 28.7143 | 4.1600 | 0.9830 | 33.7061 | 3.2159 |
Formulation | Cmax (ng/mL) | Tmax (h) | T1/2 (h) | AUC(0–24) (µgh/mL) | MRT (h) |
---|---|---|---|---|---|
ITZ suspension | 100 | 0.5 | 4 | 186 | 6 |
ITZ-HA-GLY | 364 | 1 | 10 | 4335 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aati, S.; Farouk, H.O.; Elkarmalawy, M.H.; Aati, H.Y.; Tolba, N.S.; Hassan, H.M.; Rateb, M.E.; Hamad, D.S. Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics 2024, 16, 1432. https://doi.org/10.3390/pharmaceutics16111432
Aati S, Farouk HO, Elkarmalawy MH, Aati HY, Tolba NS, Hassan HM, Rateb ME, Hamad DS. Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics. 2024; 16(11):1432. https://doi.org/10.3390/pharmaceutics16111432
Chicago/Turabian StyleAati, Sultan, Hanan O. Farouk, Marwa H. Elkarmalawy, Hanan Y. Aati, Nahla Sameh Tolba, Hossam M. Hassan, Mostafa E. Rateb, and Doaa S. Hamad. 2024. "Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution" Pharmaceutics 16, no. 11: 1432. https://doi.org/10.3390/pharmaceutics16111432
APA StyleAati, S., Farouk, H. O., Elkarmalawy, M. H., Aati, H. Y., Tolba, N. S., Hassan, H. M., Rateb, M. E., & Hamad, D. S. (2024). Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics, 16(11), 1432. https://doi.org/10.3390/pharmaceutics16111432