Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology
Abstract
:1. Introduction
2. Regulatory T Cells in TME
3. Relevance of Quantitative Mathematical Models to Explore Treg Activity in Tumor Growth
Immune Key Points | Treatment Evaluated | Model Structure | |
---|---|---|---|
Cytokines controlling CD8+ |
| IL-2 CD8+ cells | Kronik et al. [29] |
| |||
| |||
Pro-/Antitumor transition |
| DC therapy | Wilson et al. [30] |
| |||
| |||
TGF-β as immunoresistance |
| Cancer Vaccine Anti-TGFβ | Robertson-Tessi et al. [31] |
| |||
M1/M2 macrophages control Tumor growth |
| Simulations No treatment administration | Den Breems et al. [27] |
| |||
Multiple immune cell trafficking across tumor and lymphoid tissues |
| 1: Androgen deprivation 2: Vaccine 3: Anti-IL-2 4: Anti-CD25 5: NK cells 6: anti-CTLA-4 + anti-PD-1 7: Cabozantinib (anti-MDSCs) | Coletti et al. [32] |
| |||
| |||
| |||
GITR agonist inhibits Treg |
| Anti-GITR | Ji et al. [34] |
|
4. New Strategies for Treg Targeting
Mechanism of Action | Target | Treatment | Concomitant Treatment | Tumor Cell Line | Immune Response | Ref. |
Promotes Treg depletion | CD25 (IL-2Rα) | PC61 (mAb) | TLR9 agonist | Brain (E-L4) | ↓ 45% Treg lymph nodes ** 30% Tumor regression ** OS 80% treated mice ** | [44] |
PC61 (mAb) | Anti-CTLA-4 | Melanoma (B16/BL6) | ↓ 64% peripheral Treg in prophylaxis | [45] | ||
CTLA-4 | 4-E03 (mAb) | GM-CSF Anti PD-1 | Cold tumors | ↓ 82% inTreg tumor-infiltrating OS > 80% treated mice | [46] | |
GITR | DTA-1 (mAb) | BMA-Ova (cancer vaccine) | Lung (3LL) | ↑ CD8+ and NK in tumor * ↓ Tumor burden * | [47] | |
DTA-1 (mAb) | -- | Melanoma (B16) | OS 60% treated mice ** ↓ 50% Treg in tumor | [48] | ||
DTA-1 (mAb) | -- | Urothelial (MB49) | ↑ 82% CD8+ in tumor Total tumor regression 100% mice | [49] | ||
OX40 | MEDI6383 (FP) | -- | Melanoma (A375) | ↓ Tumor burden * ↑ Proliferation of CD8+ in tumor | [50] | |
BAT6026 (mAb) | Anti-PD-1 | Colon (MC38) | ↓ Tumor burden * ↑ 40% CD8+ in tumor ** ↓ 15% in Treg tumor-infiltrating | [51] | ||
BGB-A445 (mAb) | -- | Colon (MC38) | ↑ CD8+/Treg ratio in spleen ** ↓ Tumor burden * | [52] | ||
CCR8 | Nb-Fc1B (NB) | Anti-PD-1 | Colon (MC38) Lung (LLCOVA) | ↓ Tumor burden ** OS (MC38) 15% treated mice OS (LLCOVA) 100% treated mice | [53] | |
IgG2a (mAb) | Anti-PD-1 | Solid Tumors | ↓ Tumor burden ↓ 60% Treg in tumor * | [54] |
Mechanism of Action | Target | Treatment | Concomitant Treatment | Clinical Trial | Clinical Outcome | Ref. |
Promotes Treg depletion | CD25 (IL-2Rα) | Daclizumab (mAb) | HLA-A2 (cancer vaccine) | FDA Approved | 1st dose ↓ 70% Treg at weak 11 | [55] |
Basiliximab (mAb) | ACT with CD8+ Cells | FDA Approved | 1st dose ↓ 70% Treg-CD25hi at day 7 * | [56] | ||
Denileukin difitox (FP) | -- | FDA Approved | 1st dose ↓ 25% Treg-CD25hi at day 5 | [57] | ||
LMB-2 (FP) | MART-1 (cancer vaccine) | NCT00080535 | 1st dose ↓ 70% Treg-CD25hi for 7 days * | [58] | ||
RFT5-dgA (Immunotoxin) | -- | NCT00314093 NCT00667017 NCT00586547 | 1st dose ↓ 100% Treg-CD25hi for 7 days | [59] | ||
CCR4 | Mogamulizumab (mAb) | Nivolumab | FDA Approved | Control Disease: 40% treated patients | [60] | |
Promotes Treg inactivation | CTLA-4 | Tremelimumab (mAb) | -- | FDA Approved | Control Disease: 51% treated patients OS increases in 2.8 months | [61] |
Ipilimumab (mAb) | Nivolumab Cisplatin | FDA Approved | 60% Tumor Growth inhibition ** 15% treated patients increase OS | [62] | ||
PD1 | Pembrolizumab (mAb) | Lenvatinib | FDA Approved | ↓ Tumor burden ** 70% treated patients increase OS ** | [63] | |
Nivolumab (mAb) | Fluvestrant Letrozole | NCT01783938 NCT01176461 | Control Disease: 40–55% treated patients | [64] | ||
LAG-3 | Relatlimab (mAb) | Nivolumab | NCT03470922 | 40% treated patients increase OS | [65] | |
Promotes Treg inactivation | GITR | TRX518 (mAb) | Gembicatine Pembrolizumab Nivolumab | NCT01239134 NCT02628574 NCT03861403 | Control disease: 30–50% treated patients OS increases in 2.6 months | [65] |
MK-1248 (mAb) | Pembrolizumab | NCT02553499 | Control disease: 47% treated patients | [66] | ||
MEDI1873 (FP) | -- | NCT02583165 | ↑ IFN-γ and Granzyme Stable disease: 42.5% treated patients | [67] | ||
GWN323 (mAb) | Spartalizumab | NCT02740270 | Control disease: 34% treated patients | [68] | ||
OX40 | Ivuxolimab (mAb) | Utomilumab | NCT02315066 NCT03971409 NCT03390296 | Control disease: 34% treated patients Stable disease for 4–6 months | [69] | |
GSK3174998 (mAb) | Pembrolizumab | NCT02528357 | Control disease: 23% treated patients | [70] | ||
BMS-986178 (mAb) | Nivolumab Ipilimumab | NCT02737475 NCT03831295 NCT02737475 | Control disease: 73% treated patients | [71] | ||
MEDI6469 (mAb) | -- | NCT02559024 NCT02205333 NCT01862900 | 82% treated patients increase OS | [72] | ||
MOXR0916 (mAb) | -- | NCT02410512 NCT02219724 NCT03029832 | Control disease: 33% treated patients | [73] | ||
MEDI0562 (mAb) | Nivolumab Pembrolizumab | NCT03336606 NCT02705482 NCT02318394 NCT03267589 | 47% treated patients increase OS | [74] |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Crispin, J.C.; Tsokos, G.C. Cancer immunosurveillance by CD8 T cells. F1000Research 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Vandsemb, E.N.; Herbst, R.S.; Chen, L. Adaptive immune resistance at the tumour site: Mechanisms and therapeutic opportunities. Nat. Rev. Drug Discov. 2022, 21, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 2001, 411, 380–384. [Google Scholar] [CrossRef]
- Ribas, A.; Butterfield, L.H.; Glaspy, J.A.; Economou, J.S. Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol. 2003, 21, 2415–2432. [Google Scholar] [CrossRef]
- Mason, N.; Dow, S. Cancer immunotherapy. Ther. Strateg. Vet. Oncol. 2023, 305, 121–152. [Google Scholar]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023, 56, 2188–2205. [Google Scholar] [CrossRef] [PubMed]
- Ferris, S.T.; Durai, V.; Wu, R.; Theisen, D.J.; Ward, J.P.; Bern, M.D.; Davidson, J.T.; Bagadia, P.; Liu, T.; Briseño, C.G.; et al. cDC1 prime and are licensed by CD4 T cells to induce antitumour immunity. Nature 2021, 584, 624–629. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef] [PubMed]
- Castellino, F.; Germain, R.N. Cooperation between CD4+ and CD8+ T cells: When, where, and how. Annu. Rev. Immunol. 2006, 24, 519–540. [Google Scholar] [CrossRef]
- Tang, S.; Ning, Q.; Yang, L.; Mo, Z.; Tang, S. Mechanisms of immune escape in the cancer immune cycle. Int. Immunopharmacol. 2020, 86, 106700. [Google Scholar] [CrossRef]
- Sengupta, M.; Pal, R.; Nath, A.; Chakraborty, B.; Singh, L.M.; Das, B.; Ghosh, S.K.; Sengupta, M.; Pal, R.; Nath, A.; et al. Anticancer efficacy of noble metal nanoparticles relies on reprogramming tumor-associated macrophages through redox pathways and pro-inflammatory cytokine cascades. Cell. Mol. Immunol. 2018, 15, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2018, 5, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Oksenych, V. Editorial: Plasticity of immune cells in tumor microenvironment. Front. Oncol. 2023, 13, 1160961. [Google Scholar] [CrossRef]
- Goldberg, M.V.; Drake, C.G. LAG-3 in Cancer Immunotherapy. Curr. Top. Microbiol. Immunol. 2011, 344, 269–278. [Google Scholar] [CrossRef]
- Gouirand, V.; Habrylo, I.; Rosenblum, M.D. Regulatory T Cells and Inflammatory Mediators in Autoimmune Disease. J. Investig. Dermatol. 2022, 142, 774–780. [Google Scholar] [CrossRef]
- Shevach, E.M.; Thornton, A.M. tTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev. 2014, 259, 88–102. [Google Scholar] [CrossRef]
- Yoshie, O. Ccr4 as a therapeutic target for cancer immunotherapy. Cancers 2021, 13, 5542. [Google Scholar] [CrossRef]
- Yoshie, O.; Matsushima, K. CCR4 and its ligands: From bench to bedside. Int. Immunol. 2015, 27, 11–20. [Google Scholar] [CrossRef]
- Whiteside, S.K.; Grant, F.M.; Gyori, D.S.; Conti, A.G.; Imianowski, C.J.; Kuo, P.; Nasrallah, R.; Sadiyah, F.; Lira, S.A.; Tacke, F.; et al. CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunology 2021, 163, 512–520. [Google Scholar] [CrossRef]
- Noyes, D.; Bag, A.; Oseni, S.; Semidey-Hurtado, J.; Cen, L.; Sarnaik, A.A.; Sondak, V.K.; Adeegbe, D. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting clonal diversity in tumor-infiltrating CD8+ T cells. J. Immunother. Cancer 2022, 10, e004605. [Google Scholar] [CrossRef] [PubMed]
- Peskov, K.; Azarov, I.; Chu, L.; Voronova, V.; Kosinsky, Y.; Helmlinger, G. Quantitative mechanistic modeling in support of pharmacological therapeutics development in immuno-oncology. Front. Immunol. 2019, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, M.; Magni, P.; Cammia, C.; De Nicolao, G.; Croci, V.; Pesenti, E.; Germani, M.; Poggesi, I.; Rocchetti, M. Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents. Cancer Res. 2004, 64, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Parra-Guillen, Z.P.; Berraondo, P.; Grenier, E.; Ribba, B.; Troconiz, I.F. Mathematical model approach to describe tumour response in mice after vaccine administration and its applicability to immune-stimulatory cytokine-based strategies. AAPS J. 2013, 15, 797–807. [Google Scholar] [CrossRef]
- Bulliard, Y.; Jolicoeur, R.; Windman, M.; Rue, S.M.; Ettenberg, S.; Knee, D.A.; Wilson, N.S.; Dranoff, G.; Brogdon, J.L. Activating fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 2013, 210, 1685–1693. [Google Scholar] [CrossRef]
- Chaudhary, B.; Elkord, E. Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Vaccines 2016, 4, 28. [Google Scholar] [CrossRef]
- den Breems, N.Y.; Eftimie, R. The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes. J. Theor. Biol. 2016, 390, 23–39. [Google Scholar] [CrossRef]
- Arabameri, A.; Asemani, D.; Hadjati, J. A structural methodology for modeling immune-tumor interactions including pro- and anti-tumor factors for clinical applications. Math. Biosci. 2018, 304, 48–61. [Google Scholar] [CrossRef]
- Kronik, N.; Kogan, Y.; Schlegel, P.G.; Wölflz, M. Improving T-cell immunotherapy for melanoma through a mathematically motivated strategy: Efficacy in numbers. J. Immunother. 2012, 35, 116–124. [Google Scholar] [CrossRef]
- Wilson, S.; Levy, D. A Mathematical Model of the Enhancement of Tumor Vaccine Efficacy by Immunotherapy. Bull. Math. Biol. 2012, 74, 1485–1500. [Google Scholar] [CrossRef]
- Robertson-Tessi, M.; El-Kareh, A.; Goriely, A. A mathematical model of tumor-immune interactions. J. Theor. Biol. 2012, 294, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Coletti, R.; Leonardelli, L.; Parolo, S.; Marchetti, L. A QSP model of prostate cancer immunotherapy to identify effective combination therapies. Sci. Rep. 2020, 10, 9063. [Google Scholar] [CrossRef] [PubMed]
- Movassaghi, M.; Chung, R.; Anderson, C.B.; Stein, M.; Saenger, Y.; Faiena, I. Overcoming immune resistance in prostate cancer: Challenges and advances. Cancers 2021, 13, 4757. [Google Scholar] [CrossRef]
- Ji, Y.; Madrasi, K.; Knee, D.A.; Gruenbaum, L.; Apgar, J.F.; Burke, J.M.; Gomes, B. Quantitative systems pharmacology model of GITR-mediated T cell dynamics in tumor microenvironment. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 413–424. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, Y.; Shu, P.; Lei, Y.; Li, X.; Wang, Y. Targeting tumor-infiltrating Tregs for improved antitumor responses. Front. Immunol. 2024, 15, 1325946. [Google Scholar] [CrossRef] [PubMed]
- Anvar, M.T.; Rashidan, K.; Arsam, N.; Rasouli-Saravani, A.; Yadegari, H.; Ahmadi, A.; Asgari, Z.; Vanan, A.G.; Ghorbaninezhad, F.; Tahmasebi, S. Th17 cell function in cancers: Immunosuppressive agents or anti-tumor allies? Cancer Cell Int. 2024, 24, 355. [Google Scholar] [CrossRef] [PubMed]
- Moussa, P. Transcriptomic analysis of GITR and GITR ligand reveals cancer immune heterogeneity with implications for GITR targeting. Am. J. Cancer Res. 2024, 14, 1634–1648. [Google Scholar] [CrossRef]
- Ippolito, A.; Wang, H.; Zhang, Y.; Vakil, V.; Popel, A.S. Virtual clinical trials via a QSP immuno-oncology model to simulate the response to a conditionally activated PD-L1 targeting antibody in NSCLC. J. Pharmacokinet. Pharmacodyn. 2024. [Google Scholar] [CrossRef]
- Anbari, S.; Wang, H.; Arulraj, T.; Nickaeen, M.; Pilvankar, M.; Wang, J.; Hansel, S.; Popel, A.S. Identifying biomarkers for treatment of uveal melanoma by T cell engager using a QSP model. NPJ Syst. Biol. Appl. 2024, 10, 108. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, C.; Pan, F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front. Immunol. 2021, 12, 626172. [Google Scholar] [CrossRef]
- Serrano, A.; Casares, N.; Trocóniz, I.F.; Lozano, T.; Lasarte, J.J.; Zalba, S.; Garrido, M.J. Foxp3 inhibitory peptide encapsulated in a novel CD25-targeted nanoliposome promotes efficient tumor regression in mice. Acta Pharmacol. Sin. 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Gholami, M.H.; Ang, H.L.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Hushmandi, K.; Delfi, M.; Khan, H.; Ashrafizadeh, M.; et al. Pre-clinical and clinical applications of small interfering RNAs (siRNA) and co-delivery systems for pancreatic cancer therapy. Cells 2021, 10, 3348. [Google Scholar] [CrossRef]
- Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Jarry, U.; Donnou, S.; Vincent, M.; Jeannin, P.; Pineau, L.; Fremaux, I.; Delneste, Y.; Couez, D. Treg depletion followed by intracerebral CpG-ODN injection induce brain tumor rejection. J. Neuroimmunol. 2014, 267, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Quezada, S.A.; Peggs, K.S.; Simpson, T.R.; Shen, Y.; Littman, D.R.; Allison, J.P. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 2008, 205, 2125–2138. [Google Scholar] [CrossRef]
- Semmrich, M.; Marchand, J.B.; Fend, L.; Rehn, M.; Remy, C.; Holmkvist, P.; Silvestre, N.; Svensson, C.; Kleinpeter, P.; Deforges, J.; et al. Vectorized Treg-depleting αcTLA-4 elicits antigen cross-presentation and CD8 + T cell immunity to reject cold’ tumors. J. Immunother. Cancer 2022, 10, e003488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.X.; Davoodi, M.; Srivastava, M.K.; Kachroo, P.; Lee, J.M.; John, M.S.; Harris-White, M.; Huang, M.; Strieter, R.M.; Dubinett, S.; et al. GITR agonist enhances vaccination responses in lung cancer. Oncoimmunology 2015, 4, e992237. [Google Scholar] [CrossRef]
- Cohen, A.D.; Schaer, D.A.; Liu, C.; Li, Y.; Hirschhorn-Cymmerman, D.; Kim, S.C.; Diab, A.; Rizzuto, G.; Duan, F.; Perales, M.A.; et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS ONE 2010, 5, e10436. [Google Scholar] [CrossRef]
- Coe, D.; Begom, S.; Addey, C.; White, M.; Dyson, J.; Chai, J.G. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol. Immunother. 2010, 59, 1367–1377. [Google Scholar] [CrossRef]
- Oberst, M.D.; Augé, C.; Morris, C.; Kentner, S.; Mulgrew, K.; McGlinchey, K.; Hair, J.; Hanabuchi, S.; Du, Q.; Damschroder, M.; et al. Potent Immune Modulation by MEDI6383, an Engineered Human OX40 Ligand IgG4P Fc Fusion Protein. Mol. Cancer Ther. 2018, 17, 1024–1038. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, D.; Liu, X.; Mei, X.; Zhou, C.; Xiao, C.; Qin, C.; Yue, H.; Lin, J.; Liu, C.; et al. BAT6026, a novel anti-OX40 antibody with enhanced antibody dependent cellular cytotoxicity effect for cancer immunotherapy. Front. Oncol. 2023, 13, 1211759. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, T.; Deng, M.; Jin, W.; Hong, Y.; Chen, X.; Chen, X.; Wang, J.; Hou, H.; Gao, Y.; et al. BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models. Front. Med. 2023, 17, 1170–1185. [Google Scholar] [CrossRef]
- Van Damme, H.; Dombrecht, B.; Kiss, M.; Roose, H.; Allen, E.; Van Overmeire, E.; Kancheva, D.; Martens, L.; Murgaski, A.; Bardet, P.M.R.; et al. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy. J. Immunother. Cancer 2021, 9, e001749. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.R.; McDonald, B.R.; Mesko, P.B.; Siemers, N.O.; Singh, P.B.; Selby, M.; Sproul, T.W.; Korman, A.J.; Vlach, L.M.; Houser, J.; et al. Fc-optimized anti-CCR8 antibody depletes regulatory t cells in human tumor models. Cancer Res. 2021, 81, 2983–2994. [Google Scholar] [CrossRef]
- Rech, A.J.; Vonderheide, R.H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N. Y. Acad. Sci. 2009, 1174, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Okita, R.; Yamaguchi, Y.; Ohara, M.; Hironaka, K.; Okawaki, M.; Nagamine, I.; Ikeda, T.; Emi, A.; Hihara, J.; Okada, M. Targeting of CD4+CD25high cells while preserving CD4+CD25low cells with low-dose chimeric anti-CD25 antibody in adoptive immunotherapy of cancer. Int. J. Oncol. 2009, 34, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Litzinger, M.T.; Fernando, R.; Curiel, T.J.; Grosenbach, D.W.; Schlom, J.; Palena, C. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 2007, 110, 3192–3201. [Google Scholar] [CrossRef]
- Powell, D.J.; Felipe-Silva, A.; Merino, M.J.; Ahmadzadeh, M.; Allen, T.; Levy, C.; White, D.E.; Mavroukakis, S.; Kreitman, R.J.; Rosenberg, S.A.; et al. Administration of a CD25-Directed Immunotoxin, LMB-2, to Patients with Metastatic Melanoma Induces a Selective Partial Reduction in Regulatory T Cells In Vivo. J. Immunol. 2007, 179, 4919–4928. [Google Scholar] [CrossRef]
- Powell, D.J.; Attia, P.; Ghetie, V.; Schindlerv, J.; Vitetta, E.S.; Rosenberg, S.A. Partial reduction of human FOXP3+ CD4 T cells in vivo after CD25-directed recombinant immunotoxin administration. J. Immunother. 2008, 31, 189–198. [Google Scholar] [CrossRef]
- Hong, D.S.; Rixe, O.; Chiu, V.K.; Forde, P.M.; Dragovich, T.; Lou, Y.; Nayak-Kapoor, A.; Leidner, R.; Atkins, J.N.; Collaku, A.; et al. Mogamulizumab in Combination with Nivolumab in a Phase I/II Study of Patients with Locally Advanced or Metastatic Solid Tumors. Clin. Cancer Res. 2022, 28, 479–488. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Lorigan, P.; Hersey, P.; Hauschild, A.; Robert, C.; McDermott, D.; Marshall, M.A.; Gomez-Navarro, J.; Liang, J.Q.; Bulanhagui, C.A. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 2010, 16, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.; Zhang, L.; Wang, X.; Li, J.; Li, F.; Ma, Y.; Zhang, Q. Effects of Nivolumab and Ipilimumab on the suppression of cisplatin resistant small cell lung cancer cells. Investig. New Drugs 2022, 40, 709–717. [Google Scholar] [CrossRef]
- Yi, C.; Chen, L.; Ling, Z.; Liu, L.; Shao, W.; Zhang, R.; Lin, J.; Zhang, J.; Zhu, W.; Jia, H.; et al. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti–Programmed Cell Death-1 in HCC. Hepatology 2021, 74, 2544–2560. [Google Scholar] [CrossRef]
- Koh, J.; Hur, J.Y.; Lee, K.Y.; Kim, M.S.; Heo, J.Y.; Ku, B.M.; Sun, J.-M.; Lee, S.-H.; Ahn, J.S.; Park, K.; et al. Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci. Rep. 2020, 10, 18994. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Zappasodi, R.; Wang, H.; Naik, G.S.; Sato, T.; Bauer, T.; Bajor, D.; Rixe, O.; Newman, W.; Qi, J.; et al. Phase IB Study of GITR Agonist Antibody TRX518 Singly and in Combination with Gemcitabine, Pembrolizumab, or Nivolumab in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2022, 28, 3990–4002. [Google Scholar] [CrossRef]
- Geva, R.; Voskoboynik, M.; Dobrenkov, K.; Mayawala, K.; Gwo, J.; Wnek, R.; Chartash, E.; Long, G.V. First-in-human phase 1 study of MK-1248, an anti–glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 2020, 126, 4926–4935. [Google Scholar] [CrossRef]
- Balmanoukian, A.S.; Infante, J.R.; Aljumaily, R.; Naing, A.; Chintakuntlawar, A.V.; Rizvi, N.A.; Ross, H.J.; Gordon, M.; Mallinder, P.R.; Elgeioushi, N.; et al. Safety and clinical activity of MEDI1873, a novel GITR agonist, in advanced solid tumors. Clin. Cancer Res. 2020, 26, 6196–6203. [Google Scholar] [CrossRef] [PubMed]
- Piha-Paul, S.A.; Geva, R.; Tan, T.J.; Lim, D.W.; Hierro, C.; Doi, T.; Rahma, O.; Lesokhin, A.; Luke, J.J.; Otero, J.; et al. First-in-human phase I/Ib open-label dose-escalation study of GWN323 (anti-GITR) as a single agent and in combination with spartalizumab (anti-PD-1) in patients with advanced solid tumors and lymphomas. J. Immunother. Cancer 2021, 9, e002863. [Google Scholar] [CrossRef]
- Hamid, O.; Chiappori, A.A.; Thompson, J.A.; Doi, T.; Hu-Lieskovan, S.; Eskens, F.A.L.M.; Ros, W.; Diab, A.; Spano, J.-P.; Rizvi, N.A.; et al. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J. Immunother. Cancer 2022, 10, e005471. [Google Scholar] [CrossRef]
- Postel-Vinay, S.; Lam, V.K.; Ros, W.; Bauer, T.M.; Hansen, A.R.; Cho, D.C.; Hodi, F.S.; Schellens, J.H.M.; Litton, J.K.; Aspeslagh, S.; et al. First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). J. Immunother. Cancer 2023, 11, e005301. [Google Scholar] [CrossRef]
- Gutierrez, M.; Moreno, V.; Heinhuis, K.M.; Olszanski, A.J.; Spreafico, A.; Ong, M.; Chu, Q.; Carvajal, R.D.; Trigo, J.; Ochoa de Olza, M.; et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin. Cancer Res. 2021, 27, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Duhen, R.; Ballesteros-Merino, C.; Frye, A.K.; Tran, E.; Rajamanickam, V.; Chang, S.-C.; Koguchi, Y.; Bifulco, C.B.; Bernard, B.; Leidner, R.S.; et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun. 2021, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Burris, H.A.; Luken, M.J.d.M.; Pishvaian, M.J.; Bang, Y.-J.; Gordon, M.; Awada, A.; Camidge, D.R.; Hodi, F.S.; McArthur, G.A.; et al. First-In-Human Phase I Study of the OX40 Agonist MOXR0916 in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2022, 28, 3452–3463. [Google Scholar] [CrossRef]
- Glisson, B.S.; Leidner, R.S.; Ferris, R.L.; Powderly, J.; Rizvi, N.A.; Keam, B.; Schneider, R.; Goel, S.; Ohr, J.P.; Burton, J.; et al. Safety and clinical activity of MEDI0562, a humanized OX40 agonist monoclonal antibody, in adult patients with advanced solid tumors. Clin. Cancer Res. 2020, 26, 5358–5367. [Google Scholar] [CrossRef]
- Liu, W.; Putnam, A.L.; Zhou, X.-Y.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; de St. Groth, B.F.; et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006, 203, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Burzyn, D.; Kuswanto, W.; Kolodin, D.; Shadrach, J.L.; Cerletti, M.; Jang, Y.; Sefik, E.; Tan, T.G.; Wagers, A.J.; Benoist, C.; et al. A Special Population of Regulatory T Cells Potentiates Muscle Repair. Bone. Cell 2013, 155, 1282–1295. [Google Scholar] [CrossRef]
- Feuerer, M.; Herrero, L.; Cipolletta, D.; Naaz, A.; Wong, J.; Nayer, A.; Lee, J.; Goldfine, A.B.; Benoist, C.; Mathis, D.; et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15, 930–939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, A.; Zalba, S.; Lasarte, J.J.; Troconiz, I.F.; Riva, N.; Garrido, M.J. Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology. Pharmaceutics 2024, 16, 1461. https://doi.org/10.3390/pharmaceutics16111461
Serrano A, Zalba S, Lasarte JJ, Troconiz IF, Riva N, Garrido MJ. Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology. Pharmaceutics. 2024; 16(11):1461. https://doi.org/10.3390/pharmaceutics16111461
Chicago/Turabian StyleSerrano, Alejandro, Sara Zalba, Juan Jose Lasarte, Iñaki F. Troconiz, Natalia Riva, and Maria J. Garrido. 2024. "Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology" Pharmaceutics 16, no. 11: 1461. https://doi.org/10.3390/pharmaceutics16111461
APA StyleSerrano, A., Zalba, S., Lasarte, J. J., Troconiz, I. F., Riva, N., & Garrido, M. J. (2024). Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology. Pharmaceutics, 16(11), 1461. https://doi.org/10.3390/pharmaceutics16111461