Two in One: Size Characterization and Accelerated Short-Term Physical Stability of Dual-Drug Suspensions with Two Acidic Compounds (Indomethacin and Naproxen)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Suspension Preparation by Dual Centrifugation
2.3. Particle Size Measurements
Analysis of Particle Size Profiles of Dual-Drug Suspensions
2.4. Thermodynamic Solubility in Dispersion Media
3. Results and Discussion
3.1. Preliminary Solubility Investigation
3.2. Screening of Stabilizers
3.3. Interpretation of Dual-Drug Suspensions
3.4. Short-Term Physical Stability Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, E.J.; Amatya, S.; Kim, M.S.; Park, J.H.; Seol, E.; Lee, H.; Shin, Y.H.; Na, D.H. Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch. Pharmacal Res. 2013, 36, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.; Rannard, S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv. Drug Deliv. Rev. 2016, 103, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Pacchiarotti, I.; Tiihonen, J.; Kotzalidis, G.D.; Verdolini, N.; Murru, A.; Goikolea, J.M.; Valentí, M.; Aedo, A.; Vieta, E. Long-acting injectable antipsychotics (LAIs) for maintenance treatment of bipolar and schizoaffective disorders: A systematic review. Eur. Neuropsychopharmacol. 2019, 29, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Nkanga, C.I.; Fisch, A.; Rad-Malekshahi, M.; Romic, M.D.; Kittel, B.; Ullrich, T.; Wang, J.; Krause, R.W.M.; Adler, S.; Lammers, T.; et al. Clinically established biodegradable long acting injectables: An industry perspective. Adv. Drug Deliv. Rev. 2020, 167, 19–46. [Google Scholar] [CrossRef] [PubMed]
- Okoli, C.T.C.; Kappi, A.; Wang, T.; Makowski, A.; Cooley, A.T. The effect of long-acting injectable antipsychotic medications compared with oral antipsychotic medications among people with schizophrenia: A systematic review and meta-analysis. Int. J. Ment. Health Nurs. 2022, 31, 469–535. [Google Scholar] [CrossRef]
- O’Brien Brien, M.N.; Jiang, W.; Wang, Y.; Loffredo, D.M. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J. Control. Release 2021, 336, 144–158. [Google Scholar] [CrossRef]
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 44–76. [Google Scholar] [CrossRef]
- Bao, Q.; Zou, Y.; Wang, Y.; Choi, S.; Burgess, D.J. Impact of Formulation Parameters on In Vitro Release from Long-Acting Injectable Suspensions. AAPS J. 2021, 23, 42. [Google Scholar] [CrossRef]
- Wilkinson, J.; Ajulo, D.; Tamburrini, V.; Gall, G.L.; Kimpe, K.; Holm, R.; Belton, P.; Qi, S. Lipid based intramuscular long-acting injectables: Current state of the art. Eur. J. Pharm. Sci. 2022, 178, 106253. [Google Scholar] [CrossRef]
- Bauer, A.; Berben, P.; Chakravarthi, S.S.; Chattorraj, S.; Garg, A.; Gourdon, B.; Heimbach, T.; Huang, Y.; Morrison, C.; Mundhra, D.; et al. Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium “Long-Acting Injectables” Working Group. Pharm. Res. 2023, 40, 1601–1631. [Google Scholar] [CrossRef]
- Holm, R.; Lee, R.W.; Glassco, J.; DiFranco, N.; Bao, Q.; Burgess, D.J.; Lukacova, V.; Alidori, S. Long-Acting Injectable Aqueous Suspensions-Summary From an AAPS Workshop. AAPS J. 2023, 25, 49. [Google Scholar] [CrossRef] [PubMed]
- Alidori, S.; Subramanian, R.; Holm, R. Patient-Centric Long-Acting Injectable and Implantable Platforms—An Industrial Perspective. Mol. Pharm. 2024, 21, 4238–4258. [Google Scholar] [CrossRef] [PubMed]
- Remenar, J.F. Making the leap from daily oral dosing to long-acting injectables: Lessons from the antipsychotics. Mol. Pharm. 2014, 11, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing–Oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev. 2007, 59, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Van Eerdenbrugh, B.; Vermant, J.; Martens, J.A.; Froyen, L.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G. A screening study of surface stabilization during the production of drug nanocrystals. J. Pharm. Sci. 2009, 98, 2091–2103. [Google Scholar] [CrossRef]
- Verma, S.; Gokhale, R.; Burgess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 2009, 380, 216–222. [Google Scholar] [CrossRef]
- Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef]
- Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm. 2013, 453, 142–156. [Google Scholar] [CrossRef]
- Salazar, J.; Müller, R.H.; Möschwitzer, J.P. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals. J. Pharm. 2014, 2014, 265754. [Google Scholar] [CrossRef]
- Brunaugh, A.; Smyth, H.D.C. Process optimization and particle engineering of micronized drug powders via milling. Drug Deliv. Transl. Res. 2018, 8, 1740–1750. [Google Scholar] [CrossRef]
- Afolabi, A.; Akinlabi, O.; Bilgili, E. Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: A microhydrodynamic view. Eur. J. Pharm. Sci. 2014, 51, 75–86. [Google Scholar] [CrossRef]
- Nakach, M.; Authelin, J.R.; Tadros, T.; Galet, L.; Chamayou, A. Engineering of nano-crystalline drug suspensions: Employing a physico-chemistry based stabilizer selection methodology or approach. Int. J. Pharm. 2014, 476, 277–288. [Google Scholar] [CrossRef]
- Bitterlich, A.; Laabs, C.; Krautstrunk, I.; Dengler, M.; Juhnke, M.; Grandeury, A.; Bunjes, H.; Kwade, A. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur. J. Pharm. Biopharm. 2015, 92, 171–179. [Google Scholar] [CrossRef]
- Hagedorn, M.; Bögershausen, A.; Rischer, M.; Schubert, R.; Massing, U. Dual centrifugation—A new technique for nanomilling of poorly soluble drugs and formulation screening by an DoE-approach. Int. J. Pharm. 2017, 530, 79–88. [Google Scholar] [CrossRef]
- Hagedorn, M.; Liebich, L.; Bögershausen, A.; Massing, U.; Hoffmann, S.; Mende, S.; Rischer, M. Rapid development of API nano-formulations from screening to production combining dual centrifugation and wet agitator bead milling. Int. J. Pharm. 2019, 565, 187–198. [Google Scholar] [CrossRef]
- Bahadur, K.C.R.; Xu, P. Multicompartment intracellular self-expanding nanogel for targeted delivery of drug cocktail. Adv. Mater. 2012, 24, 6479–6483. [Google Scholar] [CrossRef]
- Zachariah, R.; Harries, A.D.; Luo, C.; Bachman, G.; Graham, S.M. Scaling-up co-trimoxazole prophylaxis in HIV-exposed and HIV-infected children in high HIV-prevalence countries. Lancet Infect. Dis. 2007, 7, 686–693. [Google Scholar] [CrossRef]
- Lee, J.H.; Nan, A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv. 2012, 2012, 915375. [Google Scholar] [CrossRef]
- Sarfraz, M.; Afzal, A.; Yang, T.; Gai, Y.; Raza, S.M.; Khan, M.W.; Cheng, Y.; Ma, X.; Xiang, G. Development of Dual Drug Loaded Nanosized Liposomal Formulation by A Reengineered Ethanolic Injection Method and Its Pre-Clinical Pharmacokinetic Studies. Pharmaceutics 2018, 10, 151. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Dudhipala, N.; Majumdar, S. Dual Drug Loaded Lipid Nanocarrier Formulations for Topical Ocular Applications. Int. J. Nanomed. 2022, 17, 2283–2299. [Google Scholar] [CrossRef]
- Haloi, P.; Lokesh, B.S.; Chawla, S.; Konkimalla, V.B. Formulation of a dual drug-loaded nanoparticulate co-delivery hydrogel system and its validation in rheumatoid arthritis animal model. Drug Deliv. 2023, 30, 2184307. [Google Scholar] [CrossRef]
- Jin, S.; Lan, Z.; Yang, G.; Li, X.; Shi, J.Q.; Liu, Y.; Zhao, C. Computationally guided design and synthesis of dual-drug loaded polymeric nanoparticles for combination therapy. Aggregate 2024, 5, e606. [Google Scholar] [CrossRef]
- Shelke, R.; Velagacherla, V.; Nayak, U.Y. Recent advances in dual-drug co-amorphous systems. Drug Discov. Today 2024, 29, 103863. [Google Scholar] [CrossRef]
- De Cleyn, E.; Holm, R.; Van den Mooter, G. Size Analysis of Small Particles in Wet Dispersions by Laser Diffractometry: A Guidance to Quality Data. J. Pharm. Sci. 2019, 108, 1905–1914. [Google Scholar] [CrossRef]
- Kerr, H.E.; Softley, L.K.; Suresh, K.; Hodgkinson, P.; Evans, I.R. Structure and physicochemical characterization of a naproxen-picolinamide cocrystal. Acta Crystallogr. Sect. C Struct. Chem. 2017, 73 Pt 3, 168–175. [Google Scholar] [CrossRef]
- O’Brien, M.; McCauley, J.; Cohen, E. Indomethacin. Anal. Profiles Drug Subst. 1984, 13, 211–238. [Google Scholar] [CrossRef]
- Zulbeari, N.; Hansen, M.; Morgen, P.; Holm, R. Impact of Drug Compounds Mechanical/Deformation Properties on the Preparation of Nano- and Microsuspensions. J. Drug Deliv. Sci. Technol. 2024, 95, 105605. [Google Scholar] [CrossRef]
- Jones, A.R. Error contour charts relevant to particle sizing by forward-scattered lobe methods. J. Phys. D Appl. Phys. 1977, 10, L163. [Google Scholar] [CrossRef]
- Xie, H.; Xu, L.; Niu, H.; Cao, Z. Particle sizing from Fraunhofer diffraction pattern using a digital micro-mirror device and a single photodiode. Powder Technol. 2018, 332, 351–358. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, S.; Gokhale, R.; Burgess, D.J. Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening. Int. J. Pharm. 2011, 406, 145–152. [Google Scholar] [CrossRef]
- Zulbeari, N.; Mustafova, S.S.; Simonsen, A.C.; Lund, F.W.; Holm, R. The Langmuir-Blodgett trough (Langmuir film balance) can be used to understand the stabilizer concentrations in aqueous nano- and microsuspensions. Int. J. Pharm. 2024, 665, 124726. [Google Scholar] [CrossRef] [PubMed]
- Sastry, N.V.; Hoffmann, H. Interaction of amphiphilic block copolymer micelles with surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2004, 250, 247–261. [Google Scholar] [CrossRef]
- Zheng, Y.; Davis, H.T. Mixed Micelles of Nonionic Surfactants and Uncharged Block Copolymers in Aqueous Solutions: Microstructure Seen by Cryo-TEM. Langmuir 2000, 16, 6453–6459. [Google Scholar] [CrossRef]
Indomethacin | Naproxen | Dual-Drug | ||||
---|---|---|---|---|---|---|
Stabilizer | Monomodal | Bimodal | Monomodal | Bimodal | Monomodal | Bimodal |
Polysorbate 20 | ||||||
Polysorbate 80 | ||||||
Polysorbate 85 | ||||||
Poloxamer 188 | ||||||
Poloxamer 338 | ||||||
Poloxamer 407 | ||||||
PVP K16-18 | ||||||
PVP K30 | ||||||
Vitamin E TPGS | ||||||
SLS |
Indomethacin | Naproxen | Dual-Drug | ||||
---|---|---|---|---|---|---|
Day 0 | Day 28 | Day 0 | Day 28 | Day 0 | Day 28 | |
Polysorbate 20 | 0.662 µm | 1.230 µm | 1.470 µm | 3.950 µm | 0.632 µm | 1.720 µm |
Polysorbate 80 | 0.590 µm | 0.912 µm | 1.020 µm | 2.400 µm | 0.578 µm | 0.910 µm |
Polysorbate 85 | 1.440 µm | 2.620 µm | 1.540 µm | 4.880 µm | 2.290 µm | 2.950 µm |
Poloxamer 188 | 0.642 µm | 0.739 µm | 1.820 µm | 3.230 µm | 0.596 µm | 0.836 µm |
Poloxamer 338 | 0.722 µm | 0.857 µm | 0.919 µm | 2.460 µm | 0.722 µm | 0.927 µm |
Poloxamer 407 | 0.705 µm | 0.778 µm | 1.060 µm | 3.100 µm | 0.650 µm | 0.843 µm |
PVP K16-18 | 0.665 µm | 1.220 µm | 0.816 µm | 2.020 µm | 0.803 µm | 1.170 µm |
PVP K30 | 0.619 µm | 0.692 µm | 0.637 µm | 1.880 µm | 0.565 µm | 0.784 µm |
Vitamin E TPGS | 0.672 µm | 0.757 µm | 1.100 µm | 1.790 µm | 0.592 µm | 0.878 µm |
SLS | 0.674 µm | 0.858 µm | 3.860 µm | 4.120 µm | 0.695 µm | 1.870 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulbeari, N.; Hansen, S.M.; Holm, R. Two in One: Size Characterization and Accelerated Short-Term Physical Stability of Dual-Drug Suspensions with Two Acidic Compounds (Indomethacin and Naproxen). Pharmaceutics 2024, 16, 1495. https://doi.org/10.3390/pharmaceutics16121495
Zulbeari N, Hansen SM, Holm R. Two in One: Size Characterization and Accelerated Short-Term Physical Stability of Dual-Drug Suspensions with Two Acidic Compounds (Indomethacin and Naproxen). Pharmaceutics. 2024; 16(12):1495. https://doi.org/10.3390/pharmaceutics16121495
Chicago/Turabian StyleZulbeari, Nadina, Signe Malig Hansen, and René Holm. 2024. "Two in One: Size Characterization and Accelerated Short-Term Physical Stability of Dual-Drug Suspensions with Two Acidic Compounds (Indomethacin and Naproxen)" Pharmaceutics 16, no. 12: 1495. https://doi.org/10.3390/pharmaceutics16121495
APA StyleZulbeari, N., Hansen, S. M., & Holm, R. (2024). Two in One: Size Characterization and Accelerated Short-Term Physical Stability of Dual-Drug Suspensions with Two Acidic Compounds (Indomethacin and Naproxen). Pharmaceutics, 16(12), 1495. https://doi.org/10.3390/pharmaceutics16121495