Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management
Abstract
:1. Introduction
2. Mechanisms of Pharmacokinetic Interactions
3. Guidelines and Medications for Management of Inflammatory Bowel Disease
4. Drug Interactions for the Drugs Used in IBD
4.1. 5-Aminosalicylates
4.2. Corticosteroids
4.3. Immunosuppressants
4.4. JAK Inhibitors
Perpetrator | Victim | Experimental System | Interactions | Potential Mechanisms | Ref. |
---|---|---|---|---|---|
Baohuoside I | Tofacitinib | RLM |
| Cyp3A1/2 inhibition | [98] |
Rat |
| ||||
Bergapten | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 inhibition | [99] |
Rat |
| ||||
Fluconazole | Tofacitinib | Healthy volunteers |
| CYP3A4/2C19 inhibition | [100] |
Isopsolaren | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [99] |
Rat |
| Cyp3A1/2 inhibition | |||
Myricetin | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [101] |
Naringenin | Tofacitinib | Rat |
| Cyp3A1/2 inhibition | [102] |
Ketoconazole | Tofacitinib | Rat |
| Cyp3A1/2 inhibition | [99] |
Healthy volunteers |
| CYP3A4 inhibition | [100] | ||
Resveratrol | Tofacitinib | RLM/HLM/rhCYP3A4 |
| Cyp3A1/2 or CYP3A4 inhibition | [103] |
Rat |
| Cyp3A1/2 inhibition | |||
Voriconazole | Tofacitinib | RLM/RIM |
| Cyp3A1/2 inhibition | [104] |
Rat |
| ||||
Rifampin | Tofacitinib | Human |
| CYP3A4 induction | [105] |
Tofacitinib | Ethinylestradiol, levonorgestrel | Healthy volunteers |
| - | [106] |
Tofacitinib | Midazolam | HLM |
| CYP450 inhibition | [107] |
Human hepatocytes |
| CYP450 induction | |||
Healthy volunteers |
| - | |||
Tofacitinib | Voriconazole | Rat |
| - | [104] |
4.5. Antibiotics
4.6. Biologics
mAb | Immunosuppressant | Subject | Outcomes | Ref. | ||
---|---|---|---|---|---|---|
Infliximab | AZA | Moderate to severe CD who had not undergone previous immunosuppressive or biologic therapy | Group | IFX trough levels at W30/46 | Patient with steroid-free remission (%) at W30/50 | [130] |
Infliximab | 1.6/1.0 μg/mL | ADA negative: 66.7/70.6% ADA positive: 56.3/57.1% | ||||
Infliximab + AZA (2.5 mg/kg, QD) | 3.5/3.8 μg/mL | |||||
Infliximab | AZA | IBD patients in clinical remission | Group | Infliximab trough levels | Patient% with subtherapeutic levels of infliximab (3 μg/mL) | [129] |
Infliximab | 2.83 μg/mL | 57% | ||||
Infliximab + AZA (<1 mg/kg) | 4.91 μg/mL | 26% | ||||
Infliximab + Aza (1–2 mg/kg) | 5.67 μg/mL | 25% | ||||
Infliximab + AZA (>2 mg/kg) | 7.53 μg/mL | 11% | ||||
Infliximab | AZA | IBD patients with infliximab maintenance therapy | Group | Patient with ADA (%) | [134] | |
6-TGN level between 235 and 450 pmol/8 × 108 RBC | 18.8% | |||||
6-TGN level < 235-pmol/8 × 108 RBC | 63.6% | |||||
Infliximab | MTX | CD patients who had initiated prednisone induction therapy within the preceding 6 weeks | Group | Infliximab level | Patient with ADA (%) | [135] |
Infliximab | 3.75 μg/mL | 20% | ||||
Infliximab + MTX (10 mg QW, escalating to 25 mg QW) | 6.35 μg/mL (p = 0.08) | 4% | ||||
Infliximab | AZA, 6-MP, or MTX | CD patients treated with infliximab in an on-demand schedule | Group | Infliximab level | Patient with ADA (%) | [128] |
Infliximab | 2.42 μg/mL | 73% | ||||
Infliximab + AZA (2–2.5 mg/kg), 6-MP (1–1.25 mg/kg) or MTX (15 mg QW after induction for 12 W at 25 mg) | 6.45 μg/mL | AZA or 6-MP: 48% MTX: 44% | ||||
Infliximab | AZA,6-MP, MTX | CD patients starting infliximab treatment | Group | Infliximab level | [136] | |
Infliximab | >12 μg/mL | |||||
Infliximab + AZA (2–2.5 mg/kg/day), 6-MP (1–1.25 mg/kg/day) or MTX (15 mg, QW) | <5 μg/mL | |||||
Infliximab or adalimumab | MTX | Pediatric CD patients initiating infliximab or adalimumab | Group | Patient with ADA (%) | [137] | |
Infliximab/ adalimumab | 47/21% | |||||
Infliximab/ adalimumab + MTX (10–15 mg depending on body weight, QW) | 34/15% (not statistically significant) |
5. Perspective
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodrigues, A.D. Drug-Drug Interactions; CRC Press: Boca Raton, FL, USA, 2019; ISBN 0429524307. [Google Scholar]
- Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 601. [Google Scholar]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Zhou, J.-L.; Bao, J.-C.; Liao, X.-Y.; Chen, Y.-J.; Wang, L.-W.; Fan, Y.-Y.; Xu, Q.-Y.; Hao, L.-X.; Li, K.-J.; Liang, M.-X.; et al. Trends and projections of inflammatory bowel disease at the global, regional and national levels, 1990–2050: A bayesian age-period-cohort modeling study. BMC Public Health 2023, 23, 2507. [Google Scholar] [CrossRef] [PubMed]
- Calkins, B.M.; Lilienfeld, A.M.; Garland, C.F.; Mendeloff, A.I. Trends in incidence rates of ulcerative colitis and Crohn’s disease. Dig. Dis. Sci. 1984, 29, 913–920. [Google Scholar] [CrossRef] [PubMed]
- De Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Graham, D.B.; Xavier, R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020, 578, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Philip Schumm, L.; Sharma, Y.; Anderson, C.A. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, H.; Chen, S.; He, J.; Zhou, Y.; Nie, Y. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2021, 36, 320–328. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhi, F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: A meta-analysis. BioMed Res. Int. 2016, 2016, 5828959. [Google Scholar] [CrossRef]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, M.; Al Rihani, S.B.; Arwood, M.J.; Darakjian, L.; Dow, P.; Turgeon, J.; Michaud, V. Mechanisms of CYP450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Galetin, A.; Brouwer, K.L.R.; Tweedie, D.; Yoshida, K.; Sjöstedt, N.; Aleksunes, L.; Chu, X.; Evers, R.; Hafey, M.J.; Lai, Y. Membrane transporters in drug development and as determinants of precision medicine. Nat. Rev. Drug Discov. 2024, 23, 255–280. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Müller, F.; Fromm, M.F. Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. Pharmacol. Rev. 2013, 65, 944–966. [Google Scholar] [CrossRef]
- Gulnaz, A.; Chang, J.-E.; Maeng, H.-J.; Shin, K.-H.; Lee, K.-R.; Chae, Y.-J. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. J. Pharm. Investig. 2023, 53, 73–92. [Google Scholar] [CrossRef]
- Chae, Y.-J.; Chang, J.-E.; Lee, M.-K.; Lim, J.; Shin, K.-H.; Lee, K.-R. Regulation of drug transporters by microRNA and implications in disease treatment. J. Pharm. Investig. 2022, 52, 23–47. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J. 2011, 26, 77. [Google Scholar] [CrossRef]
- Raoul, J.L.; Moreau-Bachelard, C.; Gilabert, M.; Edeline, J.; Frénel, J.S. Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure. ESMO open 2023, 8, 100880. [Google Scholar] [CrossRef]
- Wang, W.; Lu, P.; Fang, Y.; Hamuro, L.; Pittman, T.; Carr, B.; Hochman, J.; Prueksaritanont, T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab. Dispos. 2011, 39, 1469–1477. [Google Scholar] [CrossRef]
- Ternant, D.; Arnoult, C.; Pugnière, M.; Dhommée, C.; Drocourt, D.; Perouzel, E.; Passot, C.; Baroukh, N.; Mulleman, D.; Tiraby, G. IgG1 allotypes influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J. Immunol. 2016, 196, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Gunn, G.R., 3rd; Sealey, D.C.F.; Jamali, F.; Meibohm, B.; Ghosh, S.; Shankar, G. From the bench to clinical practice: Understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin. Exp. Immunol. 2016, 184, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, A.; Chirmule, N.; Nair, P. Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J. Immunol. Res. 2016, 2016, 1298473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, F.; Jones, N.; Deng, R.; Li, C.; Li, C.C. Assessment of CYP3A-mediated drug interaction via cytokine (IL-6) elevation for mosunetuzumab using physiologically-based pharmacokinetic modeling. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 234–246. [Google Scholar] [CrossRef]
- Ko, C.W.; Singh, S.; Feuerstein, J.D.; Falck-Ytter, C.; Falck-Ytter, Y.; Cross, R.K.; Crockett, S.; Feuerstein, J.; Flamm, S.; Inadomi, J. AGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitis. Gastroenterology 2019, 156, 748–764. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Isaacs, K.L.; Schneider, Y.; Siddique, S.M.; Falck-Ytter, Y.; Singh, S.; Chachu, K.; Day, L.; Lebwohl, B.; Muniraj, T. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology 2020, 158, 1450–1461. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Ho, E.Y.; Shmidt, E.; Singh, H.; Falck-Ytter, Y.; Sultan, S.; Terdiman, J.P. AGA Clinical Practice Guidelines on the Medical Management of Moderate to Severe Luminal and Perianal Fistulizing Crohn’s Disease. Gastroenterology 2021, 160, 2496–2508. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Quattropani, C.; Ausfeld, B.; Straumann, A.; Heer, P.; Seibold, F. Complementary Alternative Medicine in Patients with Inflammatory Bowel Disease: Use and Attitudes. Scand. J. Gastroenterol. 2003, 38, 277–282. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Young, K.N.; Moniruzzaman, M.; Beyene, A.M.; Do, K.; Kalaiselvi, S.; Min, T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): An anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021, 29, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Egan, L.; Sandborn, W.; Mays, D.; Pike, M.; Bell, M.; Huntoon, C.; McKean, D.; Lipsky, J. Inhibition of nuclear factor kappa B (NF-kB) by aminosalicylates: Structure activity relationships. Clin. Pharmacol. Ther. 1999, 65, 146. [Google Scholar] [CrossRef]
- Couto, D.; Ribeiro, D.; Freitas, M.; Gomes, A.; Lima, J.L.F.C.; Fernandes, E. Scavenging of reactive oxygen and nitrogen species by the prodrug sulfasalazine and its metabolites 5-aminosalicylic acid and sulfapyridine. Redox Rep. 2010, 15, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, C.; Lefebvre, B.; Dubuquoy, L.; Lefebvre, P.; Romano, O.; Auwerx, J.; Metzger, D.; Wahli, W.; Desvergne, B.; Naccari, G.C. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. J. Exp. Med. 2005, 201, 1205–1215. [Google Scholar] [CrossRef]
- Svartz, N. Salazopyrin, a new sulfanilamide preparation. A. Therapeutic Results in Rheumatic Polyarthritis. B. Therapeutic Results in Ulcerative Colitis. C. Toxic Manifestations in Treatment with Sulfanilamide Preparations. Acta Medica Scand. 1942, 110, 577–598. [Google Scholar] [CrossRef]
- Das, K.M.; Dubin, R. Clinical pharmacokinetics of sulphasalazine. Clin. Pharmacokinet. 1976, 1, 406–425. [Google Scholar] [CrossRef]
- Rains, C.P.; Noble, S.; Faulds, D. Sulfasalazine: A review of its pharmacological properties and therapeutic efficacy in the treatment of rheumatoid arthritis. Drugs 1995, 50, 137–156. [Google Scholar] [CrossRef]
- Le Berre, C.; Roda, G.; Nedeljkovic Protic, M.; Danese, S.; Peyrin-Biroulet, L. Modern use of 5-aminosalicylic acid compounds for ulcerative colitis. Expert Opin. Biol. Ther. 2020, 20, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.E.S.; Berglindh, T. Pharmacology of olsalazine. Scand. J. Gastroenterol. 1988, 23, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zaher, H.; Khan, A.A.; Palandra, J.; Brayman, T.G.; Yu, L.; Ware, J.A. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 2006, 3, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Karibe, T.; Imaoka, T.; Abe, K.; Ando, O. Curcumin as an in vivo selective intestinal breast cancer resistance protein inhibitor in cynomolgus monkeys. Drug Metab. Dispos. 2018, 46, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Kusuhara, H.; Furuie, H.; Inano, A.; Sunagawa, A.; Yamada, S.; Wu, C.; Fukizawa, S.; Morimoto, N.; Ieiri, I.; Morishita, M.; et al. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br. J. Pharmacol. 2012, 166, 1793–1803. [Google Scholar] [CrossRef]
- Song, Y.K.; Yoon, J.H.; Woo, J.K.; Kang, J.H.; Lee, K.R.; Oh, S.H.; Chung, S.J.; Maeng, H.J. Quercetin is a flavonoid breast cancer resistance protein inhibitor with an impact on the oral pharmacokinetics of sulfasalazine in rats. Pharmaceutics 2020, 12, 397. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, D.; Lee, H.; Kim, G.; Park, T.; Kim, M.C.; Lee, Y.J. Negligible effect of quercetin in the pharmacokinetics of sulfasalazine in rats and beagles: Metabolic inactivation of the interaction potential of quercetin with bcrp. Pharmaceutics 2021, 13, 1989. [Google Scholar] [CrossRef]
- Dahan, A.; Amidon, G.L. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G371–G377. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.-Y.; Arora, S.; Hughes, L.; Wang, J.; Powers, D.; Christensen, J.; Lu, S.; Kansra, V. Effects of rolapitant administered intravenously or orally on the pharmacokinetics of digoxin (P-glycoprotein substrate) and sulfasalazine (breast cancer resistance. J. Clin. Pharmacol. 2018, 58, 202–211. [Google Scholar] [CrossRef]
- Dahan, A.; Pharmaceutics, G.A.-I.J. MRP2 Mediated Drug–Drug Interaction: Indomethacin Increases Sulfasalazine Absorption in the Small Intestine, Potentially Decreasing Its Colonic Targeting; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Kim, Y.H.; Bae, Y.J.; Kim, H.S.; Cha, H.J.; Yun, J.S.; Shin, J.S.; Seong, W.K.; Lee, Y.M.; Han, K.M. Measurement of human cytochrome P450 enzyme induction based on mesalazine and mosapride citrate treatments using a luminescent assay. Biomol. Ther. 2015, 23, 486–492. [Google Scholar] [CrossRef]
- König, J.; Glaeser, H.; Keiser, M.; Mandery, K.; Klotz, U.; Fromm, M.F. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metab. Dispos. 2011, 39, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Bruscoli, S.; Febo, M.; Riccardi, C.; Migliorati, G. Glucocorticoid therapy in inflammatory bowel disease: Mechanisms and clinical practice. Front. Immunol. 2021, 12, 691480. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.S.; Stewart, P.M. 11β-Hydroxysteroid Dehydrogenase Type 1 and Its Role in the Hypothalamus-Pituitary-Adrenal Axis, Metabolic Syndrome, and Inflammation. J. Clin. Endocrinol. Metab. 2009, 94, 4645–4654. [Google Scholar] [CrossRef] [PubMed]
- Pickup, M.E. Clinical pharmacokinetics of prednisone and prednisolone. Clin. Pharmacokinet. 1979, 4, 111–128. [Google Scholar] [CrossRef]
- Hossain, M.A.; Tran, T.; Chen, T.; Mikus, G.; Greenblatt, D.J. Inhibition of human cytochromes P450 in vitro by ritonavir and cobicistat. J. Pharm. Pharmacol. 2017, 69, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Penzak, S.R.; Formentini, E.; Alfaro, R.M.; Long, M.; Natarajan, V.; Kovacs, J. Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers. J. Acquir. Immune Defic. Syndr. 2005, 40, 573–580. [Google Scholar] [CrossRef]
- Diltiazem, S.R.; Imani, S.; Jusko, W.J.; Steiner, R.; Steiner, R.W. Diltiazem retards the metabolism of oral prednisone with effects on T-cell markers. Pediatr. Transplant. 1999, 3, 126–130. [Google Scholar] [CrossRef]
- Marcantonio, E.E.; Ballard, J.; Gibson, C.R.; Kassahun, K.; Palamanda, J.; Tang, C.; Evers, R.; Liu, C.; Zajic, S.; Mahon, C. Prednisone has no effect on the pharmacokinetics of CYP3A4 metabolized drugs–midazolam and odanacatib. J. Clin. Pharmacol. 2014, 54, 1280–1289. [Google Scholar] [CrossRef]
- Lebrun-Vignes, B.; Corbrion Archer, V.; Diquet, B.; Levron, J.C.; Chosidow, O.; Puech, A.J.; Warot, D. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br. J. Clin. Pharmacol. 2001, 51, 443–450. [Google Scholar] [CrossRef]
- Varis, T.; Kivistö, K.T.; Backman, J.T.; Neuvonen, P.J. Itraconazole decreases the clearance and enhances the effects of intravenously administered methylprednisolone in healthy volunteers. Pharmacol. Toxicol. 1999, 85, 29–32. [Google Scholar] [CrossRef]
- Varis, T.; Kaukonen, K.-M.; Kivistö, K.T.; Neuvonen, P.J. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole. Clin. Pharmacol. Ther. 1998, 64, 363–368. [Google Scholar] [CrossRef]
- Varis, T.; Kivisto, K.T.; Neuvonen, P.J. Grapefruit juice can increase the plasma concentrations of oral methylprednisolone. Eur. J. Clin. Pharmacol. 2000, 56, 489–493. [Google Scholar] [CrossRef]
- Booker, B.M.; Magee, M.H.; Blum, R.A.; Lates, C.D.; Jusko, W.J. Pharmacokinetic and pharmacodynamic interactions between diltiazem and methylprednisolone in healthy volunteers. Clin. Pharmacol. Ther. 2002, 72, 370–382. [Google Scholar] [CrossRef]
- McCrea, J.B.; Majumdar, A.K.; Goldberg, M.R.; Iwamoto, M.; Gargano, C.; Panebianco, D.L.; Hesney, M.; Lines, C.R.; Petty, K.J.; Deutsch, P.J.; et al. Effects of the neurokinin1 receptor antagonist aprepitant on the pharmacokinetics of dexamethasone and methylprednisolone. Clin. Pharmacol. Ther. 2003, 74, 17–24. [Google Scholar] [CrossRef]
- Kotlyar, M.; Brewer, E.R.; Golding, M.; Carson, S.W. Nefazodone Inhibits Methylprednisolone Disposition and Enhances its Adrenal-Suppressant Effect. J. Clin. Psychopharmacol. 2003, 23, 652–656. [Google Scholar] [CrossRef]
- Seidegård, J. Reduction of the inhibitory effect of ketoconazole on budesonide pharmacokinetics by separation of their time of administration. Clin. Pharmacol. Ther. 2000, 68, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Seidegård, J.; Randvall, G.; Nyberg, L.; Borgå, O. Grapefruit juice interaction with oral budesonide: Equal effect on immediate-release and delayed-release formulations. Pharmazie 2009, 64, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Pichard, L.; Fabre, I.; Daujat, M.; Domergue, J.; Joyeux, H.; Maurel, P. Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol. Pharmacol. 1992, 41, 1047–1055. [Google Scholar] [PubMed]
- Cuppen, B.V.J.; Pardali, K.; Kraan, M.C.; Marijnissen, A.C.A.; Yrlid, L.; Olsson, M.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; Fritsch-Stork, R.D.E. Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol. Int. 2017, 37, 531–536. [Google Scholar] [CrossRef]
- Jonsson, G.; Astrom, A.; Andersson, P. Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab. Dispos. 1995, 23, 137–142. [Google Scholar]
- Chen, N.; Cui, D.; Wang, Q.; Wen, Z.; Finkelman, R.D.; Welty, D. In vitro drug–drug interactions of budesonide: Inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica 2018, 48, 637–646. [Google Scholar] [CrossRef]
- Dilger, K.; Cascorbi, I.; Grünhage, F.; Hohenester, S.; Sauerbruch, T.; Beuers, U. Multidrug resistance 1 genotype and disposition of budesonide in early primary biliary cirrhosis. Liver Int. 2006, 26, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mahajan, R.; Kedia, S.; Dutta, A.K.; Anand, A.; Bernstein, C.N.; Desai, D.; Pai, C.G.; Makharia, G.; Tevethia, H.V. Use of thiopurines in inflammatory bowel disease: An update. Intest. Res. 2022, 20, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; Gomollón, F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: A review. Off. J. Am. Coll. Gastroenterol. ACG 2008, 103, 1783–1800. [Google Scholar] [CrossRef] [PubMed]
- Dewit, O.; Starkel, P.; Roblin, X. Thiopurine metabolism monitoring: Implications in inflammatory bowel diseases. Eur. J. Clin. Investig. 2010, 40, 1037–1047. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Ciechanowski, K.; Droździk, M. Severe azathioprine-induced myelotoxicity in a kidney transplant patient with thiopurine S-methyltransferase-deficient genotype (TPMT*3A/*3C). Transpl. Int. 2005, 18, 623–625. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.-H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Oselin, K.; Anier, K. Inhibition of Human Thiopurine S-Methyltransferase (TPMT) by Various NSAIDs in vitro: A Mechanism for Possible Drug Interactions. Drug Metab. Dispos. 2007, 35, 1452–1454. [Google Scholar] [CrossRef]
- Achkar, J.-P.; Brzezinski, A.; Lashner, B.; Vogel, D.; Seidner, D.; Shen, B. A double-blind, placebo-controlled randomized clinical trial evaluating the effects of sulfasalazine on 6-mercaptopurine metabolism in patients with crohn’s disease. Off. J. Am. Coll. Gastroenterol. ACG 2004, 99, S264–S265. [Google Scholar] [CrossRef]
- Hande, S.; Wilson-Rich, N.; Bousvaros, A.; Zholudev, A.; Maurer, R.; Banks, P.; Makrauer, F.; Reddy, S.; Burakoff, R.; Friedman, S. 5-Aminosalicylate therapy is associated with higher 6-thioguanine levels in adults and children with inflammatory bowel disease in remission on 6-mercaptopurine or azathioprine. Inflamm. Bowel Dis. 2006, 12, 251–257. [Google Scholar] [CrossRef]
- Looser, R.; Doulberis, M.; Rossel, J.-B.; Franc, Y.; Müller, D.; Biedermann, L.; Rogler, G. Concomitant 5-aminosalicylic acid treatment does not affect 6-thioguanine nucleotide levels in patients with inflammatory bowel disease on thiopurines. Ann. Gastroenterol. 2023, 36, 637–645. [Google Scholar] [CrossRef]
- Lewis, L.D.; Benin, A.; Szumlanski, C.L.; Otterness, D.M.; Lennard, L.; Weinshilboum, R.M.; Nierenberg, D.W. Olsalazine and 6-mercaptopurine-related bone marrow suppression: A possible drug-drug interaction. Clin. Pharmacol. Ther. 1997, 62, 464–475. [Google Scholar] [CrossRef]
- Lowry, P.W.; Franklin, C.L.; Weaver, A.L.; Szumlanski, C.L.; Mays, D.C.; Loftus, E.V.; Tremaine, W.J.; Lipsky, J.J.; Weinshilboum, R.M.; Sandborn, W.J. Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut 2001, 49, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Zimm, S.; Collins, J.M.; O’Neill, D.; Chabner, B.A.; Poplack, D.G. Inhibition of first-pass metabolism in cancer chemotherapy: Interaction of 6-mercaptopurine and allopurinol. Clin. Pharmacol. Ther. 1983, 34, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, M.P.; Hande, S.A.; Friedman, S.; Lim, W.C.; Reddy, S.I.; Cao, D.; Hanauer, S.B. Allopurinol safely and effectively optimizes tioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine. Aliment. Pharmacol. Ther. 2005, 22, 441–446. [Google Scholar] [CrossRef]
- Houwen, J.P.A.; Egberts, A.C.G.; de Boer, A.; van Maarseveen, E.M.; Houwen, R.H.J.; Lalmohamed, A. Influence of allopurinol on thiopurine associated toxicity: A retrospective population-based cohort study. Br. J. Clin. Pharmacol. 2021, 87, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.B.; Brown, S.J.; Bampton, P.; Barclay, M.L.; Chung, A.; Macrae, F.A.; McKenzie, J.; Reynolds, J.; Gibson, P.R.; Hanauer, S.B.; et al. Randomised clinical trial: Efficacy, safety and dosage of adjunctive allopurinol in azathioprine/mercaptopurine nonresponders (AAA Study). Aliment. Pharmacol. Ther. 2018, 47, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Kiszka-Kanowitz, M.; Theede, K.; Thomsen, S.B.; Bjerrum, J.T.; Brynskov, J.; Gottschalck, I.B.; Akimenko, E.; Hilsted, K.L.; Neumann, A.; Wildt, S.; et al. Low-dose azathioprine and allopurinol versus azathioprine monotherapy in patients with ulcerative colitis (AAUC): An investigator-initiated, open, multicenter, parallel-arm, randomised controlled trial. eClinicalMedicine 2022, 45, 101332. [Google Scholar] [CrossRef]
- Balis, F.M.; Holcenberg, J.S.; Zimm, S.; Tubergen, D.; Collins, J.M.; Murphy, R.F.; Gilchrist, G.S.; Hammond, D.; Poplack, D.G. The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clin. Pharmacol. Ther. 1987, 41, 384–387. [Google Scholar] [CrossRef]
- Janke, D.; Mehralivand, S.; Strand, D.; Gödtel-Armbrust, U.; Habermeier, A.; Gradhand, U.; Fischer, C.; Toliat, M.R.; Fritz, P.; Zanger, U.M.; et al. 6-Mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum. Mutat. 2008, 29, 659–669. [Google Scholar] [CrossRef]
- El-Sheikh, A.; Greupink, R.; Wortelboer, H.M.; Van Den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of Immunosuppressive Drugs with Human Organic Anion Transporter (OAT) 1 and OAT3, and Multidrug Resistance-Associated Protein (MRP) 2 and MRP4; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zou, Y.; Gao, W.; Jin, H.; Mao, C.; Zhang, Y.; Wang, X.; Mei, D.; Zhao, L. Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability. Int. J. Nanomed. 2023, 18, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Schwab, M.; Takenaka, K.; Nachagari, D.; Morgan, J.; Leslie, M.; Du, W.; Boyd, K.; Cheok, M.; Nakauchi, H.; et al. Transporter-Mediated Protection against Thiopurine-Induced Hematopoietic Toxicity. Cancer Res. 2008, 68, 4983–4989. [Google Scholar] [CrossRef] [PubMed]
- Ban, H.; Andoh, A.; Imaeda, H.; Kobori, A.; Bamba, S.; Tsujikawa, T.; Sasaki, M.; Saito, Y.; Fujiyama, Y. The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 2010, 45, 1014–1021. [Google Scholar] [CrossRef]
- Raychaudhuri, S.P.; Raychaudhuri, S.K. JAK inhibitor: Introduction. Indian J. Dermatol. Venereol. Leprol. 2023, 89, 688–690. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Z.; Song, W.; Wang, Y.; Zhou, Q.; Geng, P.; Zhou, Y.; Wang, S.; Han, A. The Impact of Baohuoside I on the Metabolism of Tofacitinib in Rats. Drug Des. Dev. Ther. 2024, 18, 931–939. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Wang, H.; Song, W.; Wang, J.; Mamun, A.A.; Geng, P.; Zhou, Y.; Wang, S. Effect of P. corylifolia on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Front. Pharmacol. 2024, 15, 1351882. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Chow, V.; Wang, R.; Kaplan, I.; Chan, G.; Alvey, C.; Ni, G.; Ndongo, M.-N.; Labadie, R.R.; Krishnaswami, S. Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin. Pharmacol. Drug Dev. 2013, 3, 72–77. [Google Scholar] [CrossRef]
- Ye, Z.; Xia, H.; Hu, J.; Liu, Y.; Wang, A.; Cai, J.; Hu, G.; Xu, R. CYP3A4 and CYP2C19 genetic polymorphisms and myricetin interaction on tofacitinib metabolism. Biomed. Pharmacother. 2024, 175, 116421. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, J.; Zhou, Q.; Meng, D.; He, Y.; Chen, F.; Wang, S.; Ji, W. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. Pharm. Biol. 2020, 58, 225–230. [Google Scholar] [CrossRef]
- Ye, Z.; Hu, J.; Wang, J.; Liu, Y.-N.; Hu, G.-X.; Xu, R.-A. The effect of Resveratrol on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Chem.-Biol. Interact. 2023, 374, 110398. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, H.-S.; Jung, Y.-S.; Choi, H.-G.; Kim, S.-H. Pharmacokinetic drug interaction between tofacitinib and voriconazole in rats. Pharmaceutics 2021, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- Tofacitinib. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203214Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Menon, S.; Riese, R.; Wang, R.; Alvey, C.W.; Shi, H.; Petit, W.; Krishnaswami, S. Evaluation of the effect of tofacitinib on the pharmacokinetics of oral contraceptive steroids in healthy female volunteers. Clin. Pharmacol. Drug Dev. 2016, 5, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Alvey, C.; Wang, R.; Dowty, M.E.; Fahmi, O.A.; Walsky, R.L.; Riese, R.J.; Krishnaswami, S. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: Confirmation of in vitro data. Br. J. Clin. Pharmacol. 2012, 74, 109–115. [Google Scholar] [CrossRef]
- Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.; Vaz, A.; Chan, G.L.; Krishnaswami, S.; Prakash, C. The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Tofacitinib, a Janus Kinase Inhibitor, in Humans. Drug Metab. Dispos. 2014, 42, 759–773. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Jungerwirth, S.; Asatryan, A.; Jiang, P.; Othman, A.A. Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br. J. Clin. Pharmacol. 2017, 83, 2242–2248. [Google Scholar] [CrossRef]
- Upadacitinib. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211675Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Mohamed, M.-E.F.; Minocha, M.; Trueman, S.; Feng, T.; Enejosa, J.; Fisniku, O.; Othman, A.A. Characterization of the Effect of Upadacitinib on the Pharmacokinetics of Bupropion, a Sensitive Cytochrome P450 2B6 Probe Substrate. Clin. Pharmacol. Drug Dev. 2021, 10, 299–306. [Google Scholar] [CrossRef]
- Abraham, B.; Quigley, E.M.M. Antibiotics and probiotics in inflammatory bowel disease: When to use them? Frontline Gastroenterol. 2020, 11, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Vance-Bryan, K.; Guay, D.R.P.; Rotschafer, J.C. Clinical Pharmacokinetics of Ciprofloxacin. Clin. Pharmacokinet. 1990, 19, 434–461. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, M.J.; Zhao, C.Y.; Qi, H.M. Determination of the inhibitory potential of 6 fuoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol. Sin. 2008, 29, 1507–1514. [Google Scholar] [CrossRef]
- Karjalainen, M.J.; Neuvonen, P.J.; Backman, J.T. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: Predictability of in vivo interactions. Basic Clin. Pharmacol. Toxicol. 2008, 103, 157–165. [Google Scholar] [CrossRef]
- Granfors, M.T.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin. Pharmacol. Ther. 2004, 76, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Raaska, K.; Neuvonen, P.J. Ciprofloxacin increases serum clozapine and N-desmethylclozapine: A study in patients with schizophrenia. Eur. J. Clin. Pharmacol. 2000, 56, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chan, T.; Zhu, L.; Bao, X.; Velkov, T.; Zhou, Q.T.; Li, J.; Chan, H.K.; Zhou, F. The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur. J. Pharm. Sci. 2018, 115, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Masud Parvez, M.; Kaisar, N.; Shin, H.J.; Jung, J.A.; Shin, J.G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporters of the SLC22A family. Antimicrob. Agents Chemother. 2016, 60, 6558–6567. [Google Scholar] [CrossRef] [PubMed]
- Hedaya, M.A.; El-Afify, D.R.; El-Maghraby, G.M. The effect of ciprofloxacin and clarithromycin on sildenafil oral bioavailability in human volunteers. Biopharm. Drug Dispos. 2006, 27, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, N.; Lněničková, K.; Vavrečková, M.; Anzenbacherová, E.; Anzenbacher, P.; Zapletalová, I.; Hermanová, P.; Hudcovic, T.; Kozáková, H.; Jourová, L. Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression. PLoS ONE 2021, 16, e0259643. [Google Scholar] [CrossRef]
- Wang, J.-S.; Backman, J.T.; Kivistö, K.T.; Neuvonen, P.J. Effects of metronidazole on midazolam metabolism in vitro and in vivo. Eur. J. Clin. Pharmacol. 2000, 56, 555–559. [Google Scholar] [CrossRef]
- Roedler, R.; Neuhauser, M.M.; Penzak, S.R. Does metronidazole interact with CYP3A substrates by inhibiting their metabolism through this metabolic pathway? Or should other mechanisms be considered? Ann. Pharmacother. 2007, 41, 653–658. [Google Scholar] [CrossRef]
- Tamilarasan, A.G.; Cunningham, G.; Irving, P.M.; Samaan, M.A. Recent advances in monoclonal antibody therapy in IBD: Practical issues. Frontline Gastroenterol. 2019, 10, 409–416. [Google Scholar] [CrossRef]
- Van Deventer, S.J. Tumour necrosis factor and Crohn’s disease. Gut 1997, 40, 443. [Google Scholar] [CrossRef]
- Hemperly, A.; Vande Casteele, N. Clinical Pharmacokinetics and Pharmacodynamics of Infliximab in the Treatment of Inflammatory Bowel Disease. Clin. Pharmacokinet. 2018, 57, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Ternant, D.; Aubourg, A.; Magdelaine-Beuzelin, C.; Degenne, D.; Watier, H.; Picon, L.; Paintaud, G. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther. Drug Monit. 2008, 30, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Noman, M.; Van Assche, G.; Baert, F.; D’Haens, G.; Rutgeerts, P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 2007, 56, 1226–1231. [Google Scholar] [CrossRef]
- Polakovicova, V.; Kadleckova, B.; Lucenicova, J.; Otottova, K.; Kinova, S.; Mikus, P.; Zelinkova, Z. Positive pharmacokinetic effect of azathioprine co-medication on infliximab trough levels is dose-dependent. Dig. Liver Dis. 2019, 51, 1112–1116. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef]
- Ducourau, E.; Rispens, T.; Samain, M.; Dernis, E.; Le Guilchard, F.; Andras, L.; Perdriger, A.; Lespessailles, E.; Martin, A.; Cormier, G.; et al. Methotrexate effect on immunogenicity and long-term maintenance of adalimumab in axial spondyloarthritis: A multicentric randomised trial. RMD open 2020, 6, e001047. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.-R.; Kivitz, A.J.; Kupper, H.; Arulmani, U.; Florentinus, S.; Goss, S.L.; Rathmann, S.S.; Fleischmann, R.M. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: The randomised CONCERTO trial. Ann. Rheum. Dis. 2015, 74, 1037–1044. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Qiang, W.; Hu, L.; Wang, L.; Cheng, Z. Methotrexate Reduces the Clearance of Adalimumab by Increasing the Concentration of Neonatal Fc Receptor in Tissues. Pharm. Res. 2019, 36, 157. [Google Scholar] [CrossRef]
- Phillips, J.; Leary, S.; Tyrrell-Price, J. Association between 6-thioguanine nucleotide levels and preventing production of antibodies to infliximab in patients with inflammatory bowel disease. BMJ open Gastroenterol. 2023, 10, e001149. [Google Scholar] [CrossRef]
- Feagan, B.G.; McDonald, J.W.D.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; MacIntosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in Combination With Infliximab Is No More Effective Than Infliximab Alone in Patients With Crohn’s Disease. Gastroenterology 2014, 146, 681–688.e1. [Google Scholar] [CrossRef]
- Baert, F.; Noman, M.; Vermeire, S.; Van Assche, G.; D’Haens, G.; Carbonez, A.; Rutgeerts, P. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 2003, 348, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Kappelman, M.D.; Wohl, D.A.; Herfarth, H.H.; Firestine, A.M.; Adler, J.; Ammoury, R.F.; Aronow, J.E.; Bass, D.M.; Bass, J.A.; Benkov, K.; et al. Comparative Effectiveness of Anti-TNF in Combination With Low-Dose Methotrexate vs Anti-TNF Monotherapy in Pediatric Crohn’s Disease: A Pragmatic Randomized Trial. Gastroenterology 2023, 165, 149–161.e7. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Vu, T.; Lee, H.; Hu, C.; Ling, J.; Yan, H.; Baker, D.; Beutler, A.; Pendley, C.; Wagner, C.; et al. Population Pharmacokinetics of Golimumab, an Anti-Tumor Necrosis Factor-α Human Monoclonal Antibody, in Patients With Psoriatic Arthritis. J. Clin. Pharmacol. 2009, 49, 1056–1070. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xu, Z.; Frederick, B.; de Vries, D.E.; Ford, J.A.; Keen, M.; Doyle, M.K.; Petty, K.J.; Davis, H.M.; Zhou, H. Golimumab Pharmacokinetics After Repeated Subcutaneous and Intravenous Administrations in Patients with Rheumatoid Arthritis and the Effect of Concomitant; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wang, W.; Leu, J.; Watson, R.; Xu, Z.; Zhou, H. Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFα Monoclonal Antibody. AAPS J. 2018, 20, 63. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Baert, F.; Danese, S.; Krznarić, Ž.; Kobayashi, T.; Yao, X.; Chen, J.; Rosario, M.; Bhatia, S.; Kisfalvi, K.; et al. Efficacy and Safety of Vedolizumab Subcutaneous Formulation in a Randomized Trial of Patients With Ulcerative Colitis. Gastroenterology 2020, 158, 562–572.e12. [Google Scholar] [CrossRef]
- Rosario, M.; Dirks, N.L.; Gastonguay, M.R.; Fasanmade, A.A.; Wyant, T.; Parikh, A.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Fox, I. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment. Pharmacol. Ther. 2015, 42, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lirio, R.A.; Schneider, J.; Aubrecht, J.; Kadali, H.; Baratta, M.; Gulati, P.; Suri, A.; Lin, T.; Vasudevan, R. Assessment of vedolizumab disease-drug-drug interaction potential in patients with inflammatory bowel diseases. Clin. Pharmacol. Drug Dev. 2021, 10, 734–747. [Google Scholar] [CrossRef]
- Biancone, L.; Ardizzone, S.; Armuzzi, A.; Castiglione, F.; D’Incà, R.; Danese, S.; Daperno, M.; Gionchetti, P.; Rizzello, F.; Scribano, M.L.; et al. Ustekinumab for treating ulcerative colitis: An expert opinion. Expert Opin. Biol. Ther. 2020, 20, 1321–1329. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Sandborn, W.J.; Feagan, B.G.; Gasink, C.; Jacobstein, D.; Zou, B.; Johanns, J.; Adedokun, O.J.; Sands, B.E.; Rutgeerts, P.; et al. IM-UNITI: Three-year Efficacy, Safety, and Immunogenicity of Ustekinumab Treatment of Crohn’s Disease. J. Crohn’s Colitis 2020, 14, 23–32. [Google Scholar] [CrossRef]
- Ustekinuamb. Clinical Pharmacology and Biopharmaceutics Review. United States Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761044Orig1s000ClinPharmR.pdf (accessed on 13 August 2024).
- Adedokun, O.J.; Xu, Z.; Gasink, C.; Jacobstein, D.; Szapary, P.; Johanns, J.; Gao, L.-L.; Davis, H.M.; Hanauer, S.B.; Feagan, B.G.; et al. Pharmacokinetics and Exposure Response Relationships of Ustekinumab in Patients With Crohn’s Disease. Gastroenterology 2018, 154, 1660–1671. [Google Scholar] [CrossRef]
Category | Classification | Ulcerative Colitis (UC) [27,28,30,32] | Crohn’s Disease (CD) [29,31,32] | Medications |
---|---|---|---|---|
Small molecule | 5-aminosalicylate (5-ASA) | Induction and maintenance of remission for mild to moderate UC | - | Sulfasalazine, mesalazine, olsalazine, balsalazide |
Corticosteroids | Induction of remission in moderate to severe UC when 5-ASA fails to induce remission | Induction of remission in moderate to severe CD | Prednisolone, hydrocortisone, budesonide, prednisone, methylprednisolone | |
Immunosuppressant | Maintenance of remission in steroid-dependent moderate to severe UC patients | Maintenance of remission in moderate to severe CD | Azathioprine, 6-mercaptopurine | |
JAK inhibitor | Induction and maintenance of remission in patients with moderate to severe UC who have inadequate response or intolerance to conventional therapy | - | Tofacitinib | |
Antibiotics | - | Management of complications such as abscesses and fistulas | Metronidazole, ciprofloxacin | |
Monoclonal antibody | Anti-TNF-α | Induction and maintenance of remission in moderate to severe UC | Induction and maintenance of remission in moderate to severe CD | Infliximab, adalimumab, golimumab, certolizumab pegol |
Anti-integrin | Induction and maintenance of remission with moderate to severe UC, particularly useful for patients who do not respond to TNF-α antagonists | Induction and maintenance of remission in patients who do not respond adequately to TNF-α antagonists | Vedolizumab | |
Anti-interleukin | Induction and maintenance of remission in moderate to severe UC when other biologics are ineffective or not tolerated | Induction and maintenance of remission in moderate to severe CD when other biologics are ineffective or not tolerated | Ustekinumab |
Perpetrator | Experimental System | Interactions | Ref. |
---|---|---|---|
Curcumin | Caco-2 |
| [45] |
Membrane vesicle |
| [46] | |
Mouse |
| [46] | |
Monkey |
| [45] | |
Healthy volunteers |
| [46] | |
Quercetin | Rat |
| [47] |
Rat |
| [48] | |
Beagle dog |
| [48] | |
Gefitinib | Mouse |
| [44] |
Pantoprazole | Caco-2 |
| [49] |
Rolapitant | Healthy volunteers |
| [50] |
Potential Mechanisms | Study Design | Alterations of Systemic Exposure to Victim Drugs | Ref. | ||
---|---|---|---|---|---|
Perpetrator | Victim | Subjects | |||
CYP3A4 induction | Prednisone (10 mg, PO, 2 or 4 weeks) | Midazolam (2 mg, PO), odanacatib (50 mg, PO) | Healthy male volunteers (n = 15) | No significance differences in systemic exposure | [60] |
CYP3A4 inhibition | Ritonavir (200 mg, PO, BID, 4 or 14 days) | Prednisolone (20 mg, PO) | Healthy volunteers (n = 10) | 1.4- and 1.3-fold increase in AUCinf after administration of ritonavir for 4 or 14 days | [58] |
Diltiazem (180 mg, PO, BID, 3 days) | Prednisolone (15 mg, PO) | Healthy volunteers (n = 8) | 1.2- and 1.08-fold increase in AUC and Cmax | [59] | |
Itraconazole (400 mg, PO for 1 day and then 200 mg, PO for 3 days) | Prednisolone (60 mg, PO) | Healthy male volunteers (n = 14) | No significance differences in systemic exposure | [61] | |
Itraconazole (200 mg, PO, 4 days) | Methylprednisolone (16 mg, IV) | Healthy volunteers (n = 9) | 2.6-fold increase in AUCinf | [62] | |
Itraconazole (400 mg, PO for 1 day and then 200 mg, PO for 3 days) | Methylprednisolone (48 mg, PO) | Healthy male volunteers (n = 14) | 2.5- and 1.6-fold increase AUC24h and Cmax | [61] | |
Itraconazole (200 mg, PO, 4 days) | Methylprednisolone (16 mg, PO) | Healthy volunteers (n = 10) | 3.9- and 1.9-fold increase AUC24h and Cmax | [63] | |
Grapefruit juice (200 mL, double-strength, PO, TID, 2 days and then 0.5 h and 1.5 h after methylprednisolone administration) | Methylprednisolone (16 mg, PO) | Healthy volunteers (n = 10) | 1.7- and 1.3-fold increase in AUCinf and Cmax | [64] | |
Diltiazem (180 mg, PO, 4 days) | Methylprednisolone (0.3 mg/kg, IV) | Healthy male volunteers (n = 5) | 1.5-fold increase in AUC | [65] | |
Aprepitant (125 mg, PO on day 1, and 80 mg, PO on day 2/3) | Methylprednisolone (120 mg, IV on day 1, and 40 mg, PO on day 2/3) | Healthy volunteers (n = 10) | 1.3- and 2.5-fold increase in AUC24h at day 1 and 3 | [66] | |
Nefazodone (100 mg for 3 days, 150 mg for 2 days, and 200 mg for 5 days, BID, PO) | Methylprednisolone (0.6 mg/kg, IV) | Healthy volunteers (n = 8) | 2.2-fold increase in AUC | [67] | |
Ketoconazole (200 mg, PO, 4 days) | Budesonide (3 mg, PO) | Healthy male volunteers (n = 8) | 6.5-fold increase in AUC24h | [68] | |
Grapefruit juice (200 mL, regular strength, PO, TID, 4 days) | Budesonide (3 mg, PO) | Healthy male volunteers (n = 8) | 1.7-fold increase in AUC and Cmax | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-R.; Gulnaz, A.; Chae, Y.-J. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics 2024, 16, 1431. https://doi.org/10.3390/pharmaceutics16111431
Lee K-R, Gulnaz A, Chae Y-J. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics. 2024; 16(11):1431. https://doi.org/10.3390/pharmaceutics16111431
Chicago/Turabian StyleLee, Kyeong-Ryoon, Aneela Gulnaz, and Yoon-Jee Chae. 2024. "Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management" Pharmaceutics 16, no. 11: 1431. https://doi.org/10.3390/pharmaceutics16111431
APA StyleLee, K. -R., Gulnaz, A., & Chae, Y. -J. (2024). Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics, 16(11), 1431. https://doi.org/10.3390/pharmaceutics16111431