Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of β-CD:NTX Inclusion Complex
2.3. Characterization Techniques
2.4. Molecular Docking
2.5. Phase Solubility Studies
2.6. In Vitro Drug Release
2.7. Antiviral Activity
2.8. Cytotoxicity and Cellular Uptake
3. Results and Discussion
3.1. UV–Visible Studies of β-CD:NTX Inclusion Complex
3.2. Functional Group Analysis of β-CD:NTX Inclusion Complex
3.3. Crystalline Properties of β-CD:NTX Inclusion Complex
3.4. Morphology of β-CD:NTX Inclusion Complex
3.5. Thermal Properties of β-CD:NTX Inclusion Complex
3.6. Docking Studies of β-CD:NTX Inclusion Complex
3.7. Phase Solubility Studies of β-CD:NTX Inclusion Complex
3.8. In Vitro Drug Release of β-CD:NTX Inclusion Complex
3.9. Antiviral Activity of β-CD:NTX Inclusion Complex
3.10. Cell Toxicity and Cellular Uptake of β-CDs:NTX Inclusion Complex
3.11. Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piperi, E.; Papadopoulou, E.; Georgaki, M.; Dovrat, S.; Bar Illan, M.; Nikitakis, N.G.; Yarom, N. Management of Oral Herpes Simplex Virus Infections: The Problem of Resistance. A Narrative Review. Oral Dis. 2024, 30, 877–894. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, M.J.; Venkatesan, A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics 2016, 13, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Frejborg, F.; Kalke, K.; Hukkanen, V. Current Landscape in Antiviral Drug Development against Herpes Simplex Virus Infections. Smart Med. 2022, 1, e20220004. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.L.; James, S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018, 40, 1282–1298. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Resistance of Herpes Simplex Viruses to Nucleoside Analogues: Mechanisms, Prevalence, and Management. Antimicrob. Agents Chemother. 2011, 55, 459–472. [Google Scholar] [CrossRef]
- Lokhande, A.S.; Devarajan, P.V. A Review on Possible Mechanistic Insights of Nitazoxanide for Repurposing in COVID-19. Eur. J. Pharmacol. 2021, 891, 173748. [Google Scholar] [CrossRef]
- Rossignol, J.F.; El-Gohary, Y.M. Nitazoxanide in the Treatment of Viral Gastroenteritis: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Aliment. Pharmacol. Ther. 2006, 24, 1423–1430. [Google Scholar] [CrossRef]
- Hoffman, P.S.; Sisson, G.; Croxen, M.A.; Welch, K.; Harman, W.D.; Cremades, N.; Morash, M.G. Antiparasitic Drug Nitazoxanide Inhibits the Pyruvate Oxidoreductases of Helicobacter pylori, Selected Anaerobic Bacteria and Parasites, and Campylobacter jejuni. Antimicrob. Agents Chemother. 2007, 51, 868–876. [Google Scholar] [CrossRef]
- Valladares-Méndez, A.; García-Flores, M.; Navarrete-Vázquez, G.; Orozco-Castellanos, L.M.; Hernandez-Nuñez, E.; Rivera-Leyva, J.C. Physicochemical Characterization of Two New Nitazoxanide Analogs with Antiparasitic Activity. Med. Chem. Res. 2017, 26, 9–18. [Google Scholar] [CrossRef]
- Rashid, M.; Malik, M.Y.; Singh, S.K.; Chaturvedi, S.; Gayen, J.R.; Wahajuddin, M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr. Pharm. Des. 2019, 25, 987–1020. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Maddiboyina, B.; Rawat, P.; Garg, A.K.; Foudah, A.I.; Alam, A.; Aldawsari, H.M.; Riadi, Y.; Singh, S.; Kesharwani, P. Enhancing the Solubility of Nitazoxanide with Solid Dispersions Technique: Formulation, Evaluation, and Cytotoxicity Study. J. Biomater. Sci. Polym. Ed. 2020, 32, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Nyamba, I.; Sombié, C.B.; Yabré, M.; Zimé-Diawara, H.; Yaméogo, J.; Ouédraogo, S.; Lechanteur, A.; Semdé, R.; Evrard, B. Pharmaceutical Approaches for Enhancing Solubility and Oral Bioavailability of Poorly Soluble Drugs. Eur. J. Pharm. Biopharm. 2024, 204, 114513. [Google Scholar] [CrossRef]
- Kfoury, M.; Fourmentin, S. State of the Art in Cyclodextrin Solubility Enhancement. Are Green Solvents the Solution? J. Mol. Liq. 2024, 410, 125599. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1995. [Google Scholar] [CrossRef]
- Sarabia-Vallejo, Á.; Caja, M.d.M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef]
- Mohandoss, S.; Velu, K.S.; Stalin, T.; Ahmad, N.; Alomar, S.Y.; Lee, Y.R. Tenofovir Antiviral Drug Solubility Enhancement with β-Cyclodextrin Inclusion Complex and in Silico Study of Potential Inhibitor against SARS-CoV-2 Main Protease (Mpro). J. Mol. Liq. 2023, 377, 121544. [Google Scholar] [CrossRef]
- Mohandoss, S.; Ahmad, N.; Rizwan Khan, M.; Rok Lee, Y. Physicochemical Characterization, Solubility Enhancement, Molecular Docking, and Antibacterial Activity of Inclusion Complexes of Naproxen/β-Cyclodextrin Derivatives: A Comparative Study. J. Mol. Liq. 2023, 385, 122411. [Google Scholar] [CrossRef]
- Mohandoss, S.; Stalin, T. Photochemical and Computational Studies of Inclusion Complexes between β-Cyclodextrin and 1,2-Dihydroxyanthraquinones. Photochem. Photobiol. Sci. 2017, 16, 476–488. [Google Scholar] [CrossRef]
- Mohandoss, S.; Palanisamy, S.; You, S.G.; Shim, J.J.; Rok Lee, Y. Ultrasonication-Assisted Host–Guest Inclusion Complexes of β-Cyclodextrins and 5-Hydroxytryptophan: Enhancement of Water Solubility, Thermal Stability, and In Vitro Anticancer Activity. J. Mol. Liq. 2021, 336, 116172. [Google Scholar] [CrossRef]
- Mohandoss, S.; Atchudan, R.; Immanuel Edison, T.N.J.; Mandal, T.K.; Palanisamy, S.; You, S.G.; Napoleon, A.A.; Shim, J.J.; Lee, Y.R. Enhanced Solubility of Guanosine by Inclusion Complexes with Cyclodextrin Derivatives: Preparation, Characterization, and Evaluation. Carbohydr. Polym. 2019, 224, 115166. [Google Scholar] [CrossRef] [PubMed]
- Mohandoss, S.; Edison, T.N.J.I.; Atchudan, R.; Palanisamy, S.; Prabhu, N.M.; Napoleon, A.A.; You, S.G.; Lee, Y.R. Ultrasonic-Assisted Efficient Synthesis of Inclusion Complexes of Salsalate Drug and β-Cyclodextrin Derivatives for Potent Biomedical Applications. J. Mol. Liq. 2020, 319, 114358. [Google Scholar] [CrossRef]
- Mohandoss, S.; Sukanya, R.; Ganesan, S.; Alkallas, F.H.; Ben Gouider Trabelsi, A.; Kusmartsev, F.V.; Sakthi Velu, K.; Stalin, T.; Lo, H.M.; Rok Lee, Y. SARS-CoV-2 Main Protease (3CLpro) Interaction with Acyclovir Antiviral Drug/Methyl-β-Cyclodextrin Complex: Physiochemical Characterization and Molecular Docking. J. Mol. Liq. 2022, 366, 120292. [Google Scholar] [CrossRef]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins Inclusion Complex: Preparation Methods, Analytical Techniques and Food Industry Applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Castro-Hermida, J.A.; Ares-Mazás, M.E. In Vitro and In Vivo Efficacy of α-Cyclodextrin for Treatment of Experimental Cryptosporidiosis. Vet. Parasitol. 2003, 114, 237–245. [Google Scholar] [CrossRef]
- Higuchi, T.K.; Connors, A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965, 4, 212–217. [Google Scholar]
- Malesuik, M.D.; Paim, C.S.; Schapoval, E.E.S.; Steppe, M. Development of a simple, rapid and validated spectrophotometric method for nitazoxanide in pharmaceutical formulations and comparison with HPLC. Química Nova 2010, 33, 739–742. [Google Scholar] [CrossRef]
- Misiuk, W.; Zalewska, M. Spectroscopic Investigations on the Inclusion Interaction between Hydroxypropyl-β-cyclodextrin and Bupropion. J. Mol. Liq. 2011, 159, 220–225. [Google Scholar] [CrossRef]
- Benesi, H.A.; Hildebrand, J.H. Spectrophotometry of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. [Google Scholar] [CrossRef]
- Ali, N.W.; Abbas, S.S.; Zaazaa, H.E.S.; Abdelrahman, M.M.; Abdelkawy, M. Validated Stability Indicating Methods for Determination of Nitazoxanide in Presence of Its Degradation Products. J. Pharm. Anal. 2012, 2, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.P.; Caira, M.R.; Monti, G.A.; Kassuha, D.E.; Sperandeo, N.R. Spectroscopic, Thermal and X-Ray Structural Study of the Antiparasitic and Antiviral Drug Nitazoxanide. J. Mol. Struct. 2010, 984, 51–57. [Google Scholar] [CrossRef]
- Kushnirov Melnitzer, V.; Sosnik, A. Hybrid Titanium Oxide/Polymer Amphiphilic Nanomaterials with Controlled Size for Drug Encapsulation and Delivery. Adv. Funct. Mater. 2020, 30, 1806146. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. Nucleic Acids Res. 2005, 33, 363–367. [Google Scholar] [CrossRef]
- Mashiach, E.; Schneidman-Duhovny, D.; Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: A Web Server for Fast Interaction Refinement in Molecular Docking. Nucleic Acids Res. 2008, 36, 229–232. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef]
- Sakai, S.; Hirano, Y.; Kobayashi, Y.; Arai, N. Effect of Temperature on the Structure and Drug-Release Behaviour of Inclusion Complex of β-Cyclodextrin with Cyclophosphamide: A Molecular Dynamics Study. Soft Matter 2023, 19, 2902–2907. [Google Scholar] [CrossRef]
- Young Lee, M.; Subban Ganapathy, H.; Taek Lim, K. Controlled Drug Release Applications of the Inclusion Complex of Peracetylated-β-cyclodextrin and Water-Soluble Drugs Formed in Supercritical Carbon Dioxide. J. Phys. Chem. Solids 2010, 71, 630–633. [Google Scholar] [CrossRef]
- De Jalón, E.G.; Blanco-Príeto, M.J.; Ygartua, P.; Santoyo, S. Increased Efficacy of Acyclovir-Loaded Microparticles against Herpes Simplex Virus Type 1 in Cell Culture. Eur. J. Pharm. Biopharm. 2003, 56, 183–187. [Google Scholar] [CrossRef]
- Russo, E.; Gaglianone, N.; Baldassari, S.; Parodi, B.; Cafaggi, S.; Zibana, C.; Donalisio, M.; Cagno, V.; Lembo, D.; Caviglioli, G. Preparation, Characterization and In Vitro Antiviral Activity Evaluation of Foscarnet-Chitosan Nanoparticles. Colloids Surf. B Biointerfaces 2014, 118, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.N.; Oliveira, R.R.; Castellano, L.R.C.; Bonan, P.R.F.; Carvalho, O.V.; Pena, L.; Souza, J.R.; Oliveira, J.E.; Medeiros, E.S. Controlled Release and Antiviral Activity of Acyclovir-Loaded PLA/PEG Nanofibers Produced by Solution Blow Spinning. Biomater. Adv. 2022, 136, 212785. [Google Scholar] [CrossRef]
- Bencini, M.; Ranucci, E.; Ferruti, P.; Trotta, F.; Donalisio, M.; Cornaglia, M.; Lembo, D.; Cavalli, R. Preparation and in Vitro Evaluation of the Antiviral Activity of the Acyclovir Complex of a β-Cyclodextrin/poly(amidoamine) Copolymer. J. Control. Release 2008, 126, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Priyono, S.R.; Sutriyo; Rahmasari, R. Preparation, Cellular Uptake, and Cytotoxic Evaluation of Remdesivir-Hydroxypropyl-β-cyclodextrin Inclusion Complex. Biomed. Pharmacol. J. 2022, 15, 717–727. [Google Scholar] [CrossRef]
- Sravani, A.B.; Shenoy, K.M.; Chandrika, B.; Kumar, B.H.; Kini, S.G.; Pai, K.S.R.; Lewis, S.A. Curcumin-sulfobutyl-ether Beta Cyclodextrin Inclusion Complex: Preparation, Spectral Characterization, Molecular Modeling, and Antimicrobial Activity. J. Biomol. Struct. Dyn. 2023, 2023, 9977–9992. [Google Scholar] [CrossRef]
- Cavalli, R.; Donalisio, M.; Civra, A.; Ferruti, P.; Ranucci, E.; Trotta, F.; Lembo, D. Enhanced Antiviral Activity of Acyclovir Loaded into β-Cyclodextrin-poly(4-acryloylmorpholine) Conjugate Nanoparticles. J. Control. Release 2009, 137, 116–122. [Google Scholar] [CrossRef]
- Schoeman, C.; van Niekerk, S.; Liebenberg, W.; Hamman, J. Cyclodextrin Inclusion Complex and Amorphous Solid Dispersions as Formulation Approaches for Enhancement of Curcumin’s Solubility and Nasal Epithelial Membrane Permeation. Future J. Pharm. Sci. 2024, 10, 85. [Google Scholar] [CrossRef]
- Prado, A.R.; Yokaichiya, F.; Franco, M.K.K.D.; da Silva, C.M.G.; Oliveira-Nascimento, L.; Franz-Montan, M.; Volpato, M.C.; Cabeça, L.F.; de Paula, E. Complexation of Oxethazaine with 2-Hydroxypropyl-β-cyclodextrin: Increased Drug Solubility, Decreased Cytotoxicity and Analgesia at Inflamed Tissues. J. Pharm. Pharmacol. 2017, 69, 652–662. [Google Scholar] [CrossRef]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular Nanomedicine Towards Cancer: 111In-labeled nanoparticles. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Dos Santos Lima, B.; de Alcântara Campos, C.; da Silva Santos, A.C.; Santos, V.C.; Trindade, G.D.; Shanmugam, S.; Pereira, E.W.; Marreto, R.N.; Duarte, M.C.; da Silva Almeida, J.R.; et al. Development of Morin/Hydroxypropyl-β-cyclodextrin Inclusion Complex: Enhancement of Bioavailability, Antihyperalgesic and Anti-Inflammatory Effects. Food Chem. Toxicol. 2019, 126, 15–24. [Google Scholar] [CrossRef]
- Chauhan, R.; Madan, J.; Kaushik, D.; Sardana, S.; Pandey, R.S.; Sharma, R. Inclusion Complex of Colchicine in Hydroxypropyl-β-Cyclodextrin Tenders Better Solubility and Improved Pharmacokinetics. Pharm. Dev. Technol. 2013, 18, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Worku, Z.A.; Van Den Mooter, G. Oral Formulation Strategies to Improve Solubility of Poorly Water-Soluble Drugs. Expert Opin. Drug Deliv. 2011, 8, 1361–1378. [Google Scholar] [CrossRef] [PubMed]
- Krosuri, P.K. Recent Advances in the Development of Nanoparticles in Enhancement of Solubility of Poorly Soluble Drugs. J. Pharm. Negat. Results 2022, 13, 3512–3527. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Zhu, R.; Zhang, M.; Chen, W.; Ma, Y.; Du, Y.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Dev. Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef]
- Lee, M.K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12, 264. [Google Scholar] [CrossRef]
- Charumanee, S.; Okonogi, S.; Sirithunyalug, J.; Wolschann, P.; Viernstein, H. Effect of Cyclodextrin Types and Co-Solvent on Solubility of a Poorly Water Soluble Drug. Sci. Pharm. 2016, 84, 694–704. [Google Scholar] [CrossRef]
- De Miranda, J.C.; Martins, T.E.A.; Veiga, F.; Ferraz, H.G. Cyclodextrins and Ternary Complexes: Technology to Improve Solubility of Poorly Soluble Drugs. Braz. J. Pharm. Sci. 2011, 47, 665–681. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakthi Velu, K.; Jegatheeswaran, S.; Akhtar, M.S.; Khan, M.R.; Mohandoss, S.; Ahmad, N. Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells. Pharmaceutics 2024, 16, 1494. https://doi.org/10.3390/pharmaceutics16121494
Sakthi Velu K, Jegatheeswaran S, Akhtar MS, Khan MR, Mohandoss S, Ahmad N. Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells. Pharmaceutics. 2024; 16(12):1494. https://doi.org/10.3390/pharmaceutics16121494
Chicago/Turabian StyleSakthi Velu, Kuppu, Sonamuthu Jegatheeswaran, Muhammad Saeed Akhtar, Mohammad Rizwan Khan, Sonaimuthu Mohandoss, and Naushad Ahmad. 2024. "Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells" Pharmaceutics 16, no. 12: 1494. https://doi.org/10.3390/pharmaceutics16121494
APA StyleSakthi Velu, K., Jegatheeswaran, S., Akhtar, M. S., Khan, M. R., Mohandoss, S., & Ahmad, N. (2024). Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells. Pharmaceutics, 16(12), 1494. https://doi.org/10.3390/pharmaceutics16121494