Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanocomposite Vesicles of Triamcinolone Acetonide
2.3. Characterization of Nanocomposite Vesicles of Triamcinolone Acetonide
2.3.1. Size and Zeta Potential for Nanoparticles
2.3.2. Physical Properties of Eye Drops
2.3.3. Loading Capacity and Entrapment Efficiency
2.4. In Vitro Drug Release and Evaluation of Corneal Permeability
2.4.1. In Vitro Drug Release
2.4.2. Evaluation of Corneal Permeability In Vitro
2.5. In Vivo Study of Tear Elimination and Aqueous Humor Pharmacokinetics
2.5.1. Tear Elimination
2.5.2. Aqueous Humor Pharmacokinetics
2.6. Evaluation of In Vitro Cytotoxicity and Transepithelial Cell Uptake
2.6.1. Cytotoxicity
2.6.2. Characteristics of Uptake
2.6.3. Uptake Mechanism
2.6.4. Preparation and Evaluation of Epithelial Cell Barrier Model
2.6.5. Evaluation of Permeability Across Barriers
2.6.6. Mechanism of Crossing the Epithelial Barrier
2.7. Data Analysis and Statistics
3. Results and Discussion
3.1. Preparation and Evaluation of Triamcinolone Acetate Nanocomposite Vesicles
3.2. In Vitro Drug Release Study
3.3. Permeability Evaluation of Isolated Corneas
3.4. The Elimination of Triamcinolone Acetonide in Tears
3.5. Pharmacokinetic Study of In Vivo Aqueous Humor
3.6. Mechanisms of Cellular Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Lo, A.C. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Q.; Gillies, M.C.; Wong, T.Y. Management of Diabetic Retinopathy: A Systematic Review. JAMA 2007, 298, 902–916. [Google Scholar] [CrossRef] [PubMed]
- Urtti, A. Challenges and Obstacles of Ocular Pharmacokinetics and Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1131–1135. [Google Scholar] [CrossRef]
- Ip, M.S.; Kumar, K.S. Intravitreous Triamcinolone Acetonide as Treatment for Macular Edema from Central Retinal Vein Occlusion. Arch. Ophthalmol. 2002, 120, 1217–1219. [Google Scholar] [CrossRef]
- Jonas, J.B.; Kreissig, I.; Hugger, P.; Sauder, G.; Panda-Jonas, S.; Degenring, R. Intravitreal Triamcinolone Acetonide for Exudative Age Related Macular Degeneration. Br. J. Ophthalmol. 2003, 87, 462–468. [Google Scholar] [CrossRef]
- Jonas, J.B. Intravitreal Triamcinolone Acetonide for Diabetic Retinopathy. Diabet. Retin. 2007, 39, 96–110. [Google Scholar]
- Qi, Q.; Wei, Y.; Zhang, X.; Guan, J.; Mao, S. Challenges and Strategies for Ocular Posterior Diseases Therapy via Non-Invasive Advanced Drug Delivery. J. Control. Release 2023, 361, 191–211. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology Based Drug Delivery Systems for the Treatment of Anterior Segment Eye Diseases. J. Control. Release 2023, 354, 465–488. [Google Scholar] [CrossRef]
- Mo, Z.; Ban, J.; Zhang, Y.; Du, Y.; Wen, Y.; Huang, X.; Xie, Q.; Shen, L.; Zhang, S.; Deng, H.; et al. Nanostructured Lipid Carriers-Based Thermosensitive Eye Drops for Enhanced, Sustained Delivery of Dexamethasone. Nanomedicine 2018, 13, 1239–1253. [Google Scholar] [CrossRef]
- Li, F.; Wen, Y.; Zhang, Y.; Zheng, K.; Ban, J.; Xie, Q.; Wen, Y.; Liu, Q.; Chen, F.; Mo, Z.; et al. Characterisation of 2-HP-β-cyclodextrin-PLGA Nanoparticle Complexes for Potential Use as Ocular Drug Delivery Vehicles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4097–4108. [Google Scholar] [CrossRef]
- Cartiera, M.S.; Johnson, K.M.; Rajendran, V.; Caplan, M.J.; Saltzman, W.M. The Uptake and Intracellular Fate of PLGA Nanoparticles in Epithelial Cells. Biomaterials 2009, 30, 2790–2798. [Google Scholar] [CrossRef] [PubMed]
- Milletti, F. Cell-Penetrating Peptides: Classes, Origin, and Current Landscape. Drug Discov. Today 2012, 17, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Regberg, J.; Srimanee, A.; Langel, Ü. Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies. Pharmaceuticals 2012, 5, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N.; Morishita, M.; Eda, Y.; Ida, N.; Nishio, R.; Takayama, K. Usefulness of Cell-Penetrating Peptides to Improve Intestinal Insulin Absorption. J. Control. Release 2008, 132, 21–25. [Google Scholar] [CrossRef]
- Steinbach, J.M.; Seo, Y.E.; Saltzman, W.M. Cell Penetrating Peptide-Modified Poly(Lactic-Co-Glycolic Acid) Nanoparticles with Enhanced Cell Internalization. Acta Biomater. 2016, 30, 49–61. [Google Scholar] [CrossRef]
- Song, Q.; Chuan, X.; Chen, B.; He, B.; Zhang, H.; Dai, W.; Wang, X.; Zhang, Q. A Smart Tumor Targeting Peptide–Drug Conjugate, pHLIP-SS-DOX: Synthesis and Cellular Uptake on MCF-7 and MCF-7/Adr Cells. Drug Deliv. 2015, 23, 1734–1746. [Google Scholar] [CrossRef]
- Dumbuya, I.; Pereira, A.M.; Tolaymat, I.; Al Dalaty, A.; Arafat, B.; Webster, M.; Pierscionek, B.; Khoder, M.; Najlah, M. Exploring Disulfiram’s Anticancer Potential: PLGA Nano-Carriers for Prolonged Drug Delivery and Potential Improved Therapeutic Efficacy. Nanomaterials 2024, 14, 1133. [Google Scholar] [CrossRef]
- Yuan, H.; Gui, H.; Chen, S.; Zhu, L.; Wang, C.; Jing, Q.; Lv, H.; Wan, Q.; Wang, S.; Zhou, S.; et al. Regulating Tumor-Associated Macrophage Polarization by Cyclodextrin-Modified PLGA Nanoparticles Loaded with R848 for Treating Colon Cancer. Int. J. Nanomed. 2024, 19, 3589–3605. [Google Scholar] [CrossRef]
- Amatya, S.; Park, E.J.; Park, J.H.; Kim, J.S.; Seol, E.; Lee, H.; Choi, H.; Shin, Y.H.; Na, D.H. Drug Release Testing Methods of Polymeric Particulate Drug Formulations. J. Pharm. Investig. 2013, 43, 259–266. [Google Scholar] [CrossRef]
- Ooi, E.H.; Ng, E.Y.K. Simulation of Aqueous Humor Hydrodynamics in Human Eye Heat Transfer. Comput. Biol. Med. 2008, 38, 252–262. [Google Scholar] [CrossRef]
- Scott, J.A. A Finite Element Model of Heat Transport in the Human Eye. Phys. Med. Biol. 1988, 33, 227–242. [Google Scholar] [CrossRef]
- Mora, P.; Eperon, S.; Felt-Baeyens, O.; Gurny, R.; Sagodira, S.; Breton, P.; Guex-Crosier, Y. Trans-Scleral Diffusion of Triamcinolone Acetonide. Curr. Eye Res. 2005, 30, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, M.; Majumdar, D.K. In Vitro Transcorneal Permeation of Ketorolac Tromethamine from Buffered and Unbuffered Aqueous Ocular Drops. Indian J. Exp. Biol. 1997, 35, 941–947. [Google Scholar] [PubMed]
- Raizman, M.B.; Rubin, J.M.; Graves, A.L.; Rinehart, M. Tear Concentrations of Levofloxacin Following Topical Administration of a Single Dose of 0.5% Levofloxacin Ophthalmic Solution in Healthy Volunteers. Clin. Ther. 2002, 24, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Kitagawa, S.; Nakajima, M.; Shimada, K.; Honda, A.; Miyazaki, H. Assessment of Tear Concentrations on Therapeutic Drug Monitoring. II. Pharmacokinetic Analysis of Valproic Acid in Guinea Pig Serum, Cerebrospinal Fluid, and Tears. Pharm. Res. 2001, 18, 500–509. [Google Scholar] [CrossRef]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 2010, 4, 52. [Google Scholar] [CrossRef]
- Aggarwal, D.; Pal, D.; Mitra, A.K.; Kaur, I.P. Study of the Extent of Ocular Absorption of Acetazolamide from a Developed Niosomal Formulation, by Microdialysis Sampling of Aqueous Humor. Int. J. Pharm. 2007, 338, 21–26. [Google Scholar] [CrossRef]
- Höcht, C.; Opezzo, J.A.W.; Taira, C.A. Applicability of Reverse Microdialysis in Pharmacological and Toxicological Studies. J. Pharmacol. Toxicol. Methods 2007, 55, 3–15. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin–Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Lippmann, E.S.; Azarin, S.M.; Kay, J.E.; Nessler, R.A.; Wilson, H.K.; Al-Ahmad, A.; Palecek, S.P.; Shusta, E.V. Derivation of Blood-Brain Barrier Endothelial Cells from Human Pluripotent Stem Cells. Nat. Biotechnol. 2012, 30, 783–791. [Google Scholar] [CrossRef]
- Foulks, G.N. The Correlation Between the Tear Film Lipid Layer and Dry Eye Disease. Surv. Ophthalmol. 2007, 52, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Grgurević, M.H.; Juretić, M.; Hafner, A.; Lovrić, J.; Pepić, I. Tear Fluid-Eye Drops Compatibility Assessment Using Surface Tension. Drug Dev. Ind. Pharm. 2017, 43, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pizarro, R.; Silva-Abreu, M.; Calpena, A.C.; Egea, M.A.; Espina, M.; García, M.L. Development of Fluorometholone-Loaded PLGA Nanoparticles for Treatment of Inflammatory Disorders of Anterior and Posterior Segments of the Eye. Int. J. Pharm. 2018, 547, 338–346. [Google Scholar] [CrossRef] [PubMed]
- López-Cano, J.J.; González-Cela-Casamayor, M.A.; Andrés-Guerrero, V.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Liposomes as Vehicles for Topical Ophthalmic Drug Delivery and Ocular Surface Protection. Expert Opin. Drug Deliv. 2021, 18, 819–847. [Google Scholar] [CrossRef]
- Cai, H.; Liang, Z.; Huang, W.; Wen, L.; Chen, G. Engineering PLGA Nano-Based Systems through Understanding the Influence of Nanoparticle Properties and Cell-Penetrating Peptides for Cochlear Drug Delivery. Int. J. Pharm. 2017, 532, 55–65. [Google Scholar] [CrossRef]
Components | PLGA NPs | CPP-PLGA NPs |
---|---|---|
TA/coumarin-6 | 0.02 | 0.02 |
PLGA | 0.2 | 0.2 |
PVA | 2 | 2 |
2-HP--CD | 1.5 | 1.5 |
CPP | - | 0.04 |
deionized water | 97.28 | 96.24 |
Inhibitor/Enhancer | Concentration |
---|---|
Filipin | 0.125 |
Nystatin | 30 |
EIPA | 40 |
Brefeldin A | 25 |
Monensin | 32.5 |
Chloropromazine | 30 |
Sample | Zeta Potential (mV) |
---|---|
PLGA NPs | |
CPP-PLGA NPs |
Sample | EE (%) | DL (%) |
---|---|---|
PLGA NPs | ||
CPP-PLGA NPs |
NPs | Release Model | Fitting Equation | |
---|---|---|---|
PLGA NPs | Ritger–Peppas | 0.8303 | |
CPP-PLGA NPs | Ritger–Peppas | 0.8827 |
Parameter | (cm s−1) | cm−2 |
---|---|---|
PLGA NPs | ||
CPP-PLGA NPs |
Parameter | PLGA NPs | CPP-PLGA NPs |
---|---|---|
NPs | MRT (h) | ||
---|---|---|---|
PLGA NPs | |||
CPP-PLGA NPs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Xu, Y.; Luo, Y.; Wang, Z.; Li, F.; Qin, Z.; Ban, J. Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration. Pharmaceutics 2024, 16, 1496. https://doi.org/10.3390/pharmaceutics16121496
Huang S, Xu Y, Luo Y, Wang Z, Li F, Qin Z, Ban J. Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration. Pharmaceutics. 2024; 16(12):1496. https://doi.org/10.3390/pharmaceutics16121496
Chicago/Turabian StyleHuang, Sa, Yuan Xu, Yingyao Luo, Zhijiong Wang, Fan Li, Zhenmiao Qin, and Junfeng Ban. 2024. "Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration" Pharmaceutics 16, no. 12: 1496. https://doi.org/10.3390/pharmaceutics16121496
APA StyleHuang, S., Xu, Y., Luo, Y., Wang, Z., Li, F., Qin, Z., & Ban, J. (2024). Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration. Pharmaceutics, 16(12), 1496. https://doi.org/10.3390/pharmaceutics16121496