Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. QSAR Model
2.3. SHAP Analysis
3. Results
3.1. Database
3.1.1. Classification Model Database
3.1.2. Regression Model Database
3.2. Molecular Descriptors
3.3. Obtained Models
3.3.1. Classification Model
3.3.2. Regression Model
3.4. SHAP Analysis
3.5. Implementation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Qu, L.; Li, J.; Zhang, Y.; Jiang, L.; Wei, H.; Guo, M.; Chen, X.; Chen, Y. Structural Insight into the Ligand Binding Mechanism of Aryl Hydrocarbon Receptor. Nat. Commun. 2022, 13, 6234. [Google Scholar] [CrossRef] [PubMed]
- Gruszczyk, J.; Grandvuillemin, L.; Lai-Kee-Him, J.; Paloni, M.; Savva, C.G.; Germain, P.; Grimaldi, M.; Boulahtouf, A.; Kwong, H.-S.; Bous, J.; et al. Cryo-EM Structure of the Agonist-Bound Hsp90-XAP2-AHR Cytosolic Complex. Nat. Commun. 2022, 13, 7010. [Google Scholar] [CrossRef] [PubMed]
- Avilla, M.N.; Malecki, K.M.C.; Hahn, M.E.; Wilson, R.H.; Bradfield, C.A. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem. Res. Toxicol. 2020, 33, 860–879. [Google Scholar] [CrossRef]
- Sládeková, L.; Mani, S.; Dvořák, Z. Ligands and Agonists of the Aryl Hydrocarbon Receptor AhR: Facts and Myths. Biochem. Pharmacol. 2023, 213, 115626. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Zhang, L. The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers 2022, 14, 5574. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gallego, N.; Sánchez-Madrid, F.; Cibrian, D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021, 10, 3176. [Google Scholar] [CrossRef]
- Puccetti, M.; Paolicelli, G.; Oikonomou, V.; De Luca, A.; Renga, G.; Borghi, M.; Pariano, M.; Stincardini, C.; Scaringi, L.; Giovagnoli, S.; et al. Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis. Mediat. Inflamm. 2018, 2018, 1601486. [Google Scholar] [CrossRef]
- Barroso, A.; Mahler, J.V.; Fonseca-Castro, P.H.; Quintana, F.J. The Aryl Hydrocarbon Receptor and the Gut-Brain Axis. Cell. Mol. Immunol. 2021, 18, 259–268. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Boguniewicz, M.; Quintana, F.J.; Clark, R.A.; Gross, L.; Hirano, I.; Tallman, A.M.; Brown, P.M.; Fredericks, D.; Rubenstein, D.S.; et al. Tapinarof Validates the Aryl Hydrocarbon Receptor as a Therapeutic Target: A Clinical Review. J. Allergy Clin. Immunol. 2024, 154, 1–10. [Google Scholar] [CrossRef]
- Renga, G.; Nunzi, E.; Pariano, M.; Puccetti, M.; Bellet, M.M.; Pieraccini, G.; D’Onofrio, F.; Santarelli, I.; Stincardini, C.; Aversa, F.; et al. Optimizing Therapeutic Outcomes of Immune Checkpoint Blockade by a Microbial Tryptophan Metabolite. J. Immunother. Cancer 2022, 10, e003725. [Google Scholar] [CrossRef]
- Smith, S.H.; Jayawickreme, C.; Rickard, D.J.; Nicodeme, E.; Bui, T.; Simmons, C.; Coquery, C.M.; Neil, J.; Pryor, W.M.; Mayhew, D.; et al. Tapinarof Is a Natural AhR Agonist That Resolves Skin Inflammation in Mice and Humans. J. Investig. Dermatol. 2017, 137, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Vrzalová, A.; Pečinková, P.; Illés, P.; Gurská, S.; Džubák, P.; Szotkowski, M.; Hajdúch, M.; Mani, S.; Dvořák, Z. Mixture Effects of Tryptophan Intestinal Microbial Metabolites on Aryl Hydrocarbon Receptor Activity. Int. J. Mol. Sci. 2022, 23, 10825. [Google Scholar] [CrossRef] [PubMed]
- Denison, M.S.; Faber, S.C. And Now for Something Completely Different: Diversity in Ligand-Dependent Activation of Ah Receptor Responses. Curr. Opin. Toxicol. 2017, 2, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.-K.; Wong, Y.-H.; Pichika, M.R. Artificial Intelligence in Drug Discovery and Development. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Hock, F.J., Pugsley, M.K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 1461–1498. ISBN 978-3-031-35529-5. [Google Scholar]
- Patel, V.; Shah, M. Artificial Intelligence and Machine Learning in Drug Discovery and Development. Intell. Med. 2022, 2, 134–140. [Google Scholar] [CrossRef]
- Oliveira, T.A.D.; Silva, M.P.D.; Maia, E.H.B.; Silva, A.M.D.; Taranto, A.G. Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods. Drugs Drug Candidates 2023, 2, 311–334. [Google Scholar] [CrossRef]
- Burkov, A. The Hundred-Page Machine Learning Book; Polen: Istanbul, Turkey, 2019; ISBN 978-1-9995795-1-7. [Google Scholar]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef]
- Zhu, K.; Shen, C.; Tang, C.; Zhou, Y.; He, C.; Zuo, Z. Improvement in the Screening Performance of Potential Aryl Hydrocarbon Receptor Ligands by Using Supervised Machine Learning. Chemosphere 2021, 265, 129099. [Google Scholar] [CrossRef]
- Goya-Jorge, E.; Giner, R.M.; Veitía, M.S.I.; Gozalbes, R.; Barigye, S.J. Predictive Modeling of Aryl Hydrocarbon Receptor (AhR) Agonism. Chemosphere 2020, 256, 127068. [Google Scholar] [CrossRef]
- Matsuzaka, Y.; Hosaka, T.; Ogaito, A.; Yoshinari, K.; Uesawa, Y. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning. Molecules 2020, 25, 1317. [Google Scholar] [CrossRef]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Smutny, T.; Nova, A.; Drechslerová, M.; Carazo, A.; Hyrsova, L.; Hrušková, Z.R.; Kuneš, J.; Pour, M.; Špulák, M.; Pavek, P. 2-(3-Methoxyphenyl)Quinazoline Derivatives: A New Class of Direct Constitutive Androstane Receptor (CAR) Agonists. J. Med. Chem. 2016, 59, 4601–4610. [Google Scholar] [CrossRef] [PubMed]
- Goya-Jorge, E.; Rampal, C.; Loones, N.; Barigye, S.J.; Carpio, L.E.; Gozalbes, R.; Ferroud, C.; Sylla-Iyarreta Veitía, M.; Giner, R.M. Targeting the Aryl Hydrocarbon Receptor with a Novel Set of Triarylmethanes. Eur. J. Med. Chem. 2020, 207, 112777. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, Z.; Poulíková, K.; Mani, S. Indole Scaffolds as a Promising Class of the Aryl Hydrocarbon Receptor Ligands. Eur. J. Med. Chem. 2021, 215, 113231. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, G.; Xia, Z.; Chen, N.; Yang, S.; Li, L. Identification of Triazolopyridine Derivatives as a New Class of AhR Agonists and Evaluation of Anti-Psoriasis Effect in a Mouse Model. Eur. J. Med. Chem. 2022, 231, 114122. [Google Scholar] [CrossRef]
- Grycová, A.; Joo, H.; Maier, V.; Illés, P.; Vyhlídalová, B.; Poulíková, K.; Sládeková, L.; Nádvorník, P.; Vrzal, R.; Zemánková, L.; et al. Targeting the Aryl Hydrocarbon Receptor with Microbial Metabolite Mimics Alleviates Experimental Colitis in Mice. J. Med. Chem. 2022, 65, 6859–6868. [Google Scholar] [CrossRef]
- Chen, J.; Haller, C.A.; Jernigan, F.E.; Koerner, S.K.; Wong, D.J.; Wang, Y.; Cheong, J.E.; Kosaraju, R.; Kwan, J.; Park, D.D.; et al. Modulation of Lymphocyte-Mediated Tissue Repair by Rational Design of Heterocyclic Aryl Hydrocarbon Receptor Agonists. Sci. Adv. 2020, 6, eaay8230. [Google Scholar] [CrossRef]
- Fujita, Y.; Yonehara, M.; Tetsuhashi, M.; Noguchi-Yachide, T.; Hashimoto, Y.; Ishikawa, M. β-Naphthoflavone Analogs as Potent and Soluble Aryl Hydrocarbon Receptor Agonists: Improvement of Solubility by Disruption of Molecular Planarity. Bioorg. Med. Chem. 2010, 18, 1194–1203. [Google Scholar] [CrossRef]
- Wu, H.; Liu, B.; Yang, K.; Winston-McPherson, G.N.; Leisten, E.D.; Vezina, C.M.; Ricke, W.A.; Peterson, R.E.; Tang, W. Synthesis and Biological Evaluation of FICZ Analogues as Agonists of Aryl Hydrocarbon Receptor. Bioorg. Med. Chem. Lett. 2020, 30, 126959. [Google Scholar] [CrossRef]
- Winston-McPherson, G.N.; Shu, D.; Tang, W. Synthesis and Biological Evaluation of 2,3′-Diindolylmethanes as Agonists of Aryl Hydrocarbon Receptor. Bioorg. Med. Chem. Lett. 2014, 24, 4023–4025. [Google Scholar] [CrossRef]
- Funke, M.; Thimm, D.; Schiedel, A.C.; Müller, C.E. 8-Benzamidochromen-4-One-2-Carboxylic Acids: Potent and Selective Agonists for the Orphan G Protein-Coupled Receptor GPR35. J. Med. Chem. 2013, 56, 5182–5197. [Google Scholar] [CrossRef] [PubMed]
- World Intellectual Property Organization (WIPO). World Intellectual Property Indicators 2019; World Intellectual Property Organization (WIPO): Geneva, Switzerland, 2019. [Google Scholar]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Pandas: Powerful Python Data Analysis Toolkit; Pandas Development Team: New York, NY, USA, 2022. [Google Scholar]
- Scalfani, V.F.; Patel, V.D.; Fernandez, A.M. Visualizing Chemical Space Networks with RDKit and NetworkX. J. Cheminform. 2022, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- MLJAR. Outstanding Data Science Tools. Available online: https://mljar.com/automl/ (accessed on 30 September 2024).
- Shapley, L.S. 17. A Value for n-Person Games; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; ISBN 978-1-4008-8197-0. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Jszlek. Overview. Available online: https://github.com/jszlek (accessed on 30 September 2024).
HepG2 | HT29 | Huh-7 | U937 | MCF7 | HEK293 | |
---|---|---|---|---|---|---|
Luminescence assay | 629 | 24 | 51 | 98 | 0 | 0 |
Fluorescence EROD assay | 19 | 0 | 0 | 0 | 9 | 0 |
Fluorescence NT assay | 0 | 0 | 0 | 0 | 0 | 148 |
EC50 Value (nM) | Molecule Number |
---|---|
“=” (numerical format) | 415 |
“<0.014” | 1 |
“≤10” | 95 |
“≤1000” | 36 |
“>100” | 71 |
“>370” | 8 |
“>1000” | 129 |
“>3300” | 3 |
“>6700” | 1 |
“>10,000” | 20 |
“>30,000” | 59 |
“>50,000” | 2 |
“>91,000” | 6 |
“>100,000” | 9 |
“>200,000” | 3 |
“>400,000” | 1 |
“>1,000,000” | 8 |
“10 < EC50 ≤ 100” | 36 |
“100 < EC50 ≤ 1000” | 62 |
“1000 < EC50 ≤ 10,000” | 8 |
“10,000 < EC50 ≤ 100,000” | 5 |
Dataset | Accuracy | Precision | Recall | F1 | MCC |
---|---|---|---|---|---|
Train set | 0.944 | 0.963 | 0.943 | 0.953 | 0.883 |
Test set | 0.760 | 0.793 | 0.786 | 0.789 | 0.511 |
Dataset | RMSE | NRMSE | R2 |
---|---|---|---|
Train set | 7328 | 14.66% | 0.673 |
Test set | 5444 | 10.89% | 0.208 |
Feature | Shapley Value | Description |
---|---|---|
CELL_LINE | 0.13564 | Type of human cell line used to obtain EC50 value |
Xch-5dv | 0.06370 | Five-ordered Chi chain weighted by valence electrons |
AATSC1d | 0.05708 | Averaged and centered Moreau–Broto autocorrelation of lag 1 weighted by sigma electrons |
AATSC0p | 0.04938 | Averaged and centered Moreau–Broto autocorrelation of lag 0 weighted by polarizability |
MATS6v | 0.04231 | Moran coefficient of lag 6 weighted by vdw volume |
AMID_X | 0.03896 | Averaged molecular ID on halogen atoms |
PEOE_VSA10 | 0.03757 | MOE Charge VSA Descriptor 10 (0.10 ≤ x < 0.15) |
GATS3s | 0.03390 | Geary coefficient of lag 3 weighted by intrinsic state |
MPC9 | 0.02870 | Nine-ordered path count |
TEST_TYPE | 0.02831 | Type of bioassay used to obtain EC50 value |
ATSC0c | 0.02759 | Centered Moreau–Broto autocorrelation of lag 0 weighted by gasteiger charge |
AMID_O | 0.02707 | Averaged molecular ID on O atoms |
MPC10 | 0.02685 | Ten-ordered path count |
JGI6 | 0.02017 | Six-ordered mean topological charge |
AATS4p | 0.01801 | Averaged Moreau–Broto autocorrelation of lag 4 weighted by polarizability |
BCUTp-1h | 0.00281 | First heighest eigenvalue of Burden matrix weighted by polarizability |
BCUTv-1h | 0.00183 | First heighest eigenvalue of Burden matrix weighted by vdw volume |
VE3_Dzv | 0.00140 | Logarithmic coefficient sum of last Eigenvector from Barysz matrix weighted by vdw volume |
VR1_DzZ | 0.00138 | Randic-like eigenvector-based index from Barysz matrix weighted by atomic number |
BCUTdv-1l | 0.00137 | First lowest eigenvalue of Burden matrix weighted by valence electrons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtyło, P.A.; Łapińska, N.; Bellagamba, L.; Camaioni, E.; Mendyk, A.; Giovagnoli, S. Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators. Pharmaceutics 2024, 16, 1456. https://doi.org/10.3390/pharmaceutics16111456
Wojtyło PA, Łapińska N, Bellagamba L, Camaioni E, Mendyk A, Giovagnoli S. Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators. Pharmaceutics. 2024; 16(11):1456. https://doi.org/10.3390/pharmaceutics16111456
Chicago/Turabian StyleWojtyło, Paulina Anna, Natalia Łapińska, Lucia Bellagamba, Emidio Camaioni, Aleksander Mendyk, and Stefano Giovagnoli. 2024. "Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators" Pharmaceutics 16, no. 11: 1456. https://doi.org/10.3390/pharmaceutics16111456
APA StyleWojtyło, P. A., Łapińska, N., Bellagamba, L., Camaioni, E., Mendyk, A., & Giovagnoli, S. (2024). Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators. Pharmaceutics, 16(11), 1456. https://doi.org/10.3390/pharmaceutics16111456