Nanotechnology in Pain Management
Abstract
:1. Introduction
2. Role of Nanotechnology
3. Physiology of Pain
4. Review of Common Analgesics
4.1. NSAIDS
4.2. Acetaminophen
4.3. Gabapentinoids
4.4. Antidepressants
4.5. Anticonvulsants
4.6. Local Anesthetics
4.7. Muscle Relaxants
5. Why Nanotechnology
6. Current Nanoparticulate Drug Delivery Systems
6.1. Nanotechnology-Based Transporters (Liposomes)
6.2. Polymeric Nanoparticles
6.3. Nanotechology-Based Devices and Patches
6.4. Enhanced Drug Targeting
7. Patents Update
8. Clinical Trials Update
9. Future Ongoing Work
9.1. Detection of Pain Biomarkers
9.2. Vectors for Delivery of Gene Therapy
9.2.1. Viral Vectors
9.2.2. Non-Viral Vectors
9.3. CRISPR-Cas
9.4. Scavengers
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yong, R.J.; Mullins, P.M.; Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain 2022, 163, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Nahin, R.L.; Feinberg, T.; Kapos, F.P.; Terman, G.W. Estimated Rates of Incident and Persistent Chronic Pain Among US Adults 2019-2020. JAMA Netw. Open 2023, 6, 2313563. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hillner, B.E. The Cost of Pain. JAMA Netw. Open 2019, 2, e191532. [Google Scholar] [CrossRef] [PubMed]
- Boysen, P.G.; Patel, J.H.; King, A.N. Brief History of Opioids in Perioperative and Periprocedural Medicine to Inform the Future. Ochsner J. 2023, 2, 43–49. [Google Scholar] [CrossRef]
- Furlan, A.D.; Sandoval, J.A.; Mailis-Gagnon, A.; Tunks, E. Opioids for chronic noncancer pain: A meta-analysis of effectiveness and side effects. CMAJ 2006, 174, 1589–1594. [Google Scholar] [CrossRef]
- Hebert, A.H.; Hill, A.L. Impact of opioid overdoses on US life expectancy and years of life lost, by demographic group and stimulant co-involvement: A mortality data analysis from 2019 to 2022. Lancet Reg. Health Am. 2024, 36, 100813. [Google Scholar] [CrossRef]
- Chou, R.; Turner, J.A.; Devine, E.B.; Hansen, R.N.; Sullivan, S.D.; Blazina, I.; Dana, T.; Bougatsos, C.; Deyo, R.A. The effectiveness and risks of long-term opioid therapy for chronic pain: A systematic review for a National Institutes of Health Pathways to Prevention Workshop. Ann. Intern. Med. 2015, 162, 276–286. [Google Scholar] [CrossRef]
- Bhansali, D.; Teng, S.L.; Lee, C.S.; Schmidt, B.L.; Bunnett, N.W.; Leong, K.W. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. Nano. Today 2021, 39, 101223. [Google Scholar] [CrossRef]
- Moraczewski, J.; Awosika, A.O.; Aedma, K.K. Tricyclic Antidepressants. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557791/ (accessed on 15 September 2024).
- Chelly, J.E.; Goel, S.K.; Kearns, J.; Kopac, O.; Sadhasivam, S. Nanotechnology for Pain Management. J. Clin. Med. 2024, 13, 2611. [Google Scholar] [CrossRef]
- Fitzpatrick, F.A. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef]
- Chelly, J.E.; Klatt, B.A.; Groff, Y.; O’Malley, M.; Lin, H.S.; Sadhasivam, S. Role of the NeuroCuple Device for the Postoperative Pain Management of Patients Undergoing Unilateral Primary Total Knee and Hip Arthroplasty: A Pilot Prospective, Randomized, Open-Label Study. J. Clin. Med. 2023, 12, 7394. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, H.; Wijeysundera, D.N.; Passarella, M.A.; Neuman, M.D. Opioids Prescribed After Low-Risk Surgical Procedures in the United States, 2004–2012. JAMA 2016, 315, 654–657. [Google Scholar] [CrossRef]
- Barnes, P.M.; Bloom, B.; Nahin, R.L. Complementary and alternative medicine use among adults and children: United States, 2007. Natl. Health Stat. Rep. 2008, 12, 1–23. Available online: https://pubmed.ncbi.nlm.nih.gov/19361005/ (accessed on 15 September 2024).
- Vickers, A.J.; Vertosick, E.A.; Lewith, G.; MacPherson, H.; Foster, N.E.; Sherman, K.J.; Irnich, D.; Witt, C.M.; Linde, K.; Acupuncture Trialists, C. Acupuncture for Chronic Pain: Update of an Individual Patient Data Meta-Analysis. J. Pain 2018, 19, 455–474. [Google Scholar] [CrossRef] [PubMed]
- Langlois, P.; Perrochon, A.; David, R.; Rainville, P.; Wood, C.; Vanhaudenhuyse, A.; Pageaux, B.; Ounajim, A.; Lavalliere, M.; Debarnot, U.; et al. Hypnosis to manage musculoskeletal and neuropathic chronic pain: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 135, 104591. [Google Scholar] [CrossRef]
- Johnson, M.I.; Paley, C.A.; Jones, G.; Mulvey, M.R.; Wittkopf, P.G. Efficacy and safety of transcutaneous electrical nerve stimulation (TENS) for acute and chronic pain in adults: A systematic review and meta-analysis of 381 studies (the meta-TENS study). BMJ Open 2022, 12, e051073. [Google Scholar] [CrossRef]
- da Silva Menezes, F.; Chaves, E.d.C.L.; Mantuani, A.P.A.; de Sousa Marino, L.; Alcantara, M.A.R.; Nassif, M.S.; de Castro Moura, C.; Carvalho, L.C.; Iunes, D.H. Effects of low-power laser auriculotherapy on chronic spinal pain: Randomized clinical trial. Complement. Ther. Clin. Pract. 2022, 48, 101578. [Google Scholar] [CrossRef]
- Skelly, A.C.; Chou, R.; Dettori, J.R.; Turner, J.A.; Friedly, J.L.; Rundell, S.D.; Fu, R.; Brodt, E.D.; Wasson, N.; Kantner, S. Noninvasive Nonpharmacological Treatment for Chronic Pain: A Systematic Review Update; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556229/ (accessed on 15 September 2024).
- Bleck, R.R.; Gold, M.A.; Westhoff, C.L. Training hour requirements to provide acupuncture in the United States. Acupunct. Med. 2021, 39, 327–333. [Google Scholar] [CrossRef]
- Shen, H.; Hu, X.; Szymusiak, M.; Wang, Z.J.; Liu, Y. Orally administered nanocurcumin to attenuate morphine tolerance: Comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. Mol. Pharm. 2013, 10, 4546–4551. [Google Scholar] [CrossRef]
- Chen, J.; Kandle, P.; Murray, I.; Fitzgerald, L.; Sehdev, J. Physiology, Pain. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK539789/ (accessed on 15 September 2024).
- Afridi, B.; Khan, H.; Akkol, E.K.; Aschner, M. Pain Perception and Management: Where do We Stand? Curr. Mol. Pharmacol. 2021, 14, 678–688. [Google Scholar] [CrossRef]
- Ellison, D.L. Physiology of Pain. Crit. Care Nurs. Clin. N. Am. 2017, 29, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R. Setting up for the block: The mechanism underlying lidocaine’s use-dependent inhibition of sodium channels. J. Physiol. 2007, 582, 11. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.I.; Neumeister, M.W. Pain: Pathways and Physiology. Clin. Plast. Surg. 2020, 47, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Calvillo, E.R.; Flaskerud, J.H. Review of literature on culture and pain of adults with focus on Mexican-Americans. J. Transcult. Nurs. 1991, 2, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Mokhtar, M.; Singh, P. Neuroanatomy, periaqueductal gray. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020; Available online: https://www.ncbi.nlm.nih.gov/books/NBK554391/ (accessed on 15 September 2024).
- Ayala, I.; Martos, N.F.; Silvan, G.; Gutierrez-Panizo, C.; Clavel, J.G.; Illera, J.C. Cortisol, adrenocorticotropic hormone, serotonin, adrenaline and noradrenaline serum concentrations in relation to disease and stress in the horse. Res. Vet. Sci. 2012, 93, 103–107. [Google Scholar] [CrossRef]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef]
- Ong, C.K.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res. 2007, 5, 19–34. [Google Scholar] [CrossRef]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal anti-inflammatory drugs (NSAIDs). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2019; Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742/ (accessed on 15 September 2024).
- Ohashi, N.; Kohno, T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front. Pharmacol. 2020, 11, 580289. [Google Scholar] [CrossRef]
- Yasaei, R.; Katta, S.; Patel, P.; Saadabadi, A. Gabapentin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK493228/ (accessed on 15 September 2024).
- Sindrup, S.H.; Otto, M.; Finnerup, N.B.; Jensen, T.S. Antidepressants in the treatment of neuropathic pain. Basic. Clin. Pharmacol. Toxicol. 2005, 96, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.H.; Khan, A.A.G.; Khalid, I.; Ishfaq, M.; Javali, M.A.; Baig, F.A.H.; Kota, M.Z.; Khader, M.A.; Hameed, M.S.; Shaik, S.; et al. Therapeutic Approach for Trigeminal Neuralgia: A Systematic Review. Biomedicines 2023, 11, 2606. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, K.R.; Hanenbaum, C.L.; Carbone, E.J.; Lo, K.W.; Laurencin, C.T.; Walker, J.; Nair, L.S. Pain management via local anesthetics and responsive hydrogels. Ther. Deliv. 2015, 6, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Sansone, R.A.; Sansone, L.A. Pain, pain, go away: Antidepressants and pain management. Psychiatry 2008, 5, 16–19. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2729622/ (accessed on 15 September 2024).
- Tompkins, D.M.; DiPasquale, A.; Segovia, M.; Cohn, S.M. Review of Intravenous Acetaminophen for Analgesia in the Postoperative Setting. Am. Surg. 2021, 87, 1809–1822. [Google Scholar] [CrossRef]
- Anekar, A.A.; Hendrix, J.M.; Cascella, M. WHO Analgesic Ladder. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK554435/ (accessed on 15 September 2024).
- Gerriets, V.; Anderson, J.; Patel, P.; Nappe, T.M. Acetaminophen. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK482369/ (accessed on 15 September 2024).
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tolle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef]
- Davari, M.; Amani, B.; Amani, B.; Khanijahani, A.; Akbarzadeh, A.; Shabestan, R. Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: A systematic review and meta-analysis. Korean J. Pain. 2020, 33, 3–12. [Google Scholar] [CrossRef]
- Ferguson, J.M. SSRI Antidepressant Medications: Adverse Effects and Tolerability. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 22–27. [Google Scholar] [CrossRef]
- Tremont-Lukats, I.W.; Megeff, C.; Backonja, M.M. Anticonvulsants for neuropathic pain syndromes: Mechanisms of action and place in therapy. Drugs 2000, 60, 1029–1052. [Google Scholar] [CrossRef]
- Betchel, N.T.; Fariba, K.A.; Saadabadi, A. Lamotrigine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK470442/ (accessed on 15 September 2024).
- Wiffen, P.J.; Derry, S.; Moore, R.A. Lamotrigine for Chronic Neuropathic Pain and Fibromyalgia in Adults. Cochrane Database Syst. Rev. 2013, 2019, CD006044. [Google Scholar] [CrossRef]
- Beecham, G.; Nessel, T.; Goyal, A. Lidocaine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022; Available online: https://www.ncbi.nlm.nih.gov/books/NBK539881/ (accessed on 15 September 2024).
- Mahajan, A.; Derian, A. Local anesthetic toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK499964/ (accessed on 15 September 2024).
- Chang, W.J. Muscle Relaxants for Acute and Chronic Pain. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Ghanavatian, S.; Derian, A. Baclofen. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK526037/ (accessed on 15 September 2024).
- Cashin, A.G.; Folly, T.; Bagg, M.K.; Wewege, M.A.; Jones, M.D.; Ferraro, M.C.; Leake, H.B.; Rizzo, R.R.N.; Schabrun, S.M.; Gustin, S.M.; et al. Efficacy, acceptability, and safety of muscle relaxants for adults with non-specific low back pain: Systematic review and meta-analysis. BMJ 2021, 374, 1446. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Kahwaji, C.I. Cyclobenzaprine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2018; Available online: https://www.ncbi.nlm.nih.gov/books/NBK513362/ (accessed on 15 September 2024).
- Zhu, Y.; Yao, Y.; Kuang, R.; Chen, Z.; Du, Z.; Qu, S. Global research trends of nanotechnology for pain management. Front. Bioeng. Biotechnol. 2023, 11, 1249667. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Ogden, K.K.; Chen, W.; Swanger, S.A.; McDaniel, M.J.; Fan, L.Z.; Hu, C.; Tankovic, A.; Kusumoto, H.; Kosobucki, G.J.; Schulien, A.J.; et al. Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet. 2017, 13, e1006536. [Google Scholar] [CrossRef]
- Gu, Y.H.; Yan, X.B.; Huang, D.; Han, R.; Wu, L.X. NR2B-siRNA Mediated by Hydroxyapatite Nanoparticles Relieves for Malin-Induced Pain of Mice. AMR 2012, 343–344, 926–932. [Google Scholar] [CrossRef]
- Noordin, M.I. Advance delivery system dosage form for analgesic, their rationale, and specialty. In Pain Relief—From Analgesics to Alternative Therapies; Maldonado, C., Ed.; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Kobarfard, F.; Javed, Z.; Rajabi, S.; Khan, K.; Ashfaq, H.A.; Ahmad, T.; Pezzani, R.; et al. Multivesicular Liposome (Depofoam) in Human Diseases. Iran. J. Pharm. Res. 2020, 19, 9–21. [Google Scholar] [CrossRef]
- Smith, H.S. Opioid metabolism. Mayo Clin. Proc. 2009, 84, 613–624. [Google Scholar] [CrossRef]
- Ventola, C.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T 2017, 42, 742–755. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5720487/ (accessed on 15 September 2024).
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano. 2009, 3, 16–20. [Google Scholar] [CrossRef]
- Xu, C.; Lei, C.; Yu, C. Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Front. Chem. 2019, 7, 290. [Google Scholar] [CrossRef] [PubMed]
- Koudelka, S.; Turanek, J. Liposomal paclitaxel formulations. JCR 2012, 163, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Caraglia, M.; Luongo, L.; Salzano, G.; Zappavigna, S.; Marra, M.; Guida, F.; Lusa, S.; Giordano, C.; De Novellis, V.; Rossi, F.; et al. Stealth liposomes encapsulating zoledronic acid: A new opportunity to treat neuropathic pain. Mol. Pharm. 2013, 10, 1111–1118. [Google Scholar] [CrossRef]
- Smith, L.J.; Valenzuela, J.R.; Krugner-Higby, L.A.; Brown, C.; Heath, T.D. A single dose of liposome-encapsulated hydromorphone provides extended analgesia in a rat model of neuropathic pain. Comp. Med. 2006, 56, 487–492. Available online: https://pubmed.ncbi.nlm.nih.gov/17219779/ (accessed on 15 September 2024).
- Viscusi, E.R.; Martin, G.; Hartrick, C.T.; Singla, N.; Manvelian, G.; the EREM Study Group. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. Anesthesiology 2005, 102, 1014–1122. [Google Scholar] [CrossRef]
- Viscusi, E.; Gimbel, J.S.; Pollack, R.A.; Hu, J.; Lee, G.C. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in bunionectomy: Phase III results from the randomized EPOCH 1 study. Reg. Anesth. Pain. Med. 2019, 44, 700–706. [Google Scholar] [CrossRef]
- Viscusi, E.; Minkowitz, H.; Winkle, P.; Ramamoorthy, S.; Hu, J.; Singla, N. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in herniorrhaphy: Results from the phase 3 EPOCH 2 study. Hernia 2019, 23, 1071–1080. [Google Scholar] [CrossRef]
- Zielinska, A.; Costa, B.; Ferreira, M.V.; Migueis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; et al. Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance. Int. J. Environ. Res. Public. Health 2020, 17, 4657. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Preat, V. PLGA-based nanoparticles: An overview of biomedical applications. JCR 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Garcia, X.; Escribano, E.; Domenech, J.; Queralt, J.; Freixes, J. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J. Nanoparticle Res. 2011, 13, 2213–2223. [Google Scholar] [CrossRef]
- Berrocoso, E.; Rey-Brea, R.; Fernandez-Arevalo, M.; Mico, J.A.; Martin-Banderas, L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine 2017, 13, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Yin, Y.; Park, H.; Park, S.; Triantafillu, U.L.; Kim, Y.; Kim, S.R.; Lee, S.Y.; Kim, D.K.; Hong, J.; et al. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine 2018, 13, 1607–1621. [Google Scholar] [CrossRef]
- Lalani, J.; Patil, S.; Kolate, A.; Lalani, R.; Misra, A. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS PharmSciTech 2015, 16, 413–427. [Google Scholar] [CrossRef]
- Nakatani, Y.; Masuko, H.; Amano, T. Effect of lamotrigine on Na(v)1.4 voltage-gated sodium channels. J. Pharmacol. Sci. 2013, 123, 203–206. [Google Scholar] [CrossRef]
- Portenoy, R.K.; Lesage, P. Management of cancer pain. Lancet 1999, 353, 1695–1700. [Google Scholar] [CrossRef]
- Gdowski, A.S.; Ranjan, A.; Sarker, M.R.; Vishwanatha, J.K. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine 2017, 12, 2083–2095. [Google Scholar] [CrossRef]
- Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J. Nanomater. 2019, 2019, 3702518. [Google Scholar] [CrossRef]
- Zhou, S.A.; Uesaka, M. Bioelectrodynamics in living organisms. Int. J. Eng. Sci. 2006, 44, 67–92. [Google Scholar] [CrossRef]
- Al-Waeli, H.; Nicolau, B.; Stone, L.; Abu Nada, L.; Gao, Q.; Abdallah, M.N.; Abdulkader, E.; Suzuki, M.; Mansour, A.; Al Subaie, A.; et al. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci. Rep. 2020, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, G.; Arruebo, M. Light-triggered nanoparticles for pain management. Expert. Opin. Drug Deliv. 2020, 17, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Rwei, A.Y.; Lee, J.J.; Zhan, C.; Liu, Q.; Ok, M.T.; Shankarappa, S.A.; Langer, R.; Kohane, D.S. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl. Acad. Sci. USA 2015, 112, 15719–15724. [Google Scholar] [CrossRef]
- de Solorzano, I.O.; Alejo, T.; Abad, M.; Bueno-Alejo, C.; Mendoza, G.; Andreu, V.; Irusta, S.; Sebastian, V.; Arruebo, M. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J. Colloid. Interface Sci. 2019, 533, 171–181. [Google Scholar] [CrossRef]
- Chen, M.C.; Chan, H.A.; Ling, M.H.; Su, L.C. Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. J. Mater. Chem. B 2017, 5, 496–503. [Google Scholar] [CrossRef]
- Rwei, A.Y.; Paris, J.L.; Wang, B.; Wang, W.; Axon, C.D.; Vallet-Regi, M.; Langer, R.; Kohane, D.S. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng. 2017, 1, 644–653. [Google Scholar] [CrossRef]
- Kim, G.W.; Kang, C.; Oh, Y.B.; Ko, M.H.; Seo, J.H.; Lee, D. Ultrasonographic Imaging and Anti-inflammatory Therapy of Muscle and Tendon Injuries Using Polymer Nanoparticles. Theranostics 2017, 7, 2463–2476. [Google Scholar] [CrossRef]
- Jung, E.; Noh, J.; Kang, C.; Yoo, D.; Song, C.; Lee, D. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using HO-Activated bubble generating anti-inflammatory polymer particles. Biomaterials 2018, 179, 175–185. [Google Scholar] [CrossRef]
- He, Y.; Qin, L.; Huang, Y.; Ma, C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res. Lett. 2020, 15, 13. [Google Scholar] [CrossRef]
- Mantha, V.R.; Nair, H.K.; Venkataramanan, R.; Gao, Y.Y.; Matyjaszewski, K.; Dong, H.; Li, W.; Landsittel, D.; Cohen, E.; Lariviere, W.R. Nanoanesthesia: A novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. Anesth. Analg. 2014, 118, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Willis, R.C. Method for Utilizing Neutral Lipids to Modify In Vivo Release from Multivesicular Liposomes. U.S. Patent 5,891,467, 6 April 1999. Available online: https://patents.google.com/patent/US5891467A/en (accessed on 15 September 2024).
- Sankaram, M.B.; Kim, S. Multivesicular Liposomes with Controlled Release of Encapsulated Biologically Active Substances. U.S. Patent 5,766,627, 17 October 2000. Available online: https://patents.google.com/patent/US6132766A/en (accessed on 15 September 2024).
- Ottoboni, T.B.; Girotti, L.A. Long Acting Polymeric Delivery Systems. U.S. Patent 9,744,163, 3 September 2019. Available online: https://patents.google.com/patent/US10398686B2/en (accessed on 15 September 2024).
- Spencer, R.F.; Sutera, A.J. Techniques for Pain Relief. U.S. Patent 11,380,985, 5 July 2022. Available online: https://patents.google.com/patent/US11380985B1/en (accessed on 15 September 2024).
- Braden, A.R.; Vishwanatha, J.K.; Kafka, E. Formulation of Active Agent Loaded Activated PLGA Nanoparticles for Targeted Cancer Nano-Therapeutics. US Patent 9,023,395, 5 May 2015. Available online: https://patents.google.com/patent/US20080253961A1/en (accessed on 15 September 2024).
- Bramlett, K.; Onel, E.; Viscusi, E.R.; Jones, K. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee 2012, 19, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Beaver, W.B.; Dysart, S.H.; Barrington, J.W.; Del Gaizo, D.J. Local infiltration analgesia with liposomal bupivacaine improves pain scores and reduces opioid use after total knee arthroplasty: Results of a randomized controlled trial. J. Arthroplasty 2018, 33, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Alter, T.H.; Liss, F.E.; Ilyas, A.M. A Prospective Randomized Study Comparing Bupivacaine Hydrochloride Versus Bupivacaine Liposome for Pain Management After Distal Radius Fracture Repair Surgery. J. Hand Surg. Am. 2017, 42, 1003–1008. [Google Scholar] [CrossRef]
- Barron, K.I.; Lamvu, G.M.; Schmidt, R.C.; Fisk, M.; Blanton, E.; Patanwala, I. Wound Infiltration With Extended-Release Versus Short-Acting Bupivacaine Before Laparoscopic Hysterectomy: A Randomized Controlled Trial. J. Minim. Invasive Gynecol. 2017, 24, 286–292. [Google Scholar] [CrossRef]
- Motakef, S.; Wong, W.W.; Ingargiola, M.J.; Nguyen, D.; Galdyn, I.A.; Kim, H.Y.; Gupta, S.C. Liposomal Bupivacaine in Implant-Based Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1559. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Ahadi, F.; Davaran, S.; Mohammadi, G.; Sabzevari, A.; Adibkia, K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf. B Biointerfaces 2010, 81, 498–502. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, M.; Fernandez-Carballido, A.; Quispe-Chauca, P.; Lozza, I.; Martin-Sabroso, C.; Isabel Fraguas-Sanchez, A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur. J. Pharm. Biopharm. 2022, 180, 149–160. [Google Scholar] [CrossRef]
- Husain, S.F.; Lam, R.W.; Hu, T.; Ng, M.W.; Liau, Z.Q.; Nagata, K.; Khanna, S.; Lam, Y.; Bhakoo, K.; Ho, R.C.; et al. Locating the Site of Neuropathic Pain In Vivo Using MMP-12-Targeted Magnetic Nanoparticles. Pain. Res. Manag. 2019, 2019, 9394715. [Google Scholar] [CrossRef]
- Storek, B.; Reinhardt, M.; Wang, C.; Janssen, W.G.; Harder, N.M.; Banck, M.S.; Morrison, J.H.; Beutler, A.S. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc. Natl. Acad. Sci. USA 2008, 105, 1055–1060. [Google Scholar] [CrossRef]
- Hu, C.; Cai, Z.; Lu, Y.; Cheng, X.; Guo, Q.; Wu, Z.; Zhang, Q. Nonviral vector plasmid DNA encoding human proenkephalin gene attenuates inflammatory and neuropathic pain-related behaviors in mice. Neurosci. Lett. 2016, 634, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; McNearney, T.A.; Lin, W.; Wilson, S.P.; Yeomans, D.C.; Westlund, K.N. Treatment of inflamed pancreas with enkephalin encoding HSV-1 recombinant vector reduces inflammatory damage and behavioral sequelae. Mol. Ther. 2007, 15, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Goss, J.R.; Cascio, M.; Goins, W.F.; Huang, S.; Krisky, D.M.; Clarke, R.J.; Johnson, J.W.; Yokoyama, H.; Yoshimura, N.; Gold, M.S.; et al. HSV delivery of a ligand-regulated endogenous ion channel gene to sensory neurons results in pain control following channel activation. Mol. Ther. 2011, 19, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Gonzalez, M.; Pennington, K.; Chattopadhyay, M. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals. Mol. Cell. Neurosci. 2016, 72, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Vanderwall, A.G.; Noor, S.; Sun, M.S.; Sanchez, J.E.; Yang, X.O.; Jantzie, L.L.; Mellios, N.; Milligan, E.D. Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav. Immun. 2018, 69, 91–112. [Google Scholar] [CrossRef]
- Yao, M.Z.; Gu, J.F.; Wang, J.H.; Sun, L.Y.; Lang, M.F.; Liu, J.; Zhao, Z.Q.; Liu, X.Y. Interleukin-2 gene therapy of chronic neuropathic pain. Neuroscience 2002, 112, 409–416. [Google Scholar] [CrossRef]
- Pradat, P.F.; Finiels, F.; Kennel, P.; Naimi, S.; Orsini, C.; Delaere, P.; Revah, F.; Mallet, J. Partial prevention of cisplatin-induced neuropathy by electroporation-mediated nonviral gene transfer. Hum. Gene Ther. 2001, 12, 367–375. [Google Scholar] [CrossRef]
- Farhang, N.; Brunger, J.M.; Stover, J.D.; Thakore, P.I.; Lawrence, B.; Guilak, F.; Gersbach, C.A.; Setton, L.A.; Bowles, R.D. *CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of Cell Survival and Tissue Deposition in Inflammatory Environments. Tissue Eng. Part. A 2017, 23, 738–749. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, J.; Fan, Y.; Li, J.; You, T.; He, S.; Xiao, G.; Chen, D. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann. Rheum. Dis. 2019, 78, 676–682. [Google Scholar] [CrossRef]
- Lee, B.; Lee, K.; Panda, S.; Gonzales-Rojas, R.; Chong, A.; Bugay, V.; Park, H.M.; Brenner, R.; Murthy, N.; Lee, H.Y. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2018, 2, 497–507. [Google Scholar] [CrossRef]
- Liang, H.; Peng, B.; Dong, C.; Liu, L.; Mao, J.; Wei, S.; Wang, X.; Xu, H.; Shen, J.; Mao, H.Q.; et al. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat. Commun. 2018, 9, 4291. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Kim, H.K.; Mo Chung, J.; Chung, K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain. 2007, 131, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jackman, J.G.; Kwun, J.; Manook, M.; Moreno, A.; Elster, E.A.; Kirk, A.D.; Leong, K.W.; Sullenger, B.A. Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 2017, 120, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.L.; Xue, Z.J.; Qiao, X.Z.; Liu, C.; Zhang, S.; Li, X.; Huang, C.H.; Song, Q.; Yang, W.S.; Chen, X.; et al. Movable Hollow Nanoparticles as Reactive Oxygen Scavengers. Chem 2019, 5, 2378–2387. [Google Scholar] [CrossRef]
- Wu, H.; Li, F.; Wang, S.; Lu, J.; Li, J.; Du, Y.; Sun, X.; Chen, X.; Gao, J.; Ling, D. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018, 151, 66–77. [Google Scholar] [CrossRef]
Common Analgesics | Routes of Administration | Side Effects |
---|---|---|
Opioids | Oral (most common), intramuscular, intravenous, intrathecal, rectal, subcutaneous | Constipation, nausea, drowsiness, fractures, respiratory depression [10] |
NSAIDs | Oral (most common), topical, intravenous, rectal | GI bleed, ulcer perforation, myocardial infarction, electrolyte abnormalities, nephrotic syndrome [33] |
Acetaminophen | Oral, rectal, intravenous * | Rash (including Stevens-Johnson syndrome), nephrotoxicity, electrolyte abnormalities, liver toxicity [35] |
Gabapentinoids | Oral | Drowsiness, somnolence, nausea, dizziness [36] |
Antidepressants | Oral (most common), transdermal | Orthostatic hypotension, constipation, weight gain, dizziness, dry mouth, insomnia, anxiety, nausea [37] |
Anticonvulsants | Oral (most common), intravenous, intramuscular | Vertigo, nausea, double vision, skin rashes (including Stevens-Johnson syndrome), blood dyscrasias [38] |
Local Anesthetics | Topical, intravenous (most common), intrathecal, subcutaneous | Arrhythmias, hypertension, agitation, seizures, respiratory arrest [39] |
Muscle Relaxants | Oral (most common), transdermal, intrathecal | Hallucinations, muscle rigidity, seizures, dizziness, confusion, dry mucus membranes [40] |
Nanotechnology | Developer | Description | Clinical Use | Patent Details |
---|---|---|---|---|
DepoDur™ | Pacira Pharmaceuticals San Diego, CA, USA | Liposomal encapsulation of morphine for slow release via neutral lipid molar ratio manipulation. | Postoperative pain management | Filed: 1997; Granted: 1999; Expired: 2017 (Willis, 1999) [96] |
DepoFoam™ | Pacira Pharmaceuticals San Diego, CA, USA | Adjustable size liposomal system for controlled drug release. | Local anesthetics and other drugs | Filed: 1998; Granted: 2000; Expired: 2013 (Sankaram and Kim, 2000) [97] |
Zynrelef™ | Heron Therapeutics Solana Beach, CA, USA | Liposomal formulation of bupivacaine and meloxicam designed for pH stability and extended analgesia. | Postoperative pain relief | Filed: 2017; Granted: 2019; Active (Ottoboni and Girotti, 2019) [98] |
NeuroCuple™ | nCAP Licensing Heber City, UT, USA | Nanocapacitor-based pain relief patch that modulates pain signals using electromagnetic fields. | Chronic pain management | Filed: 2020; Granted: 2022 (Spencer and Sutera, 2022) [99] |
PLGA-Based Drug Delivery | University of North Texas Fort Worth, TX, USA | Targeted cancer chemotherapeutics using PLGA nanoparticles; potential for future analgesic applications. | Cancer treatment (potential for pain management) | Granted: 2015 (Braden and Vishwanatha, 2015) [100] |
Nanotechnology | Study Type | Study Population | Key Findings | References |
---|---|---|---|---|
DepoFoamTM Bupivacaine | Randomized trial in total knee arthroplasty | 138 patients | Significantly lower pain intensity scores on postoperative days 1–5; higher care provider satisfaction with analgesia. | Bramlett et al., 2012 [101] |
Liposomal Bupivacaine | Randomized trial in total knee arthroplasty | 140 patients | Lower visual analog pain intensity scores, reduced opioid consumption (18.7 mg vs. 84.9 mg, p = 0.0048), longer time to first opioid rescue. | Mont et al., 2018 [102] |
Liposomal Bupivacaine | Randomized trial after distal radius fracture | 41 patients | Lower pain levels on surgery day; reduced opioid pill consumption and oral morphine equivalents. | Alter et al., 2017 [103] |
Liposomal Bupivacaine | Randomized trial in laparoscopic hysterectomy | 56 patients | Lower average and worst pain scores on postoperative days 2 and 3 compared to bupivacaine HCl. | Barron et al., 2017 [104] |
Liposomal Bupivacaine | Trial in implant-based breast reconstruction | 24 patients | Reduced opioid/benzodiazepine use, shorter hospital stays, lower healthcare costs ($10,828 vs. $18,632, p = 0.039). | Motakef et al., 2017 [105] |
NeuroCuple™ Patch | Open-label study on postoperative pain | 69 patients | Reduced pain on postoperative days 1–3; fewer patients requested opioids upon discharge. | Chelly et al., 2023 [12] |
Nanotechnology | Study Purpose | Key Findings | References |
---|---|---|---|
Transfer of ppβEP using self-complementary recombinant adeno-associated virus serotype 8 (sc-rAAV8) vectors | Analgesic gene transfer and expression with IT sc-rAAV8 using an in vivo rat model undergoing L5 spinal nerve ligation | sc-rAAV8 selectively transduced primary sensory neurons in DRG if administered IT, established long term gene expression after single vector administration, leading to significant reversal of allodynia in rats with neuropathic pain by expressing analgesic gene ppβEP. | Storek et al., 2008 [109] |
Gene transfer of PVAX1-PENK using plasmid DNA vector | Investigation of anti-nociceptive efficacy of intramuscular and intrathecal delivery of pVAX1-PENK vs. pVAX1 on induced inflammatory pain and SNI neuropathic pain in mice. | Pain thresholds in the pVAX1-PENK-treated mice were significantly higher on day 3, reached a peak on day 7, and lasted until day 28 after gene transfer. pVAX1-treated mice did not significantly improve pain thresholds. Peripheral or spinal delivery of pVAX1-PENK provides a potential therapeutic strategy for inflammatory pain and neuropathic pain. | Hu et al., 2016 [110] |
HSV-based vector preproenkephalin transgene product delivery | Assessment of the efficacy of pancreatic surface delivered ENK-encoding HSV-1 on spontaneous behaviors, spinal cord, and pancreatic ENK expression in rats with DBTC-induced pancreatitis. | DBTC/HSV-ENK-treated rats had significantly improved spontaneous exploratory activities, increased met-ENK staining in the pancreas and spinal cord, and normalized c-Fos staining in the dorsal horn. Histopathology of pancreas in DBTC/HSV-ENK-treated rats showed preservation of acinar cells and cytoarchitecture with minimal inflammatory cell infiltrates, compared to controls. | Lu et al., 2007 [111] |
HSV-based vector-mediated expression of IL10 | Investigation of the continuous delivery of IL10 through HSV vector- mediated transduction in nerve fibers and blockade of nociceptive and stress response in DRG in rats with Type 1 Diabetes. | Reduction in IL1β expression along with inhibition of phosphorylation of p38 MAPK and PKC. Continuous expression of IL10 alters TLR-4 expression in DRG with increased expression of heat shock protein (HSP)-70 in conjunction with the reduction in pain. | Thakur et al., 2016 [113] |
Human IL-2 cDNA cloned into pcDNA3 containing a cytomegalovirus promoter | Evaluation of the effect of intrathecal delivery of human IL-2 gene on rat neuropathic pain induced by chronic constriction injury of the sciatic nerve. Paw-withdrawal latency induced by radiant heat used as a measure of pain threshold. | Recombinant human IL-2 had a dose-dependent antinociceptive effect, lasting for 10–25 min. The pcDNA3-IL-2 or pcDNA3-IL-2/lipofectamine complex showed dose-dependent antinociceptive effects, reached a peak on day 2–3 and was maintained for up to 6 days. Liposome-mediated pcDNA3-IL-2 produced a more powerful antinociceptive effect than pcDNA3-IL-2 alone | Yao et al., 2002 [115] |
Intrathecal IL-10 gene therapy with co-administration of mannose receptor (MR; CD206) ligand d-mannose (DM) | To evaluate spinal non-viral DM/pDNA-IL-10 co-therapy as a framework for the development of non-viral gene therapeutic approaches for neuropathic pain using wild-type and IL-10 KO mice. | IT application of naked plasmid DNA expressing the IL-10 transgene co-injected with DM (DM/pDNA-IL-10) for the treatment of peripheral neuropathic pain in IL-10 KO mice results in a profound and prolonged bilateral pain suppression. | Vanderwall et al., 2018 [114] |
Neurotropin-3 (NT-3)-encoded plasmids | Neurotropin-3 (NT-3)-encoded plasmids injected intramuscularly and followed by electroporation with four square-wave pulses in a cisplatin-treated mouse model in prevention of cisplatin-induced neuropathy. | Sensory distal latencies were lower in the treated rats, indicating neuropathic pain was reduced. | Pradat et al., 2001 [116] |
PLGA nanomaterials | PLGA nanomaterials used to encapsulate p38 siRNA to enhance its stability and slow its release in rat model | p38 siRNA nanoparticles reduced mechanical allodynia and microglial activation in rats, downregulating the expression of p38-related inflammatory gene TNF-α. | Shin et al., 2018 [78] |
Alendronate-conjugated PLGA-Cabazitaxel nanoparticles | Explore role of PLGA nanoparticles in the treatment of chronic bone pain in the setting of metastases using mice bone tumor models | Mice bone tumor models showed lower pain and reduced tumor burden, and improved maintenance of bone structure as compared to the free-drug treated control group. | Gdowski et al., 2017 [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torpey, A.; Bellow, E.; Samojedny, V.; Ahluwalia, S.; Desai, A.; Caldwell, W.; Bergese, S. Nanotechnology in Pain Management. Pharmaceutics 2024, 16, 1479. https://doi.org/10.3390/pharmaceutics16111479
Torpey A, Bellow E, Samojedny V, Ahluwalia S, Desai A, Caldwell W, Bergese S. Nanotechnology in Pain Management. Pharmaceutics. 2024; 16(11):1479. https://doi.org/10.3390/pharmaceutics16111479
Chicago/Turabian StyleTorpey, Andrew, Emily Bellow, Veronica Samojedny, Sukhpreet Ahluwalia, Amruta Desai, William Caldwell, and Sergio Bergese. 2024. "Nanotechnology in Pain Management" Pharmaceutics 16, no. 11: 1479. https://doi.org/10.3390/pharmaceutics16111479
APA StyleTorpey, A., Bellow, E., Samojedny, V., Ahluwalia, S., Desai, A., Caldwell, W., & Bergese, S. (2024). Nanotechnology in Pain Management. Pharmaceutics, 16(11), 1479. https://doi.org/10.3390/pharmaceutics16111479