Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Samples
2.2. Experimental Setup
2.3. Compression Tests
2.4. Statistical Analysis
3. Results
3.1. Effect of the Number of Needles Compressed Simultaneously
3.2. Variation in Mechanical Properties Among MNAs and per MN for Single-Needle Compression
3.3. Effect of Base Deformation
3.4. Effects of Compression Speed and Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawson, T.M.; Gowers, S.A.; Freeman, D.M.; Wilson, R.C.; Sharma, S.; Gilchrist, M.; MacGowan, A.; Lovering, A.; Bayliss, M.; Kyriakides, M. Microneedle Biosensors for Real-Time, Minimally Invasive Drug Monitoring of Phenoxymethylpenicillin: A First-in-Human Evaluation in Healthy Volunteers. Lancet Digit. Health 2019, 1, e335–e343. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Voelcker, N.H. Microneedles with Recessed Microcavities for Electrochemical Sensing in Dermal Interstitial Fluid. ACS Mater. Lett. 2023, 5, 1851–1858. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.S.; Yang, H.S.; Jung, J.H. Enhanced Extraction of Skin Interstitial Fluid Using a 3D Printed Device Enabling Tilted Microneedle Penetration. Sci. Rep. 2021, 11, 14018. [Google Scholar] [CrossRef]
- Prausnitz, M.R. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, J.S.; Quek, T.C.; Soon, W.J.; Choi, J.; Zou, S.; Kang, L. Effect of Microneedle Geometry and Supporting Substrate on Microneedle Array Penetration into Skin. J. Pharm. Sci. 2013, 102, 4100–4108. [Google Scholar] [CrossRef] [PubMed]
- Gittard, S.D.; Chen, B.; Xu, H.; Ovsianikov, A.; Chichkov, B.N.; Monteiro-Riviere, N.A.; Narayan, R.J. The Effects of Geometry on Skin Penetration and Failure of Polymer Microneedles. J. Adhes. Sci. Technol. 2013, 27, 227–243. [Google Scholar] [CrossRef]
- Davis, S.P.; Landis, B.J.; Adams, Z.H.; Allen, M.G.; Prausnitz, M.R. Insertion of Microneedles into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force. J. Biomech. 2004, 37, 1155–1163. [Google Scholar] [CrossRef]
- Larrañeta, E.; Moore, J.; Vicente-Pérez, E.M.; González-Vázquez, P.; Lutton, R.; Woolfson, A.D.; Donnelly, R.F. A Proposed Model Membrane and Test Method for Microneedle Insertion Studies. Int. J. Pharm. 2014, 472, 65–73. [Google Scholar] [CrossRef]
- Yagi, S.; Yamagiwa, S.; Kubota, Y.; Sawahata, H.; Numano, R.; Imashioya, T.; Oi, H.; Ishida, M.; Kawano, T. Dissolvable Base Scaffolds Allow Tissue Penetration of High-Aspect-Ratio Flexible Microneedles. Adv. Healthc. Mater. 2015, 4, 1949–1955. [Google Scholar] [CrossRef]
- Lee, K.J.; Jeong, S.S.; Roh, D.H.; Kim, D.Y.; Choi, H.-K.; Lee, E.H. A Practical Guide to the Development of Microneedle Systems—In Clinical Trials or on the Market. Int. J. Pharm. 2020, 573, 118778. [Google Scholar] [CrossRef]
- Park, J.-H.; Prausnitz, M. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force. J. Korean Phys. Soc. 2010, 56, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, G.; Lee, H.; Bao, L.; Park, J.; Takama, N.; Kim, B. Comparison of Polymers to Enhance Mechanical Properties of Microneedles for Bio-Medical Applications. Micro Nano Syst. Lett. 2020, 8, 13. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Z.; He, P.; Zhang, Z.; Sun, X. Determination of the Mechanical Properties of Polymeric Microneedles by Micromanipulation. J. Mech. Behav. Biomed. Mater. 2021, 117, 104384. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; et al. Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharm. Res. 2011, 28, 41–57. [Google Scholar] [CrossRef]
- Hiraishi, Y.; Nakagawa, T.; Quan, Y.-S.; Kamiyama, F.; Hirobe, S.; Okada, N.; Nakagawa, S. Performance and Characteristics Evaluation of a Sodium Hyaluronate-Based Microneedle Patch for a Transcutaneous Drug Delivery System. Int. J. Pharm. 2013, 441, 570–579. [Google Scholar] [CrossRef]
- Shah, S.A.; Oakes, R.S.; Kapnick, S.M.; Jewell, C.M. Mapping the Mechanical and Immunological Profiles of Polymeric Microneedles to Enable Vaccine and Immunotherapy Applications. Front. Immunol. 2022, 13, 843355. [Google Scholar] [CrossRef]
- Naito, C.; Katsumi, H.; Suzuki, T.; Quan, Y.; Kamiyama, F.; Sakane, T.; Yamamoto, A. Self-Dissolving Microneedle Arrays for Transdermal Absorption Enhancement of Human Parathyroid Hormone (1-34). Pharmaceutics 2018, 10, 215. [Google Scholar] [CrossRef]
- McCrudden, M.T.C.; Alkilani, A.Z.; Courtenay, A.J.; McCrudden, C.M.; McCloskey, B.; Walker, C.; Alshraiedeh, N.; Lutton, R.E.M.; Gilmore, B.F.; Woolfson, A.D.; et al. Considerations in the Sterile Manufacture of Polymeric Microneedle Arrays. Drug Deliv. Transl. Res. 2015, 5, 3–14. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Shayan, F.L.; Kim, S.; Huh, I.; Ma, Y.; Yang, H.; Kang, G.; Jung, H. Physicochemical Study of Ascorbic Acid 2-Glucoside Loaded Hyaluronic Acid Dissolving Microneedles Irradiated by Electron Beam and Gamma Ray. Carbohydr. Polym. 2018, 180, 297–303. [Google Scholar] [CrossRef]
- García, L.E.G.; MacGregor, M.N.; Visalakshan, R.M.; Ninan, N.; Cavallaro, A.A.; Trinidad, A.D.; Zhao, Y.; Hayball, A.J.D.; Vasilev, K. Self-Sterilizing Antibacterial Silver-Loaded Microneedles. Chem. Commun. 2018, 55, 171–174. [Google Scholar] [CrossRef]
- Mistilis, M.J.; Joyce, J.C.; Esser, E.S.; Skountzou, I.; Compans, R.W.; Bommarius, A.S.; Prausnitz, M.R. Long-Term Stability of Influenza Vaccine in a Dissolving Microneedle Patch. Drug Deliv. Transl. Res. 2017, 7, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.H.; Zhang, X.P.; Li, W.X.; Guo, X.D. Stability and Diffusion Properties of Insulin in Dissolvable Microneedles: A Multiscale Simulation Study. Langmuir 2021, 37, 9244–9252. [Google Scholar] [CrossRef] [PubMed]
- Anbazhagan, G.; Suseela, S.B.; Sankararajan, R. Effect of Hollow Microneedle Geometry Structure on Mechanical Stability and Microfluidic Flow for Transdermal Drug Delivery Applications. Microfluid. Nanofluidics 2023, 27, 25. [Google Scholar] [CrossRef]
- Loizidou, E.Z.; Inoue, N.T.; Ashton-Barnett, J.; Barrow, D.A.; Allender, C.J. Evaluation of Geometrical Effects of Microneedles on Skin Penetration by CT Scan and Finite Element Analysis. Eur. J. Pharm. Biopharm. 2016, 107, 1–6. [Google Scholar] [CrossRef]
- Olatunji, O.; Das, D.B.; Garland, M.J.; Belaid, L.; Donnelly, R.F. Influence of Array Interspacing on the Force Required for Successful Microneedle Skin Penetration: Theoretical and Practical Approaches. J. Pharm. Sci. 2013, 102, 1209–1221. [Google Scholar] [CrossRef]
- Zoudani, E.L.; Soltani, M. A New Computational Method of Modeling and Evaluation of Dissolving Microneedle for Drug Delivery Applications: Extension to Theoretical Modeling of a Novel Design of Microneedle (Array in Array) for Efficient Drug Delivery. Eur. J. Pharm. Sci. 2020, 150, 105339. [Google Scholar] [CrossRef]
- Ando, D.; Miyatsuji, M.; Sakoda, H.; Yamamoto, E.; Miyazaki, T.; Koide, T.; Sato, Y.; Izutsu, K. Mechanical Characterization of Dissolving Microneedles: Factors Affecting Physical Strength of Needles. Pharmaceutics 2024, 16, 200. [Google Scholar] [CrossRef]
- Römgens, A.M.; Bader, D.L.; Bouwstra, J.A.; Oomens, C.W.J. Predicting the Optimal Geometry of Microneedles and Their Array for Dermal Vaccination Using a Computational Model. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 1599–1609. [Google Scholar] [CrossRef]
- Xu, S.; Liu, W.; Peng, M.; Ma, D.; Liu, Z.; Tang, L.; Li, X.; Chen, S. Biodegradable Microneedles Array with Dual-Release Behavior and Parameter Optimization by Finite Element Analysis. J. Pharm. Sci. 2023, 112, 2506–2515. [Google Scholar] [CrossRef]
- Haider, K.; Lijnse, T.; Shu, W.; O’Cearbhaill, E. From Microchips to Microneedles: Semiconductor Shear Testers as a Universal Solution for Transverse Load Analysis of Microneedle Mechanical Performance. J. Micromech. Microeng. 2024, 34, 095006. [Google Scholar] [CrossRef]
Compressive Load [N] | Displacement [µm] | Displacement Ratio (Base/Base + MN) [%] | |
---|---|---|---|
Base | Base + MN | ||
0.1 | 4.75 | 7.42 | 64.0 |
0.2 | 9.08 | 14.2 | 63.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuboko, Y.; Sakoda, H.; Okamoto, Y.; Nomura, Y.; Yamamoto, E. Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results. Pharmaceutics 2024, 16, 1480. https://doi.org/10.3390/pharmaceutics16111480
Tsuboko Y, Sakoda H, Okamoto Y, Nomura Y, Yamamoto E. Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results. Pharmaceutics. 2024; 16(11):1480. https://doi.org/10.3390/pharmaceutics16111480
Chicago/Turabian StyleTsuboko, Yusuke, Hideyuki Sakoda, Yoshihiro Okamoto, Yusuke Nomura, and Eiichi Yamamoto. 2024. "Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results" Pharmaceutics 16, no. 11: 1480. https://doi.org/10.3390/pharmaceutics16111480
APA StyleTsuboko, Y., Sakoda, H., Okamoto, Y., Nomura, Y., & Yamamoto, E. (2024). Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results. Pharmaceutics, 16(11), 1480. https://doi.org/10.3390/pharmaceutics16111480