Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinically Relevant Interactions That Are Best Avoided (D-Graded pDDIs)
3.2. Drug Elimination vs. 24 h Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATC | Anatomical Therapeutic Chemical |
ARDS | Acute respiratory distress syndrome |
CARDS | Coronavirus disease 2019-associated acute respiratory distress syndrome |
COVID-19 | Coronavirus disease 2019 |
DDI | Drug–drug interaction |
ECMO | Extracorporeal membrane oxygenation |
ICU | Intensive care unit |
IQR | Interquartile range |
PD | Pharmacodynamic |
pDDI | Potential drug–drug interaction |
PK | Pharmacokinetic |
SARS-CoV-2 | Severe acute respiratory distress syndrome coronavirus disease 2 |
SmPC | Summary of Product Characteristics |
References
- Gorman, E.A.; O’Kane, C.M.; McAuley, D.F. Acute respiratory distress syndrome in adults: Diagnosis, outcomes, long-term sequelae, and management. Lancet 2022, 400, 1157–1170. [Google Scholar] [CrossRef]
- Nadon, A.S.; Schmidt, E.P. Pathobiology of the Acute Respiratory Distress Syndrome. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 2665–2676. [Google Scholar]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir. Res. 2019, 6, e000420. [Google Scholar] [CrossRef] [PubMed]
- Duggal, A.; Ganapathy, A.; Ratnapalan, M.; Adhikari, N.K. Pharmacological treatments for acute respiratory distress syndrome: Systematic review. Minerva Anestesiol. 2015, 81, 567–588. [Google Scholar] [PubMed]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, S.; Farzanegan, B.; Alehashem, M. Important drug classes associated with potential drug-drug interactions in critically ill patients: Highlights for cardiothoracic intensivists. Ann. Intensive Care 2015, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Pramanik, J.; Bhattacharyya, M.; Todi, S. Prospective observational evaluation of incidences and implications of drug-drug interactions induced adverse drug reactions in critically ill patients. Indian J. Pharm. Sci. 2010, 72, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Uijtendaal, E.V.; van Harssel, L.L.; Hugenholtz, G.W.; Kuck, E.M.; Zwart-van Rijkom, J.E.; Cremer, O.L.; Egberts, T.C. Analysis of potential drug-drug interactions in medical intensive care unit patients. Pharmacotherapy 2014, 34, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.; Marra, F.; Marzolini, C.; Boyle, A.; Gibbons, S.; Siccardi, M.; Burger, D.; Back, D.; Khoo, S. Drug interactions: A review of the unseen danger of experimental COVID-19 therapies. J. Antimicrob. Chemother. 2020, 75, 3417–3424. [Google Scholar] [CrossRef]
- Huang, C.; Soleimani, J.; Herasevich, S.; Pinevich, Y.; Pennington, K.M.; Dong, Y.; Pickering, B.W.; Barwise, A.K. Clinical Characteristics, Treatment, and Outcomes of Critically Ill Patients With COVID-19: A Scoping Review. Mayo Clin. Proc. 2021, 96, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Barnard, L.M.; Emert, J.M.; Drucker, C.; Schwarcz, L.; Counts, C.R.; Murphy, D.L.; Guan, S.; Kume, K.; Rodriquez, K.; et al. Clinical Characteristics of Patients with Coronavirus Disease 2019 (COVID-19) Receiving Emergency Medical Services in King County, Washington. JAMA Netw. Open 2020, 3, e2014549. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Carstens, N.; Kvinge, L.; Fjell, A.; Wennersberg, M.; Folleso, K.; Skaug, K.; Seiger, A.; Cronfalk, B.S.; Bostrom, A.M. Polypharmacy and Potential Drug-Drug Interactions in Home-Dwelling Older People—A Cross-Sectional Study. J. Multidiscip. Healthc. 2021, 14, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Pinzón, M.A.; Ortiz, S.; Holguín, H.; Betancur, J.F.; Cardona Arango, D.; Laniado, H.; Arias Arias, C.; Muñoz, B.; Quiceno, J.; Jaramillo, D.; et al. Dexamethasone vs methylprednisolone high dose for Covid-19 pneumonia. PLoS ONE 2021, 16, e0252057. [Google Scholar] [CrossRef] [PubMed]
- Popp, M.; Stegemann, M.; Riemer, M.; Metzendorf, M.I.; Romero, C.S.; Mikolajewska, A.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Antibiotics for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 10, Cd015025. [Google Scholar] [CrossRef]
- Marzolini, C.; Kuritzkes, D.R.; Marra, F.; Boyle, A.; Gibbons, S.; Flexner, C.; Pozniak, A.; Boffito, M.; Waters, L.; Burger, D.; et al. Recommendations for the Management of Drug-Drug Interactions between the COVID-19 Antiviral Nirmatrelvir/Ritonavir (Paxlovid) and Comedications. Clin. Pharmacol. Ther. 2022, 112, 1191–1200. [Google Scholar] [CrossRef]
- Plasencia-García, B.O.; Rodríguez-Menéndez, G.; Rico-Rangel, M.I.; Rubio-García, A.; Torelló-Iserte, J.; Crespo-Facorro, B. Drug-drug interactions between COVID-19 treatments and antipsychotics drugs: Integrated evidence from 4 databases and a systematic review. Psychopharmacology 2021, 238, 329–340. [Google Scholar] [CrossRef]
- Shini Rubina, S.K.; Anuba, P.A.; Swetha, B.; Kavya Priya, K.; Aishwarya, P.M.A.; Sabarathinam, S. Drug interaction risk between cardioprotective drugs and drugs used in treatment of COVID-19: A evidence-based review from six databases. Diabetes Metab. Syndr. 2022, 16, 102451. [Google Scholar] [CrossRef]
- Igho-Osagie, E.; Brzozowski, K.; Jin, H.; Brown, J.; Williams, M.G.; Puenpatom, A. Prevalence of Potential Drug-drug Interactions With Ritonavir-containing COVID-19 Therapy in the United States: An Analysis of the National Health and Nutrition Examination Survey. Clin. Ther. 2023, 45, 390–399.e4. [Google Scholar] [CrossRef]
- Bakker, T.; Abu-Hanna, A.; Dongelmans, D.; Vermeijden, W.; Bosman, R.; de Lange, D.; Klopotowska, J.; de Keizer, N. Clinically relevant potential drug-drug interactions in intensive care patients: A large retrospective observational multicenter study. J. Crit. Care 2021, 62, 124–130. [Google Scholar] [CrossRef]
- Böttiger, Y.; Laine, K.; Andersson, M.L.; Korhonen, T.; Molin, B.; Ovesjö, M.L.; Tirkkonen, T.; Rane, A.; Gustafsson, L.L.; Eiermann, B. SFINX-a drug-drug interaction database designed for clinical decision support systems. Eur. J. Clin. Pharmacol. 2009, 65, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Alvim, M.M.; Silva, L.A.; Leite, I.C.; Silvério, M.S. Adverse events caused by potential drug-drug interactions in an intensive care unit of a teaching hospital. Rev. Bras. Ter. Intensiva 2015, 27, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Bazzar, A.; Hussein, N.; Sahhar, E. Potential drug-drug interactions in ICU patients: A retrospective study. Drug Metab. Pers. Ther. 2020, 35, 20200114. [Google Scholar] [CrossRef] [PubMed]
- Farzanegan, B.; Alehashem, M.; Bastani, M.; Baniasadi, S. Potential drug-drug interactions in cardiothoracic intensive care unit of a pulmonary teaching hospital. J. Clin. Pharmacol. 2015, 55, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Russmann, S.; Martinelli, F.; Jakobs, F.; Pannu, M.; Niedrig, D.F.; Burden, A.M.; Kleber, M.; Béchir, M. Identification of Medication Prescription Errors and Factors of Clinical Relevance in 314 Hospitalized Patients for Improved Multidimensional Clinical Decision Support Algorithms. J. Clin. Med. 2023, 12, 4920. [Google Scholar] [CrossRef]
- Astrand, B.; Astrand, E.; Antonov, K.; Petersson, G. Detection of potential drug interactions—A model for a national pharmacy register. Eur. J. Clin. Pharmacol. 2006, 62, 749–756. [Google Scholar] [CrossRef]
- Lima, R.E.; De Bortoli Cassiani, S.H. Potential drug interactions in intensive care patients at a teaching hospital. Rev. Lat. Am. Enfermagem 2009, 17, 222–227. [Google Scholar] [CrossRef]
- Ghimire, R.; Prasad, P.; Parajuli, S.; Basnet, R.; Lamichhane, P.; Poudel, N.; Shrestha, P.S.; Kharel, S.; Pokharel, A.; Mudvari, A. Potential Drug-drug Interaction among the Patients Admitted in Intensive Care Units of a Tertiary Care Centre: A Descriptive Cross-sectional Study. JNMA J. Nepal. Med. Assoc. 2022, 60, 263–267. [Google Scholar] [CrossRef]
- Alessandri, F.; Ceccarelli, G.; Migliara, G.; Baccolini, V.; Russo, A.; Marzuillo, C.; Ceparano, M.; Giordano, G.; Tozzi, P.; Galardo, G.; et al. High Incidence of Candidemia in Critically Ill COVID-19 Patients Supported by Veno-Venous Extracorporeal Membrane Oxygenation: A Retrospective Study. J. Fungi 2023, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Wang, H.; Hou, X. Outcome and Clinical Characteristics of Nosocomial Infection in Adult Patients Undergoing Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Front. Public. Health 2022, 10, 857873. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, G.; Schlapbach, L.J.; Aiken, A.M. Nosocomial Infections During Extracorporeal Membrane Oxygenation in Neonatal, Pediatric, and Adult Patients: A Comprehensive Narrative Review. Pediatr. Crit. Care Med. 2020, 21, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Kostousov, V.; Teruya, J. Bleeding and Thrombotic Complications in the Use of Extracorporeal Membrane Oxygenation. Semin. Thromb. Hemost. 2018, 44, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Amato, M.G.; Seger, D.L.; Slight, S.P.; Beeler, P.E.; Dykes, P.C.; Fiskio, J.M.; Silvers, E.R.; Orav, E.J.; Eguale, T.; et al. Evaluation of medication-related clinical decision support alert overrides in the intensive care unit. J. Crit. Care 2017, 39, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Fiets, R.B.; Bos, J.M.; Donders, A.; Bruns, M.; Lamfers, E.; Schouten, J.A.; Kramers, C. QTc prolongation during erythromycin used as prokinetic agent in ICU patients. Eur. J. Hosp. Pharm. 2018, 25, 118–122. [Google Scholar] [CrossRef]
- Potter, T.G.; Snider, K.R. Azithromycin for the treatment of gastroparesis. Ann. Pharmacother. 2013, 47, 411–415. [Google Scholar] [CrossRef]
- Jandee, S.; Wetwittayakhlang, P.; Boonsri, P. Efficacy of prucalopride in critically ill patients with paralytic ileus: A pilot randomized double-blind placebo-controlled trial. J. Gastroenterol. Hepatol. 2021, 36, 362–366. [Google Scholar] [CrossRef]
- Ahonen, J.; Olkkola, K.T.; Neuvonen, P.J. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur. J. Clin. Pharmacol. 1997, 51, 415–419. [Google Scholar] [CrossRef]
- Günay, A.; Demirpolat, E.; Ünal, A.; Aycan, M.B. A comparison of four drug-drug interaction databases for patients undergoing haematopoietic stem cell transplantation. J. Clin. Pharm. Ther. 2022, 47, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Vivithanaporn, P.; Kongratanapasert, T.; Suriyapakorn, B.; Songkunlertchai, P.; Mongkonariyawong, P.; Limpikirati, P.K.; Khemawoot, P. Potential drug-drug interactions of antiretrovirals and antimicrobials detected by three databases. Sci. Rep. 2021, 11, 6089. [Google Scholar] [CrossRef] [PubMed]
- Pinkoh, R.; Rodsiri, R.; Wainipitapong, S. Retrospective cohort observation on psychotropic drug-drug interaction and identification utility from 3 databases: Drugs.com®, Lexicomp®, and Epocrates®. PLoS ONE 2023, 18, e0287575. [Google Scholar] [CrossRef] [PubMed]
Overall | Non-CARDS | CARDS | No ECMO (Both ARDS Conditions) | ECMO (Both ARDS Conditions) | |
---|---|---|---|---|---|
Included patients, n | 189 | 100 | 89 | 85 | 104 |
Sex, female (%) | 64 (34) | 34 (34) | 30 (34) | 30 (35) | 34 (33) |
Age, median (IQR) | 54 (41–63) | 49 (34–62) | 58 (49–64) | 56 (34–68) | 54 (44–61) |
ICU days, median (IQR) | 22 (11–36) | 21 (12–36) | 23 (11–35) | 16 (8–26) | 26 (17–43) |
pDDIs | 2693 | 1477 | 1216 | 1000 | 1693 |
D-graded pDDIs (%) | 323 (12) | 193 (13) | 130 (11) | 107 (11) | 216 (13) |
C-graded pDDIs (%) | 1214 (45) | 648 (44) | 566 (47) | 471 (47) | 743 (44) |
B-graded pDDIs (%) | 1156 (43) | 636 (43) | 520 (43) | 422 (42) | 734 (44) |
pDDIs/day (median; Including B-, C- and D-graded pDDIs) | 0.52 (0.37–0.81) | 0.57 (0.38–0.95) | 0.50 (0.35–0.75) | 0.56 (0.38–0.85) | 0.51 (0.37–0.74) |
D-graded pDDIs/day, median | 0.05 (0.00–0.10) | 0.06 (0.00–0.12) | 0.04 (0.00–0.09) | 0.01 (0.00–0.09) | 0.05 * (0.01–0.10) |
C-graded pDDIs/day, median | 0.22 (0.12–0.41) | 0.22 (0.12–0.43) | 0.20 (0.12–0.33) | 0.25 (0.12–0.44) | 0.21 (0.12–0.34) |
B-graded pDDIs/day, median | 0.24 (0.17–0.33) | 0.26 * (0.18–0.36) | 0.21 (0.16–0.31) | 0.25 (0.18–0.33) | 0.22 (0.16–0.32) |
Severity D-Graded pDDIs of Patients with ARDS (n = 189) | |||||
---|---|---|---|---|---|
Substance A | Substance B | Organ System | Potential Consequences | PD/PK | Frequency |
Erythromycin | Midazolam | CNS | CNS depression | PK | 37 |
Propofol | Vasopressin | CV | Risk of QTc prolongation | PD | 28 |
Amiodarone | Propofol | CV | Risk of QTc prolongation | PD | 26 |
Midazolam | Voriconazole | CNS | CNS depression | PK | 22 |
Fluconazole | Propofol | CV | Risk of QTc prolongation | PD | 16 |
Amiodarone | Vasopressin | CV | Risk of QTc prolongation | PD | 11 |
Dobutamine | Vasopressin | CV | Risk of QTc prolongation | PD | 11 |
Linezolid | Piritramide | General | Serotonergic effects | PD | 10 |
Erythromycin | Voriconazole | CV | Cardiac arrest | PK | 8 |
Fluconazole | Midazolam | CNS | CNS depression | PK | 7 |
ATC Code for Substances | Frequency Non-CARDS | Frequency CARDS | Frequency No ECMO (Both ARDS Conditions) | Frequency ECMO (Both ARDS Conditions) | |
---|---|---|---|---|---|
Anti-infectives for systemic use (J) | Nervous system (N) | 71 | 60 | 45 | 86 |
Cardiovascular system (C) | Nervous system (N) | 24 | 20 | 14 | 31 |
Systemic hormonal preparations (H) | Nervous system (N) | 22 | 8 | 13 | 17 |
Cardiovascular system (C) | Systemic hormonal preparations (H) | 15 | 10 | 5 | 19 |
Cardiovascular system (C) | Anti-infectives for systemic use (J) | 13 | 9 | 6 | 16 |
Systemic hormonal preparations (H) | Anti-infectives for systemic use (J) | 13 | 2 | 4 | 11 |
Anti-infectives for systemic use (J) | Anti-infectives for systemic use (J) | 13 | 7 | 8 | 12 |
Drug Elimination Analysis | 24 h Analysis | |||||
---|---|---|---|---|---|---|
ID | Substance A | Substance B | PD/PK | Substance A | Substance B | PD/PK |
2 | Clarithromycin | Hydrocortisone | PK | Nebivolol | Urapidil | PD |
Butyl scopolamine | Metoclopramide | PD | ||||
5 | Amiodarone | Levofloxacin | PD | Canrenoate | Potassium | PD |
Amiodarone | Quetiapine | PD | ||||
Amiodarone | Trazodone | PD | ||||
Amiodarone | Metoclopramide | PD | ||||
6 | Amiodarone | Erythromycin | PK | Propofol | Erythromycin | PD |
Amiodarone | Propofol | PD | ||||
8 | Erythromycin | Propofol | PD | Canrenoate | Potassium | PD |
Erythromycin | Prednisolone | PK | ||||
9 | Trimethoprim | Torasemide | PD | Potassium | Trimethoprim | PD |
10 | Azithromycin | Propofol | PD | Midazolam | Propofol | PD |
Enoxaparin | Metamizole | PD | Ondansetron | Propofol | PD | |
Heparin | Metamizole | PD | ||||
Ondansetron | Paracetamol | PK | ||||
Pantoprazole | Quetiapine | PK | ||||
12 | Cisatracurium | Rocuronium | PD | |||
Enoxaparin | Metamizole | PD | ||||
Lorazepam | Quetiapine | PK | ||||
13 | Enoxaparin | Metamizole | PD | |||
15 | Nitroglycerin | Heparin | PD | |||
17 | Amiodarone | Naloxegol | PK | Canrenoate | Potassium | PD |
Dexamethasone | Naloxegol | PK | ||||
Isavuconazole | Voriconazole | PK | ||||
18 | Furosemide | ASA | PD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bischof, T.; Schaller, C.; Buchtele, N.; Staudinger, T.; Ullrich, R.; Kraft, F.; Andersson, M.L.; Jilma, B.; Schoergenhofer, C. Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome. Pharmaceutics 2024, 16, 303. https://doi.org/10.3390/pharmaceutics16030303
Bischof T, Schaller C, Buchtele N, Staudinger T, Ullrich R, Kraft F, Andersson ML, Jilma B, Schoergenhofer C. Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome. Pharmaceutics. 2024; 16(3):303. https://doi.org/10.3390/pharmaceutics16030303
Chicago/Turabian StyleBischof, Thorsten, Christoph Schaller, Nina Buchtele, Thomas Staudinger, Roman Ullrich, Felix Kraft, Marine L. Andersson, Bernd Jilma, and Christian Schoergenhofer. 2024. "Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome" Pharmaceutics 16, no. 3: 303. https://doi.org/10.3390/pharmaceutics16030303
APA StyleBischof, T., Schaller, C., Buchtele, N., Staudinger, T., Ullrich, R., Kraft, F., Andersson, M. L., Jilma, B., & Schoergenhofer, C. (2024). Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome. Pharmaceutics, 16(3), 303. https://doi.org/10.3390/pharmaceutics16030303