Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology
Abstract
:1. Introduction
2. Optimization Processes of Chelation-Based Radiopharmaceuticals in Oncology
2.1. Instruments for Image-Guided TRT
2.2. Advantages of 99mTc for SPECT Image-Guided TRT
2.3. Selection of 68Ga for PET Image-Guided TRT
2.4. Selection of 177Lu and 225Ac Radionuclides for TRT
2.5. Production of 177Lu for TRT
2.6. Production of 225Ac for TRT
2.7. Quality Assurance of 225Ac for TRT
2.8. Chelation Chemistry in TRT
2.9. Quality Assurance of Chelation Chemistry for TRT
2.10. Optimization of Clinical Receptor Pathway-Directed Theranostic Radiopharmaceuticals
2.10.1. Optimization of FAP Receptor Pathway-Directed Radiopharmaceuticals
2.10.2. Optimization of PSMA Receptor Pathway-Directed Radiopharmaceuticals
2.10.3. Optimization of Neuroendocrine Receptor Pathway-Directed Radiopharmaceuticals
2.11. Pathology and Cytogenetic Correlative Analyses of Radiation Dose
3. Radiation Dosimetry for TRT in Oncology
3.1. Biological Data Collection in Radiation Dose Calculations
3.2. Software in Radiation Dose Calculations
3.3. Methods in Radiation Dose Calculations
4. Regulatory Approval Process for Chelation-Based Radiopharmaceuticals
5. Discussion
6. Emergent Trends
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goossens, M.E.; Van den Bulcke, M.; Gevaert, T.; Meheus, L.; Verellen, D.; Cosset, J.M.; Storme, G. Is there any benefit to particles over photon radiotherapy? Ecancermedicalscience 2019, 13, 982. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Hernández, M.; Maldonado, F.; Lozano-Ruiz, F.; Muñoz-Montaño, W.; Nuñez-Baez, M.; Arrieta, O. Radiation-induced lung injury: Current evidence. BMC Pulm. Med. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Nepon, H.; Safran, T.; Reece, E.M.; Murphy, A.M.; Vorstenbosch, J.; Davison, P.G. Radiation-Induced Tissue Damage: Clinical Consequences and Current Treatment Options. Semin. Plast. Surg. 2021, 35, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Men, Y.; Feng, L.; Kang, J.; Sun, X.; Yuan, M.; Jiang, W.; Hui, Z. A current review of dose-escalated radiotherapy in locally advanced non-small cell lung cancer. Radiol. Oncol. 2019, 53, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Tsamchoe, M.; Tran, S.D. Salivary organotypic tissue culture: An ex-vivo 3D model for studying radiation-induced injury of human salivary glands. Methods Mol. Biol. 2024, 2749, 39–54. [Google Scholar] [CrossRef]
- Simman, R.; Bach, K.; Abbas, F.; Klomparens, K.; Brickman, B.J. Management of Radiation-induced Tissue Injuries: A Review of Current Treatment Strategies. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5043. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Zhang, M.; Ji, R.; Wei, J.; Xin, Y.; Jiang, X. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J. Cell Mol. Med. 2020, 24, 7717–7729. [Google Scholar] [CrossRef]
- Morris, Z.S.; Wang, A.Z.; Knox, S.J. The Radiobiology of Radiopharmaceuticals. Semin. Radiat. Oncol. 2021, 31, 20–27. [Google Scholar] [CrossRef]
- McBride, W.H.; Schaue, D. Radiation-induced tissue damage and response. J. Pathol. 2020, 250, 647–655. [Google Scholar] [CrossRef]
- Shimura, T. Roles of fibroblasts in microenvironment formation associated with radiation-induced cancer. Adv. Exp. Med. Biol. 2021, 1329, 239–251. [Google Scholar] [CrossRef]
- Strosberg, J.; Hofman, M.S.; Al-Toubah, T.; Hope, T.A. Rethinking Dosimetry: The Perils of extrapolated external-beam radiotherapy constraints to radionuclide therapy. J. Nucl. Med. 2024, 65, 362–364. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shilyagina, N.Y.; Vodeneev, V.A.; Zvyagin, A.V. Targeted Radionuclide Therapy of Human Tumors. Int. J. Mol. Sci. 2015, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Dhoundiyal, S.; Srivastava, S.; Kumar, S.; Singh, G.; Ashique, S.; Pal, R.; Mishra, N.; Taghizadeh-Hesary, F. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation. Eur. J. Med. Res. 2024, 29, 26. [Google Scholar] [CrossRef] [PubMed]
- Jewell, K.; Kostos, L.; Emmerson, B.; Hofman, M.S. Combination strategies and targeted radionuclide therapies. Semin. Nucl. Med. 2024, 54, 612–621. [Google Scholar] [CrossRef]
- Arbuznikova, D.; Klotsotyra, A.; Uhlmann, L.; Domogalla, L.C.; Steinacker, N.; Mix, M.; Niedermann, G.; Spohn, S.K.B.; Freitag, M.T.; Grosu, A.L.; et al. Exploring the role of combined external beam radiotherapy and targeted radioligand therapy with [177Lu]Lu-PSMA-617 for prostate cancer-from bench to bedside. Theranostics 2024, 14, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, D.S.; Fung, K.; Cook, B.E.; Francesconi, L.C.; Zeglis, B.M. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans. 2019, 48, 14547–14565. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.W.; K-SPECT Group. Clinical applications of 99mTc-quantitative single-photon emission computed tomography/computed tomography. Nucl. Med. Mol. Imaging 2019, 53, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Martini, P.; Pasquali, M.; Boschi, A.; Uccelli, L.; Giganti, M.; Duatti, A. Technetium complexes and radiopharmaceuticals with scorpionate ligands. Molecules 2018, 23, 2039. [Google Scholar] [CrossRef]
- Altmann, H.; Cui, Y.; Henrich, M.; Schaub, S.; Thiel, C.; Moritz, A.; Bauer, R.; Bauer, N. 99mTc-pertechnetate and 99mTc-sestamibi-scintigraphy for visualization of hypofunctioning thyroid tissue and staging in a dog with thyroid carcinoma. Tierarztl. Prax. Ausg. K Kleintiere/Heimtiere 2022, 50, 446–456. [Google Scholar] [CrossRef]
- Kurihara, H.; Yang, D.J.; Cristofanilli, M.; Erwin, W.D.; Yu, D.F.; Kohanim, S.; Mendez, R.; Kim, E.E. Imaging and dosimetry of 99mTc-EC-annexin V: Preliminary clinical al study targeting apoptosis in breast tumors. Appl. Radiat. Isot. 2008, 66, 1175–1182. [Google Scholar] [CrossRef]
- Li, B.; Duan, L.; Li, X.; Shi, J.; Li, H.; Liu, H.; Cheng, X.; Wu, X.; Gao, Y. Diagnostic accuracy of 99mTc-HYNIC-TOC SPECT/CT for detecting osteomalacia-associated tumors. Front. Oncol. 2023, 13, 1228575. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, N.A.; Park, J.Y.; Hong, M.K.; Kim, Y.J.; Lee, Y.S.; Cheon, G.J.; Jeong, J.M. Development of 99mTc-labeled trivalent isonitrile radiotracer for folate receptor imaging. Bioorg. Med. Chem. 2019, 27, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xie, Y.; Fu, T.; Qiu, F.; Yu, F.; Qu, W.; Yao, X.; Zhang, A.; Yang, Z.; Shao, G.; et al. [99mTc]Tc-Galacto-RGD2 integrin αvβ3-targeted imaging as a surrogate for molecular phenotyping in lung cancer: Real-world data. EJNMMI Res. 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhou, J.; Yang, X.; Abudupataer, M.; Li, X.; Hu, Y.; Xiao, J.; Shi, H.; Cheng, D. 99mTc-labeled bevacizumab for detecting atherosclerotic plaque linked to plaque neovascularization and monitoring antiangiogenic effects of atorvastatin treatment in ApoE−/− mice. Sci. Rep. 2017, 7, 3504. [Google Scholar] [CrossRef]
- Kweon, Y.; Park, J.Y.; Kim, Y.J.; Lee, Y.S.; Jeong, J.M. Imaging hydrogen sulfide in hypoxic tissue with [99mTc]Tc-gluconate. Molecules 2020, 26, 96. [Google Scholar] [CrossRef]
- Dai, D.; Rollo, F.D.; Bryant, J.; Kim, E.E. Noninferiority of 99mTc-Ethylenedicysteine-glucosamine as an alternative analogue to 18F-fluorodeoxyglucose in the detection and staging of non-small cell lung cancer. Contrast Media Mol. Imaging 2018, 2018, 8969714. [Google Scholar] [CrossRef]
- Crișan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.G.; Andrieș, G.; Căinap, C.; Chiș, V. Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef]
- Romero, E.; Martínez, A.; Oteo, M.; Ibañez, M.; Santos, M.; Morcillo, M.Á. Development and long-term evaluation of a new 68Ge/68Ga generator based on nano-SnO2 for PET imaging. Sci. Rep. 2020, 10, 12756. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F.; Spreckelmeye, S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm. Chem. 2022, 7, 27. [Google Scholar] [CrossRef]
- Vogel, W.V.; van der Marck, S.C.; Versleijen, M.W.J. Challenges and future options for the production of lutetium-177. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2329–2335. [Google Scholar] [CrossRef]
- Niu, T.; Fan, M.; Lin, B.; Gao, F.; Tan, B.; Du, X. Current clinical application of lutetium-177 in solid tumors (Review). Exp. Ther. Med. 2024, 27, 225. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020, 13, 49. [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical al studies-Part 1. J. Nucl. Med. 2018, 59, 878–884. [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical al studies-Part 2. J. Nucl. Med. 2018, 59, 1020–1027. [Google Scholar] [CrossRef]
- Pallares, R.M.; Abergel, R.J. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front. Med. 2022, 9, 1020188. [Google Scholar] [CrossRef]
- Svetličič, M.; Bomhard, A.; Sterr, C.; Brückner, F.; Płódowska, M.; Lisowska, H.; Lundholm, L. Alpha radiation as a way to target heterochromatic and gamma radiation-exposed breast cancer cells. Cells 2020, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; et al. Alpha-emitters and targeted alpha therapy in oncology: From basic science to clinical investigations. Target Oncol. 2018, 13, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Miederer, M.; Benešová-Schäfer, M.; Mamat, C.; Kästner, D.; Pretze, M.; Michler, E.; Brogsitter, C.; Kotzerke, J.; Kopka, K.; Scheinberg, D.A.; et al. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals 2024, 17, 76. [Google Scholar] [CrossRef]
- Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 129–138. [Google Scholar] [CrossRef]
- Higashi, T.; Nagatsu, K.; Tsuji, A.B.; Zhang, M.R. Research and development for cyclotron production of 225Ac from 226Ra—The challenges in a country lacking natural resources for medical applications. Processes 2022, 10, 1215. [Google Scholar] [CrossRef]
- Mourtada, F.; Tomiyoshi, K.; Sims-Mourtada, J.; Mukai-Sasaki, Y.; Yagihashi, T.; Namiki, Y.; Murai, T.; Yang, D.J.; Inoue, T. Actinium-225 targeted agents: Where are we now? Brachytherapy 2023, 22, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.S.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and supply of α-particle-emitting radionuclides for targeted α-therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Nagatsu, K.; Suzuki, H.; Fukada, M.; Ito, T.; Ichinose, J.; Honda, Y.; Minegishi, K.; Higashi, T.; Zhang, M.R. Cyclotron production of 225Ac from an electroplated 226Ra target. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 279–289. [Google Scholar] [CrossRef]
- Jalloul, W.; Ghizdovat, V.; Stolniceanu, C.R.; Ionescu, T.; Grierosu, I.C.; Pavaleanu, I.; Moscalu, M.; Stefanescu, C. Targeted alpha therapy: All we need to know about 225Ac’s physical characteristics and production as a potential theranostic radionuclide. Pharmaceuticals 2023, 16, 1679. [Google Scholar] [CrossRef]
- Burahmah, N.; Griswold, J.R.; Heilbronn, L.H.; Mirzadeh, S. Transport model predictions of 225Ac production cross sections via energetic p, d and α irradiation of 232Th targets. Appl. Radiat. Isot. 2021, 172, 109676. [Google Scholar] [CrossRef]
- Sgouros, G.; He, B.; Ray, N.; Ludwig, D.L.; Frey, E.C. Dosimetric impact of Ac-227 in accelerator-produced Ac-225 for alpha-emitter radiopharmaceutical therapy of patients with hematological malignancies: A pharmacokinetic modeling analysis. EJNMMI Phys. 2021, 8, 60. [Google Scholar] [CrossRef]
- Abou, D.S.; Zerkel, P.; Robben, J.; McLaughlin, M.; Hazlehurst, T.; Morse, D.; Wadas, T.J.; Pandya, D.N.; Oyama, R.; Gaehle, G.; et al. Radiopharmaceutical Quality Control Considerations for Accelerator-Produced Actinium Therapies. Cancer Biother. Radiopharm. 2022, 37, 355–363. [Google Scholar] [CrossRef] [PubMed]
- FDA-NRC Workshop: Enhancing Development of Targeted Alpha Emitting Radiopharmaceuticals, Special Session on Actinium-225. 21 September 2021. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-nrc-workshop-targeted-alpha-emitting-radiopharmaceuticals-focus-ac-225-09222021-09222021#event-informa (accessed on 22 October 2024).
- Tollefson, A.D.; Smith, C.M.; Carpenter, M.H.; Croce, M.P.; Fassbender, M.E.; Koehler, K.E.; Lilley, L.M.; O’Brien, E.M.; Schmidt, D.R.; Stein, B.W.; et al. Measurement of 227Ac impurity in 225Ac using decay energy spectroscopy. Appl. Radiat. Isot. 2021, 172, 109693. [Google Scholar] [CrossRef]
- Jiang, Z.; Revskaya, E.; Fisher, D.R.; Dadachova, E. In vivo evaluation of free and chelated accelerator-produced Actinium-225-Radiation dosimetry and toxicity results. Curr. Radiopharm. 2018, 11, 215–222. [Google Scholar] [CrossRef]
- White, A.M.; Craik, D.J. Discovery and optimization of peptide macrocycles. Expert Opin. Drug Discov. 2016, 11, 1151–1163. [Google Scholar] [CrossRef]
- Mohtavinejad, N.; Hajiramezanali, M.; Akhlaghi, M.; Bitarafan-Rajabi, A.; Gholipour, N. Synthesis and evaluation of 99mTc-DOTA-ARA-290 as potential SPECT tracer for targeting cardiac ischemic region. Iran. J. Basic Med. Sci. 2021, 24, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Autio, A.; Uotila, S.; Kiugel, M.; Kytö, V.; Liljenbäck, H.; Kudomi, N.; Oikonen, V.; Metsälä, O.; Helin, S.; Knuuti, J.; et al. 68Ga-DOTA chelate, a novel imaging agent for assessment of myocardial perfusion and infarction detection in a rodent model. J. Nucl. Cardiol. 2020, 27, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Hooijman, E.L.; Radchenko, V.; Ling, S.W.; Konijnenberg, M.; Brabander, T.; Koolen, S.L.W.; de Blois, E. Implementing Ac-225 labelled radiopharmaceuticals: Practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm. Chem. 2024, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Delage, J.A.; Faivre-Chauvet, A.; Barbet, J.; Fierle, J.K.; Schaefer, N.; Coukos, G.; Viertl, D.; Dunn, S.M.; Gnesin, S.; Prior, J.O. Impact of DOTA conjugation on pharmacokinetics and immunoreactivity of [177Lu]Lu-1C1m-Fc, an Anti TEM-1 fusion protein antibody in a TEM-1 positive tumor mouse model. Pharmaceutics 2021, 13, 96. [Google Scholar] [CrossRef]
- Yang, H.; Wilson, J.J.; Orvig, C.; Li, Y.; Wilbur, D.S.; Ramogida, C.F.; Radchenko, V.; Schaffer, P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J. Nucl. Med. 2022, 63, 5–13. [Google Scholar] [CrossRef]
- Dawicki, W.; Allen, K.J.H.; Jiao, R.; Malo, M.E.; Helal, M.; Berger, M.S.; Ludwig, D.L.; Dadachova, E. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. Oncoimmunology 2019, 8, 1607673. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Pang, Y.; Fu, K.; Shang, Q.; Wu, H.; Sun, L.; Lin, Q.; Chen, H. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics 2022, 12, 1557–1569. [Google Scholar] [CrossRef]
- Treglia, G.; Muoio, B.; Roustaei, H.; Kiamanesh, Z.; Aryana, K.; Sadeghi, R. Head-to-Head Comparison of Fibroblast Activation Protein Inhibitors (FAPI) Radiotracers versus [18F]FDG in Oncology: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 11192. [Google Scholar] [CrossRef]
- Serfling, S.; Zhi, Y.; Schirbel, A.; Lindner, T.; Meyer, T.; Gerhard-Hartmann, E.; Lapa, C.; Hagen, R.; Hackenberg, S.; Buck, A.K.; et al. Improved cancer detection in Waldeyer’s tonsillar ring by 68Ga-FAPI PET/CT imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1178–1187. [Google Scholar] [CrossRef]
- Kessler, L.; Ferdinandus, J.; Hirmas, N.; Bauer, S.; Dirksen, U.; Zarrad, F.; Nader, M.; Chodyla, M.; Milosevic, A.; Umutlu, L.; et al. 68Ga-FAPI as a diagnostic tool in sarcoma: Data from the 68Ga-FAPI PET Prospective Observational Trial. J. Nucl. Med. 2022, 63, 89–95. [Google Scholar] [CrossRef]
- Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U.; et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J. Nucl. Med. 2020, 61, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Watabe, T.; Kaneda-Nakashima, K.; Shirakami, Y.; Naka, S.; Ooe, K.; Toyoshima, A.; Nagata, K.; Haberkorn, U.; Kratochwil, C.; et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Zboralski, D.; Hoehne, A.; Bredenbeck, A.; Schumann, A.; Nguyen, M.; Schneider, E.; Ungewiss, J.; Paschke, M.; Haase, C.; von Hacht, J.L.; et al. Preclinical al evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3651–3667. [Google Scholar] [CrossRef]
- Baum, R.P.; Schuchardt, C.; Singh, A.; Chantadisai, M.; Robiller, F.C.; Zhang, J.; Mueller, D.; Eismant, A.; Almaguel, F.; Zboralski, D.; et al. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: First-in-humans results. J. Nucl. Med. 2022, 63, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Kunikowska, J.; Pełka, K.; Tayara, O.; Królicki, L. Ga-68-PSMA-11 PET/CT in Patients with Biochemical Recurrence of Prostate Cancer After Primary Treatment with Curative Intent-Impact of Delayed Imaging. J. Clin. Med. 2022, 11, 3311. [Google Scholar] [CrossRef]
- Mokoala, K.; Lawal, I.; Lengana, T.; Kgatle, M.; Giesel, F.L.; Vorster, M.; Sathekge, M. PSMA Theranostics: Science and practice. Cancers 2021, 13, 3904. [Google Scholar] [CrossRef]
- Jeitner, T.M.; Babich, J.W.; Kelly, J.M. Advances in PSMA theranostics. Transl. Oncol. 2022, 22, 101450. [Google Scholar] [CrossRef]
- Hooijman, E.L.; Chalashkan, Y.; Ling, S.W.; Kahyargil, F.F.; Segbers, M.; Bruchertseifer, F.; Morgenstern, A.; Seimbille, Y.; Koolen, S.L.W.; Brabander, T.; et al. Development of [225Ac]Ac-PSMA-I&T for targeted alpha therapy according to GMP guidelines for treatment of mCRPC. Pharmaceutics 2021, 13, 715. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: Dosimetry estimate and empiric dose finding. J. Nucl. Med. 2017, 58, 1624–1631. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.; Liao, T.; Gong, W.; Zhang, C. Efficacy and safety of 225Ac-PSMA-617-targeted alpha therapy in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 796657. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, M.; Bilewicz, A.; Kruszewski, M.; Wegierek-Ciuk, A.; Lankoff, A. Targeted radionuclide therapy of prostate cancer-from basic research to clinical perspectives. Molecules 2020, 25, 1743. [Google Scholar] [CrossRef]
- Kabasakal, L.; Toklu, T.; Yeyin, N.; Demirci, E.; Abuqbeitah, M.; Ocak, M.; Aygün, A.; Karayel, E.; Pehlivanoğlu, H.; Alan Selçuk, N. Lu-177-PSMA-617 prostate-specific membrane antigen inhibitor therapy in patients with castration-resistant prostate cancer: Stability, bio-distribution and dosimetry. Mol. Imaging Radionucl. Ther. 2017, 26, 62–68. [Google Scholar] [CrossRef]
- Patell, K.; Kurian, M.; Garcia, J.A.; Mendiratta, P.; Barata, P.C.; Jia, A.Y.; Spratt, D.E.; Brown, J.R. Lutetium-177 PSMA for the treatment of metastatic castrate resistant prostate cancer: A systematic review. Expert Rev. Anticancer. Ther. 2023, 23, 731–744. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Konik, A.; Otani, R.; Pittie, R.; Rodden, D.; Kelly, J.; Chung, E.; Ohtani, Y.; Badusi, P.; Pompa, I.; et al. Circulating tumor cell molecular signatures of response to 177Lu-PSMA-617 therapy in metastatic prostate cancer patients. J. Nucl. Med. Mol. Imaging 2024, 65 (Suppl. S2), 241193. [Google Scholar]
- Kessel, K.; Seifert, R.; Weckesser, M.; Roll, W.; Humberg, V.; Schlack, K.; Bögemann, M.; Bernemann, C.; Rahbar, K. Molecular analysis of circulating tumor cells of metastatic castration-resistant Prostate Cancer Patients receiving 177Lu-PSMA-617 Radioligand Therapy. Theranostics 2020, 10, 7645–7655. [Google Scholar] [CrossRef] [PubMed]
- Gosewisch, A.; Schleske, M.; Gildehaus, F.J.; Berg, I.; Kaiser, L.; Brosch, J.; Bartenstein, P.; Todica, A.; Ilhan, H.; Böning, G. Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Zacherl, M.J.; Gildehaus, F.J.; Mittlmeier, L.; Böning, G.; Gosewisch, A.; Wenter, V.; Unterrainer, M.; Schmidt-Hegemann, N.; Belka, C.; Kretschmer, A.; et al. First clinical results for PSMA-targeted α-therapy using 225Ac-PSMA-I&T in advanced-mCRPC Patients. J. Nucl. Med. 2021, 62, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Vorster, M.; Sathekge, M. Advances in PSMA Alpha Theragnostics. Semin. Nucl. Med. 2024, 54, 591–602. [Google Scholar] [CrossRef]
- Yadav, M.P.; Ballal, S.; Sahoo, R.K.; Tripathi, M.; Damle, N.A.; Shamim, S.A.; Kumar, R.; Seth, A.; Bal, C. Long-term outcome of 177Lu-PSMA-617 radioligand therapy in heavily pre-treated metastatic castration-resistant prostate cancer patients. PLoS ONE 2021, 16, e0251375. [Google Scholar] [CrossRef]
- Feuerecker, B.; Tauber, R.; Knorr, K.; Heck, M.; Beheshti, A.; Seidl, C.; Bruchertseifer, F.; Pickhard, A.; Gafita, A.; Kratochwil, C.; et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2021, 79, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Langbein, T.; Chaussé, G.; Baum, R.P. Salivary gland toxicity of PSMA radioligand therapy: Relevance and preventive strategies. J. Nucl. Med. 2018, 59, 1172–1173. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, H.; Gosewisch, A.; Böning, G.; Völter, F.; Zacherl, M.; Unterrainer, M.; Bartenstein, P.; Todica, A.; Gildehaus, F.J. Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1262–1263. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Fujishima, F.; Komoto, I.; Imamura, M.; Hijioka, S.; Hara, K.; Yatabe, Y.; Kudo, A.; Masui, T.; Tsuchikawa, T.; et al. Somatostatin receptor 2 expression profiles and their correlation with the efficacy of somatostatin analogues in gastrointestinal neuroendocrine tumors. Cancers 2022, 14, 775. [Google Scholar] [CrossRef]
- Poeppel, T.D.; Binse, I.; Petersenn, S.; Lahner, H.; Schott, M.; Antoch, G.; Brandau, W.; Bockisch, A.; Boy, C. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J. Nucl. Med. 2011, 52, 1864–1870. [Google Scholar] [CrossRef]
- Graf, J.; Pape, U.F.; Jann, H.; Denecke, T.; Arsenic, R.; Brenner, W.; Pavel, M.; Prasad, V. Prognostic Significance of Somatostatin Receptor Heterogeneity in Progressive Neuroendocrine Tumor Treated with 177Lu-DOTATOC or 177Lu-DOTATATE. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 881–894. [Google Scholar] [CrossRef]
- Demirci, E.; Alan Selçuk, N.; Beydağı, G.; Ocak, M.; Toklu, T.; Akçay, K.; Kabasakal, L. Initial findings on the use of [225Ac]Ac-DOTATATE therapy as a theranostic application in patients with neuroendocrine tumors. Mol. Imaging Radionucl. Ther. 2023, 32, 226–232. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Kobayashi, N.; Takano, S.; Kato, I.; Endo, K.; Inoue, T. Neuroendocrine tumor theranostics. Cancer Sci. 2022, 113, 1930–1938. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Bal, C.; Sahoo, R.K.; Tripathi, M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: First clinical experience on the efficacy and safety. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 934–946. [Google Scholar] [CrossRef]
- Rubira, L.; Deshayes, E.; Santoro, L.; Kotzki, P.O.; Fersing, C. 225Ac-Labeled somatostatin analogs in the management of neuroendocrine tumors: From radiochemistry to clinic. Pharmaceutics 2023, 15, 1051. [Google Scholar] [CrossRef]
- Koh, T.T.; Bezak, E.; Chan, D.; Cehic, G. Targeted alpha-particle therapy in neuroendocrine neoplasms: A systematic review. World J. Nucl. Med. 2021, 20, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Huizing, D.M.V.; de Wit-van der Veen, B.J.; Verheij, M.; Stokkel, M.P.M. Dosimetry methods and clinical al applications in peptide receptor radionuclide therapy for neuroendocrine tumors: A literature review. EJNMMI Res. 2018, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Cherednichenko, O.; Pilyugina, A.; Nuraliev, S.; Azizbekova, D. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2024, 894, 503728. [Google Scholar] [CrossRef] [PubMed]
- Mališić, E.; Petrović, N.; Brengues, M.; Azria, D.; Matić, I.Z.; Srbljak Ćuk, I.; Kopčalić, K.; Stanojković, T.; Nikitović, M. Association of polymorphisms in TGFB1, XRCC1, XRCC3 genes and CD8 T-lymphocyte apoptosis with adverse effect of radiotherapy for prostate cancer. Sci. Rep. 2022, 12, 21306. [Google Scholar] [CrossRef]
- Blinova, E.A.; Nikiforov, V.S.; Yanishevskaya, M.A.; Akleyev, A.A. Single nucleotide polymorphism and expression of genes for immune competent cell proliferation and differentiation in radiation-exposed individuals. Vavilovskii Zhurnal Genet. Selektsii 2020, 24, 399–406. [Google Scholar] [CrossRef]
- Lierova, A.; Jelicova, M.; Nemcova, M.; Proksova, M.; Pejchal, J.; Zarybnicka, L.; Sinkorova, Z. Cytokines and radiation-induced pulmonary injuries. J. Radiat. Res. 2018, 59, 709–753. [Google Scholar] [CrossRef]
- Cavalieri, R.; de Oliveira, H.F.; Louvain de Souza, T.; Kanashiro, M.M. Single nucleotide polymorphisms as biomarker predictors of oral mucositis severity in head and neck cancer patients submitted to combined radiation therapy and chemotherapy: A systematic review. Cancers 2024, 16, 949. [Google Scholar] [CrossRef]
- Mukai-Sasaki, Y.; Liao, Z.; Yang, D.; Inoue, T. Modulators of radiation-induced cardiopulmonary toxicities for non-small cell lung cancer: Integrated cytokines, single nucleotide variants, and HBP systems imaging. Front. Oncol. 2022, 12, 984364. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Jo, H.S.; Bae, S.; Seo, Y.; Song, P.; Song, M.; Yoon, J.H. Application of proteomics in cancer: Recent trends and approaches for biomarkers discovery. Front. Med. 2021, 8, 747333. [Google Scholar] [CrossRef]
- Hänscheid, H.; Lapa, C.; Buck, A.K.; Lassmann, M.; Werner, R.A. Dose mapping after endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J. Nucl. Med. 2018, 59, 75–81. [Google Scholar] [CrossRef]
- Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J. Nucl. Med. 2009, 50, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; et al. MIRD Pamphlet No. 22 (abridged): Radiobiology and dosimetry of alpha-particle emiters for targeted radionuclide therapy. J. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef]
- Eckerman, K.; Endo, A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann. ICRP 2008, 38, 7–96. [Google Scholar] [CrossRef]
- Kennel, S.J.; Chappell, L.L.; Dadachova, K.; Brechbiel, M.W.; Lankford, T.K.; Davis, I.A.; Stabin, M.; Mirzadeh, S. Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother. Radiopharm. 2000, 15, 235–244. [Google Scholar] [CrossRef]
- Schwartz, J.; Jaggi, J.S.; O’Donoghue, J.A.; Ruan, S.; McDevitt, M.; Larson, S.M.; Scheinberg, D.A.; Humm, J.L. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of 225Ac-labeled antibody. Phys. Med. Biol. 2011, 56, 721–733. [Google Scholar] [CrossRef]
- Lee, D.; Li, M.; Bednarz, B.; Schultz, M.K. Modeling Cell and Tumor-metastasis dosimetry with the particle and heavy ion transport code system (PHITS) software for targeted Alpha-particle radionuclide therapy. Radiat. Res. 2018, 190, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Hobbs, R.F.; Song, H. Modelling and dosimetry for alpha-particle therapy. Curr. Radiopharm. 2011, 4, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Afarideh, H.; Maragheh, M.G.; Shirmardi, S.P.; Samani, A.B. Study of bone surface absorbed dose in treatment of bone metastases via selected radiopharmaceuticals: Using MCNP4C code and available experimental data. Cancer Biother. Radiopharm. 2015, 30, 174–181. [Google Scholar] [CrossRef]
- Miller, B.W.; Frost, S.H.; Frayo, S.L.; Kenoyer, A.L.; Santos, E.; Jones, J.C.; Green, D.J.; Hamlin, D.K.; Wilbur, D.S.; Fisher, D.R.; et al. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera. Med. Phys. 2015, 42, 4094–4105. [Google Scholar] [CrossRef]
- Bäck, T.; Jacobsson, L. The alpha-camera: A quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J. Nucl. Med. 2010, 51, 1616–1623. [Google Scholar] [CrossRef]
- Chouin, N.; Lindegren, S.; Jensen, H.; Albertsson, P.; Bäck, T. Quantification of activity by alpha-camera imaging and small-scale dosimetry within ovarian carcinoma micrometastases treated with targeted alpha therapy. Q. J. Nucl. Med. Mol. Imaging 2012, 56, 487–495. [Google Scholar] [PubMed]
- Frost, S.H.; Miller, B.W.; Bäck, T.A.; Santos, E.B.; Hamlin, D.K.; Knoblaugh, S.E.; Frayo, S.L.; Kenoyer, A.L.; Storb, R.; Press, O.W.; et al. α-Imaging confirmed efficient targeting of CD45-positive cells after 211At-radioimmunotherapy for hematopoietic cell transplantation. J. Nucl. Med. 2015, 56, 1766–1773. [Google Scholar] [CrossRef]
- Banerjee, S.R.; Lisok, A.; Minn, I.; Josefsson, A.; Kumar, V.; Brummet, M.; Boinapally, S.; Brayton, C.; Mease, R.C.; Sgouros, G.; et al. Preclinical al evaluation of 213Bi- and 225Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. J. Nucl. Med. 2021, 62, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.F.; Song, H.; Huso, D.L.; Sundel, M.H.; Sgouros, G. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry. Phys. Med. Biol. 2012, 57, 4403–4424. [Google Scholar] [CrossRef]
- Benabdallah, N.; Scheve, W.; Dunn, N.; Silvestros, D.; Schelker, P.; Abou, D.; Jammalamadaka, U.; Laforest, R.; Li, Z.; Liu, J.; et al. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics 2021, 11, 9721–9737. [Google Scholar] [CrossRef] [PubMed]
- Koniar, H.; Rodríguez-Rodríguez, C.; Radchenko, V.; Yang, H.; Kunz, P.; Rahmim, A.; Uribe, C.; Schaffer, P. SPECT imaging of 226Ac as a theranostic isotope for 225Ac radiopharmaceutical development. Phys. Med. Biol. 2022, 67, 185009. [Google Scholar] [CrossRef]
- Ren, G.; Roberts, A.I.; Shi, Y. Adhesion molecules: Key players in Mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr. 2011, 5, 20–22. [Google Scholar] [CrossRef]
- Lee, S.; Mannstadt, M.; Guo, J.; Kim, S.M.; Yi, H.S.; Khatri, A.; Dean, T.; Okazaki, M.; Gardella, T.J.; Jüppner, H. A Homozygous [Cys25]PTH(1-84) Mutation That Impairs PTH/PTHrP Receptor Activation Defines a Novel Form of Hypoparathyroidism. J. Bone Miner. Res. 2015, 30, 1803–1813. [Google Scholar] [CrossRef]
- Marunaka, Y.; Niisato, N.; Miyazaki, H. New concept of spare receptors and effectors. J. Membr. Biol. 2005, 203, 31–39. [Google Scholar] [CrossRef]
- Bridge, J.A. Advantages and limitations of cytogenetic, molecular cytogenetic, and molecular diagnostic testing in mesenchymal neoplasms. J. Orthop. Sci. 2008, 13, 273–282. [Google Scholar] [CrossRef]
- Peter, R.; Bidkar, A.P.; Bobba, K.N.; Zerefa, L.; Dasari, C.; Meher, N.; Wadhwa, A.; Oskowitz, A.; Liu, B.; Miller, B.W.; et al. 3D small-scale dosimetry and tumor control of 225Ac radiopharmaceuticals for prostate cancer. Sci. Rep. 2024, 14, 19938. [Google Scholar] [CrossRef] [PubMed]
- Uygur, E.; Sezgin, C.; Parlak, Y.; Karatay, K.B.; Arikbasi, B.; Avcibasi, U.; Toklu, T.; Barutca, S.; Harmansah, C.; Sozen, T.S.; et al. The radiolabeling of [161Tb]-PSMA-617 by a novel radiolabeling method and preclinical evaluation by in vitro/in vivo methods. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Vorster, M.; Hadebe, B.P.; Sathekge, M.M. Theranostics in breast cancer. Front. Nucl. Med. 2023, 3, 1236565. [Google Scholar] [CrossRef] [PubMed]
- Verburg, F.A.; de Blois, E.; Koolen, S.; Konijnenberg, M.W. Replacing Lu-177 with Tb-161 in DOTA-TATE and PSMA-617 therapy: Potential dosimetric implications for activity selection. EJNMMI Phys. 2023, 10, 69. [Google Scholar] [CrossRef]
- Poplawski, S.E.; Hallett, R.M.; Dornan, M.H.; Novakowski, K.E.; Pan, S.; Belanger, A.P.; Nguyen, Q.D.; Wu, W.; Felten, A.E.; Liu, Y.; et al. Preclinical development of PNT6555, a boronic acid-based, fibroblast activation protein-α (FAP)-targeted radiotheranostic for imaging and treatment of FAP-positive tumors. J. Nucl. Med. 2024, 65, 100–108. [Google Scholar] [CrossRef]
Generator | Parent Half-Life | Daughter Half-Life | Frequency of Milking |
---|---|---|---|
99Mo/99mTc | 2.8 days | 6 h | * |
188W/188Re | 70 days | 17 h | 24 h |
68Ge/68Ga | 271 days | 68 min | 6 h |
229Th/225Ac | 7920 years | 9.9 days | * |
Method | Advantage | Disadvantage |
---|---|---|
Direct production route. Neutron irradiation of natural lutetium (175Lu, 97.41%; 176Lu, 2.59% ) target by 176Lu(n,γ)177Lu reaction. | Produce large quantity and inexpensive production of 177Lu. | Produce low specific activity 177Lu (20–30 Ci/mg) and an impurity 177mLu (t1/2 = 160.1 days), which may create safety and radioactive waste disposal concerns. |
Indirect production route. Neutron irradiation of ytterbium (176Yb) target by 176Yb(n,γ)177Yb reaction. | Produce CGMP grade with no-carrier added 177Lu and high specific activity (>3.800 GBq/mg). No contamination of 177mLu. | 177Lu was produced after chemical separation of the nuclear decay of 176Yb radionuclides. |
229Th/225Ac generator | Produce pure carrier-free 225Ac and free of other Ac-isotopes. The generator has half-life (t1/2 = 7.3 years). | Limit to small scale 225Ac (100–150 mCi) due to the limitation of 229Th amount. |
Accelerator: irradiation of 226Ra via 226Ra(p,2n)225Ac, 226Ra(γ,n)225Ra, 226Ra(3n,γ)229Ra, 226Ra(p,n)226Ac reactions. | Produce large amount of 225Ac year around. | Contain impurity of 227Ac (t1/2 = 21.8 years) and other Ac-isotopes (226Ac t1/2 = 29 h; 224Ac t1/2 = 2.8 h). |
[177Lu]Lu-PSMA | [225Ac]Ac-PSMA |
---|---|
|
|
Pathology Lab | Cytogenetic Profiling |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomiyoshi, K.; Wilson, L.J.; Mourtada, F.; Mourtada, J.S.; Namiki, Y.; Kamata, W.; Yang, D.J.; Inoue, T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics 2024, 16, 1458. https://doi.org/10.3390/pharmaceutics16111458
Tomiyoshi K, Wilson LJ, Mourtada F, Mourtada JS, Namiki Y, Kamata W, Yang DJ, Inoue T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics. 2024; 16(11):1458. https://doi.org/10.3390/pharmaceutics16111458
Chicago/Turabian StyleTomiyoshi, Katsumi, Lydia J. Wilson, Firas Mourtada, Jennifer Sims Mourtada, Yuta Namiki, Wataru Kamata, David J. Yang, and Tomio Inoue. 2024. "Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology" Pharmaceutics 16, no. 11: 1458. https://doi.org/10.3390/pharmaceutics16111458
APA StyleTomiyoshi, K., Wilson, L. J., Mourtada, F., Mourtada, J. S., Namiki, Y., Kamata, W., Yang, D. J., & Inoue, T. (2024). Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics, 16(11), 1458. https://doi.org/10.3390/pharmaceutics16111458