Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selecting the Independent and Dependent Variables for Optimisation of Pectin TQ-Beads (TQ-PB)
2.2. Preparation of TQ-PB
2.3. Size and Sphericity
2.4. Encapsulation Efficiency
2.5. Water Uptake and Erosion
2.6. Morphology
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.8. Powder X-Ray Diffraction (PXRD) Measurements
2.9. Texture Analysis (Recovery Rate and Elasticity Limit)
2.10. In Vitro Drug Release and Kinetic Release Study of TQ-PB
2.11. Accelerated Stability Test
2.12. Determination of Cytotoxicity of TQ-PB
2.13. Statistical Analysis
3. Results and Discussion
3.1. The Effects of Formulation Variables on Particle Size, Sphericity, and EE
3.1.1. Particle Size
3.1.2. Sphericity
3.1.3. Encapsulation Efficiency (EE)
3.2. Effects of Formulation Variables on Water Uptake in SGF, SIF, SCF, and Erosion
3.3. Optimisation and Validation
3.4. Surface Morphology Analysis of TQ-PB
3.5. FTIR Analysis
3.6. Powder X-Ray Diffraction (PXRD) Analysis
3.7. Elastic-Plastic Behaviour and Compression Analysis
3.8. Drug Release Studies and Release Kinetics of TQ
3.9. Stability Study
3.10. Cytotoxicity Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Gastroenterol. Rev. Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Koveitypour, Z.; Panahi, F.; Vakilian, M.; Peymani, M.; Seyed Forootan, F.; Nasr Esfahani, M.H.; Ghaedi, K. Signaling Pathways Involved in Colorectal Cancer Progression. Cell Biosci. 2019, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshani, M.S.; Khandani, B.K.; Pardakhty, A.; Tajadini, H.; Pour Afshar, R.M.; Moazed, V.; Nemati, A.; Nasiri, N.; Sharifi, H. The Prevalence and Predictors of Using Herbal Medicines among Iranian Cancer Patients. Complement. Ther. Clin. Pract. 2019, 35, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Hanafiah, R.; Salehuddin, N.F.Z.; Abd Ghafar, S.A.; Kassim, M.A. Antibacterial, Antimicrobial, and Antimalarial Effect of Black Seed Oil. In Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed; Academic Press: Cambridge, MA, USA, 2023; pp. 189–200. [Google Scholar] [CrossRef]
- Kavyani, Z.; Musazadeh, V.; Golpour-hamedani, S.; Moridpour, A.H.; Vajdi, M.; Askari, G. The Effect of Nigella Sativa (Black Seed) on Biomarkers of Inflammation and Oxidative Stress: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Inflammopharmacology 2023, 31, 1149–1165. [Google Scholar] [CrossRef]
- Alsanosi, S.; Sheikh, R.A.; Sonbul, S.; Altayb, H.N.; Batubara, A.S.; Hosawi, S.; Al-Sakkaf, K.; Abdullah, O.; Omran, Z.; Alhosin, M. The Potential Role of Nigella Sativa Seed Oil as Epigenetic Therapy of Cancer. Molecules 2022, 27, 2779. [Google Scholar] [CrossRef]
- Adedokun, M.A.; Enye, L.A.; Akinluyi, E.T.; Ajibola, T.A.; Edem, E.E. Black Seed Oil Reverses Chronic Antibiotic-Mediated Depression and Social Behaviour Deficits via Modulation of Hypothalamic Mitochondrial-Dependent Markers and Insulin Expression. IBRO Neurosci. Rep. 2024, 16, 267–279. [Google Scholar] [CrossRef]
- Shahba, A.A.W.; Sherif, A.Y.; Elzayat, E.M.; Kazi, M. Combined Ramipril and Black Seed Oil Dosage Forms Using Bioactive Self-Nanoemulsifying Drug Delivery Systems (BIO-SNEDDSs). Pharmaceuticals 2022, 15, 1120. [Google Scholar] [CrossRef]
- Yıldırım, M.; Acet, Ö.; Önal Acet, B.; Karakoç, V.; Odabaşı, M. Innovative Approach against Cancer: Thymoquinone-Loaded PHEMA-Based Magnetic Nanoparticles and Their Effects on MCF-7 Breast Cancer. Biochem. Biophys. Res. Commun. 2024, 734, 150464. [Google Scholar] [CrossRef]
- Kurowska, N.; Madej, M.; Strzalka-Mrozik, B. Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 121–139. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, J.; Yang, X. Deformable Nanocarriers for Enhanced Drug Delivery and Cancer Therapy. Exploration 2024, 4, 20230037. [Google Scholar] [CrossRef]
- Lee, J.; Bae, J.; Kwak, D.; Kim, H.; Kim, J.; Phyu Hlaing, S.; Saparbayeva, A.; Hee Lee, E.; Yoon, I.S.; Kim, M.S.; et al. 5-Fluorouracil Crystal-Incorporated, PH-Responsive, and Release-Modulating PLGA/Eudragit FS Hybrid Microparticles for Local Colorectal Cancer-Targeted Chemotherapy. Int. J. Pharm. 2023, 630, 122443. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, T.; Suganya, R.; Joseph, J.J.; Pandiaraj, S.; Alibrahim, K.A.; Alodhayb, A.N.; Rajakumar, G.; Viswanathan, D.; Thiruvengadam, M.; Shobha, K.; et al. Development and Evaluation of Biodegradable Alginate Beads Loaded with Sorafenib for Cancer Treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 135083. [Google Scholar] [CrossRef]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320–6330. [Google Scholar] [CrossRef]
- Moghaddam, F.A.; Ebrahimian, M.; Oroojalian, F.; Yazdian-Robati, R.; Kalalinia, F.; Tayebi, L.; Hashemi, M. Effect of Thymoquinone-Loaded Lipid–Polymer Nanoparticles as an Oral Delivery System on Anticancer Efficiency of Doxorubicin. J. Nanostructure Chem. 2022, 12, 33–44. [Google Scholar] [CrossRef]
- Samak, Y.O.; Santhanes, D.; El-Massik, M.A.; Coombes, A.G.A. Formulation Strategies for Achieving High Delivery Efficiency of Thymoquinone-Containing Nigella Sativa Extract to the Colon Based on Oral Alginate Microcapsules for Treatment of Inflammatory Bowel Disease. J. Microencapsul. 2019, 36, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Ying, K.; Bai, B.; Gao, X.; Xu, Y.; Wang, H.; Xie, B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front. Bioeng. Biotechnol. 2021, 9, 670124. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Sahoo, S.K.; Behera, A.; Patil, S.V.; Panda, S.K. Formulation, in Vitro Drug Release Study and Anticancer Activity of 5-Fluorouracil Loaded Gellan Gum Microbeads. Acta Pol. Pharm. 2013, 70, 123–127. [Google Scholar]
- Khotimchenko, M. Pectin Polymers for Colon-Targeted Antitumor Drug Delivery. Int. J. Biol. Macromol. 2020, 158, 1110–1124. [Google Scholar] [CrossRef]
- Atara, S.A.; Soniwala, M.M. Formulation and Evaluation of Pectin-Calcium Chloride Beads of Azathioprine for Colon Targeted Drug Delivery System. Int. J. Pharm. Pharm. Sci. 2018, 10, 172. [Google Scholar] [CrossRef]
- Balakarthikeyan, J.; Mayakrishnan, V.; Kannappan, P.; Al-Ghamdi, S.; Alrudian, N.A.; Alqahtani, M.S.; El-Bidawy, M.H.; Albasheer, K.; Gamil, S.; Alsanousi, N.; et al. Cetuximab-Conjugated Andrographolide Loaded Chitosan-Pectin Composite Nanoparticles for Colorectal Cancer. J. King Saud. Univ. Sci. 2024, 36, 103261. [Google Scholar] [CrossRef]
- Hwang, S.W.; Shin, J.S. Pectin-Coated Curcumin-Chitosan Microparticles Crosslinked with Mg2+ for Delayed Drug Release in the Digestive System. Int. J. Polym. Sci. 2018, 2018, 2071071. [Google Scholar] [CrossRef]
- Seyam, S.; Choukaife, H.; Al Rahal, O.; Alfatama, M. Colonic Targeting Insulin-Loaded Trimethyl Chitosan Nanoparticles Coated Pectin for Oral Delivery: In Vitro and In Vivo Studies. Int. J. Biol. Macromol. 2024, 281, 136549. [Google Scholar] [CrossRef] [PubMed]
- Mehregan Nikoo, A.; Kadkhodaee, R.; Ghorani, B.; Razzaq, H.; Tucker, N. Controlling the Morphology and Material Characteristics of Electrospray Generated Calcium Alginate Microhydrogels. J. Microencapsul. 2016, 33, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Charles, A.P.R.; Mu, R.; Jin, T.Z.; Li, D.; Pan, Z.; Rakshit, S.; Cui, S.W.; Wu, Y. Application of Yellow Mustard Mucilage and Starch in Nanoencapsulation of Thymol and Carvacrol by Emulsion Electrospray. Carbohydr. Polym. 2022, 298, 120148. [Google Scholar] [CrossRef] [PubMed]
- Kolesov, S.V.; Khutoryanskiy, V.V.; Ciarleglio, G.; Russo, T.; Toto, E.; Gabriella Santonicola, M. Fabrication of Alginate/Ozoile Gel Microspheres by Electrospray Process. Gels 2024, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Alfatama, M.; Choukaife, H. Fish Oil Alginate Microspheres Produced via Wave-Based Drop-on-Demand Jetting Electrospray: Improving Stability and Palatability. Food Biosci. 2024, 61, 104852. [Google Scholar] [CrossRef]
- Alfatama, M.; Lim, L.Y.; Wong, T.W. Alginate–C18 Conjugate Nanoparticles Loaded in Tripolyphosphate-Cross-Linked Chitosan–Oleic Acid Conjugate-Coated Calcium Alginate Beads as Oral Insulin Carrier. Mol. Pharm. 2018, 15, 3369–3382. [Google Scholar] [CrossRef]
- Alkhatib, H.; Mawazi, S.; Al-Mahmood, S.; Zaiter, A.; Doolaanea, A. Thymoquinone Content in Marketed Black Seed Oil in Malaysia. J. Pharm. Bioallied Sci. 2020, 12, 284–288. [Google Scholar] [CrossRef]
- Alkhatib, H.; Mohamed, F.; Mohmad Sabere, A.S.; Choukaife, H.; Doolaanea, A.A. Emulsification-Assisted Spectroscopic Analysis of Black Seed Oil in Alginate Beads: Method Development and Validation. Anal. Chem. Lett. 2023, 13, 234–243. [Google Scholar] [CrossRef]
- Akl, M.A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial Design Formulation Optimization and in Vitro Characterization of Curcumin-Loaded PLGA Nanoparticles for Colon Delivery. J. Drug Deliv. Sci. Technol. 2016, 32, 10–20. [Google Scholar] [CrossRef]
- Andishmand, H.; Tabibiazar, M.; Mohammadifar, M.A.; Hamishehkar, H. Pectin-Zinc-Chitosan-Polyethylene Glycol Colloidal Nano-Suspension as a Food Grade Carrier for Colon Targeted Delivery of Resveratrol. Int. J. Biol. Macromol. 2017, 97, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.S.; Lim, T.K.; Voo, W.P.; Pogaku, R.; Tey, B.T.; Zhang, Z. Effect of Formulation of Alginate Beads on Their Mechanical Behavior and Stiffness. Particuology 2011, 9, 228–234. [Google Scholar] [CrossRef]
- Salmani, J.M.M.; Asghar, S.; Lv, H.; Zhou, J. Aqueous Solubility and Degradation Kinetics of the Phytochemical Anticancer Thymoquinone; Probing the Effects of Solvents, PH and Light. Molecules 2014, 19, 5925–5939. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ahmad, I.; Akhter, S.; Jain, G.K.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J. Nanocarrier Based Formulation of Thymoquinone Improves Oral Delivery: Stability Assessment, in Vitro and in Vivo Studies. Colloids Surf. B Biointerfaces 2013, 102, 822–832. [Google Scholar] [CrossRef]
- Kashid, P.; Doijad, R.; Shete, A.; Sajane, S.; Bhagat, A. Studies on Rebamipide Loaded Gastroretentive Alginate Based Mucoadhesive Beads: Formulation & In-Vitro, In-Vivo Evaluation. Pharm. Methods 2016, 7, 132–138. [Google Scholar] [CrossRef]
- Francis, A.P.; Murthy, P.B.; Devasena, T. Bis-Demethoxy Curcumin Analog Nanoparticles: Synthesis, Characterization, and Anticancer Activity In Vitro. J. Nanosci. Nanotechnol. 2014, 14, 4865–4873. [Google Scholar] [CrossRef]
- Zorba, Ö. The Effects of the Amount of Emulsified Oil on the Emulsion Stability and Viscosity of Myofibrillar Proteins. Food Hydrocoll. 2006, 20, 698–702. [Google Scholar] [CrossRef]
- Alfatama, M.; Shahzad, Y.; Choukaife, H. Recent Advances of Electrospray Technique for Multiparticulate Preparation: Drug Delivery Applications. Adv. Colloid. Interface Sci. 2024, 325, 103098. [Google Scholar] [CrossRef]
- Gan, Y.; Chen, N.; Zheng, X.; Shi, D.; Jiang, Z.; Song, S.; Shi, Y. Electric Field and Spraying Characteristics of Electrospray Using Concave Ground Electrode. J. Electrost. 2022, 115, 103662. [Google Scholar] [CrossRef]
- Choukaife, H.; Doolaanea, A.A.; Alfatama, M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals 2020, 13, 335. [Google Scholar] [CrossRef]
- Sun, R.; Lv, Z.; Wang, Y.; Gu, Y.; Sun, Y.; Zeng, X.; Gao, Z.; Zhao, X.; Yuan, Y.; Yue, T. Preparation and Characterization of Pectin-Alginate-Based Microbeads Reinforced by Nano Montmorillonite Filler for Probiotics Encapsulation: Improving Viability and Colonic Colonization. Int. J. Biol. Macromol. 2024, 264, 130543. [Google Scholar] [CrossRef] [PubMed]
- Pavithran, P.; Marimuthu, S.; Chinnamuthu, C.R.; Lakshmanan, A.; Bharathi, C.; Kadhiravan, S.; Teodor, R. Synthesis and Characterization of Pectin Beads for the Smart Delivery of Agrochemicals. Int. J. Plant Soil. Sci. 2021, 33, 136–155. [Google Scholar] [CrossRef]
- Kapoor, D.U.; Garg, R.; Gaur, M.; Pareek, A.; Prajapati, B.G.; Castro, G.R.; Suttiruengwong, S.; Sriamornsak, P. Pectin Hydrogels for Controlled Drug Release: Recent Developments and Future Prospects. Saudi Pharm. J. SPJ 2024, 32, 102002. [Google Scholar] [CrossRef]
- Bennacef, C.; Desobry-Banon, S.; Probst, L.; Desobry, S. Optimization of Core-Shell Capsules Properties (Olive Oil/Alginate) Obtained by Dripping Coextrusion Process. LWT 2022, 167, 113879. [Google Scholar] [CrossRef]
- Günter, E.A.; Martynov, V.V.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G. Characterization and Swelling Properties of Composite Gel Microparticles Based on the Pectin and κ-Carrageenan. Int. J. Biol. Macromol. 2020, 164, 2232–2239. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Miao, S.; Gao, Y.; Mao, L. Alginate-Based Gel Beads with Bigel Structures: Preparation, Characterization and Bioactive Encapsulation. Food Hydrocoll. 2024, 146, 109294. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Kirar, N. Swelling and Drug Release Behavior of Calcium Alginate/Poly (Sodium Acrylate) Hydrogel Beads. Des. Monomers Polym. 2016, 19, 89–98. [Google Scholar] [CrossRef]
- Cheewatanakornkool, K.; Niratisai, S.; Manchun, S.; Dass, C.R.; Sriamornsak, P. Characterization and in Vitro Release Studies of Oral Microbeads Containing Thiolated Pectin–Doxorubicin Conjugates for Colorectal Cancer Treatment. Asian J. Pharm. Sci. 2017, 12, 509–520. [Google Scholar] [CrossRef]
- Azad, A.K.; Al-Mahmood, S.M.A.; Chatterjee, B.; Wan Sulaiman, W.M.A.; Elsayed, T.M.; Doolaanea, A.A. Encapsulation of Black Seed Oil in Alginate Beads as a PH-Sensitive Carrier for Intestine-Targeted Drug Delivery: In Vitro, In Vivo and Ex Vivo Study. Pharmaceutics 2020, 12, 219. [Google Scholar] [CrossRef]
- Chai, A.; Schmidt, K.; Brewster, G.; Xiong, L.S.P.; Church, B.; Wahl, T.; Sadabadi, H.; Kumpaty, S.; Zhang, W. Design of Pectin-Based Hydrogel Microspheres for Targeted Pulmonary Delivery. Gels 2023, 9, 707. [Google Scholar] [CrossRef]
- Kumar, S.K.V.; Devi, P.R.; Harish, S.; Hemananthan, E. Synthesis and Characterisation of PEG Modified Chitosan Nanocapsules Loaded with Thymoquinone. IET Nanobiotechnol. 2017, 11, 104. [Google Scholar] [CrossRef]
- Al-Qubaisi, M.S.; Rasedee, A.; Flaifel, M.H.; Eid, E.E.M.; Hussein-Al-Ali, S.; Alhassan, F.H.; Salih, A.M.; Hussein, M.Z.; Zainal, Z.; Sani, D.; et al. Characterization of Thymoquinone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Application to Anti-Allergy Properties. Eur. J. Pharm. Sci. 2019, 133, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Rebitski, E.P.; Darder, M.; Carraro, R.; Ruiz-Hitzky, E. Chitosan and Pectin Core–Shell Beads Encapsulating Metformin–Clay Intercalation Compounds for Controlled Delivery. New J. Chem. 2020, 44, 10102–10110. [Google Scholar] [CrossRef]
- Paswan, M.; Singh Chandel, A.K.; Malek, N.I.; Dholakiya, B.Z. Preparation of Sodium Alginate/Cur-PLA Hydrogel Beads for Curcumin Encapsulation. Int. J. Biol. Macromol. 2024, 254, 128005. [Google Scholar] [CrossRef] [PubMed]
- Sookkasem, A.; Chatpun, S.; Yuenyongsawad, S.; Sangsen, Y.; Wiwattanapatapee, R. Colon Targeting of Self-Emulsifying and Solid Dispersions of Curcumin Using Pectin Beads as a Delivery Vehicle. Am. J. Pharm. 2017, 36, 2482–2493. [Google Scholar]
- Gouin, S. Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar] [CrossRef]
- Morales, E.; Quilaqueo, M.; Morales-Medina, R.; Drusch, S.; Navia, R.; Montillet, A.; Rubilar, M.; Poncelet, D.; Galvez-Jiron, F.; Acevedo, F. Pectin–Chitosan Hydrogel Beads for Delivery of Functional Food Ingredients. Foods 2024, 13, 2885. [Google Scholar] [CrossRef]
- Choukaife, H.; Seyam, S.; Alallam, B.; Doolaanea, A.A.; Alfatama, M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int. J. Nanomed. 2022, 17, 3933. [Google Scholar] [CrossRef]
- Alfatama, M.; Choukaife, H.; Alkhatib, H.; Al Rahal, O.; Zin, N.Z.M. A Comprehensive Review of Oral Chitosan Drug Delivery Systems: Applications for Oral Insulin Delivery. Nanotechnol. Rev. 2024, 13, 20230205. [Google Scholar] [CrossRef]
- Ramzy, L.; Metwally, A.A.; Nasr, M.; Awad, G.A.S. Novel Thymoquinone Lipidic Core Nanocapsules with Anisamide-Polymethacrylate Shell for Colon Cancer Cells Overexpressing Sigma Receptors. Sci. Rep. 2020, 10, 10987. [Google Scholar] [CrossRef]
- Chittasupho, C.; Jaturanpinyo, M.; Mangmool, S. Pectin Nanoparticle Enhances Cytotoxicity of Methotrexate against HepG2 Cells. Drug Deliv. 2013, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
Factor | Name | Unit | Low Level | High Level | −alpha | +alpha |
---|---|---|---|---|---|---|
A | Pectin concentration | % | 5 | 7 | 4 | 8 |
B | Voltage | kV | 5 | 7 | 4 | 8 |
C | BSO ratio | w/w | 1 | 2 | 0.5 | 2.5 |
D | CaCl2 concentration | % | 3 | 6 | 1.5 | 7.5 |
Code | Model | p-Value | Lack of Fit | R2 | Predicted R2 | Adjusted R2 |
---|---|---|---|---|---|---|
Particle size (mm) | ||||||
R1 | Quadratic | <0.0001 | 0.57 | 0.96 | 0.92 | 0.94 |
Particle size (mm) = 1.76 + 0.0355A + 0.0358B − 0.0510C + 0.0214D + 0.0916 AB − 0.0638AC + 0.0201AD + 0.1024BC − 0.0115BD − 0.0288CD + 0.0149A2 + 0.0400B2 + 0.1222C2 + 0.0275D2 | ||||||
Sphericity | ||||||
R2 | Quadratic | <0.0001 | 0.08 | 0.97 | 0.95 | 0.96 |
Sphericity = +0.9999 − 0.018A − 0.0212B + 0.0004C − 0.0099D − 0.0231AB + 0.0240AC − 0.0085AD − 0.0139BC − 0.0181BD − 0.0139CD − 0.0353A2 − 0.0027B2 − 0.0156C2 | ||||||
Encapsulation efficiency (EE%) | ||||||
R3 | Quadratic | <0.0001 | 0.57 | 0.84 | 0.69 | 0.78 |
EE (%) = 89.28 + 0.1612A + 0.1677B − 0.1417C + 0.0346D + 0.3250AB − 0.2894AC + 0.0688AD + 0.3644BC − 0.0275BD − 0.0994CD − 0.0033A2 + 0.0989B2 + 0.4367C2 + 0.1555D2 | ||||||
Water uptake in SGF (%) | ||||||
R4 | Quadratic | <0.0001 | 0.73 | 0.97 | 0.94 | 0.96 |
Water uptake in SGF (%) = 294.74 − 4.88A − 10.85B + 10.68C − 6.21D − 1.36AB + 6.53AC − 9.20AD − 7.49BC − 6.29BD + 2.00CD − 10.17A2 + 8.31B2 − 6.52C2 +4.36D2 | ||||||
Water uptake in SIF (%) | ||||||
R5 | 2FI | <0.0001 | 0.06 | 0.99 | 0.98 | 0.99 |
Water uptake in SIF (%) = 654.54 − 5.18A + 43.73B − 9.40C − 42.72D − 21.41AB − 100.74AC − 2.08AD − 22.90BC − 16.72BD − 1.74CD | ||||||
Water uptake in SCF (%) | ||||||
R6 | 2FI | <0.0001 | 0.16 | 0.82 | 0.70 | 0.78 |
Water uptake in SCF (%) = 901.63 − 16.18A − 11.94B − 53.51C − 7.23D − 41.86AB − 95.67AC + 31.82AD − 70.46BC + 13.80BD − 7.58CD | ||||||
Erosion (%) | ||||||
R7 | Linear | <0.0001 | 0.22 | 0.97 | 0.97 | 0.97 |
Erosion (%) = 63.83 − 0.3789A + 15.15B − 0.6988C − 4.29D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfatama, M.; Choukaife, H.; Al Rahal, O.; Zin, N.Z.M. Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy. Pharmaceutics 2024, 16, 1460. https://doi.org/10.3390/pharmaceutics16111460
Alfatama M, Choukaife H, Al Rahal O, Zin NZM. Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy. Pharmaceutics. 2024; 16(11):1460. https://doi.org/10.3390/pharmaceutics16111460
Chicago/Turabian StyleAlfatama, Mulham, Hazem Choukaife, Okba Al Rahal, and Nur Zahirah Mohamad Zin. 2024. "Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy" Pharmaceutics 16, no. 11: 1460. https://doi.org/10.3390/pharmaceutics16111460
APA StyleAlfatama, M., Choukaife, H., Al Rahal, O., & Zin, N. Z. M. (2024). Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy. Pharmaceutics, 16(11), 1460. https://doi.org/10.3390/pharmaceutics16111460