Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction, Isolation, and Characterization of BRA
2.2. Nanoencapsulation Method
2.3. FTIR Characterization
2.4. Encapsulation Efficiency (EE%)
2.5. Accelerated Stability Testing
2.6. Atomic Force Microscopy (AFM)
2.7. Scanning Electron Microscope (SEM)
2.8. Particle Size and ζ Potential
2.9. Oxidation Stability Assay
2.10. Cytotoxicity Assay on Macrophages
2.11. Cytotoxicity Assay on Leishmania Amazonensis Promastigotes
2.12. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Stability Assay
3.2. FTIR
3.3. Accelerated Stability Testing
3.4. EE%
3.5. Morphological Characterization
3.6. Particle Size and ζ Potential
3.7. Oxidation Stability Assay
3.8. Leishmanicidal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nii-Trebi, N.I. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges. Biomed. Res. Int. 2017, 2017, 5245021. [Google Scholar] [CrossRef]
- McArthur, D.B. Emerging Infectious Diseases. Nurs. Clin. N. Am. 2019, 54, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef]
- Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.M.; Carvalho, G.B.; Rocha, M.O. American tegumentary leishmaniasis in Brazil: A critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health. 2019, 24, 380–391. [Google Scholar] [CrossRef]
- Gontijo, B.; de Carvalho Mde, L. Leishmaniose tegumentar americana [American cutaneous leishmaniasis]. Rev. Soc. Bras. Med. Trop. 2003, 36, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Lindoso, J.A. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert. Rev. Anti Infect. Ther. 2010, 8, 419–433. [Google Scholar] [CrossRef]
- Pinart, M.; Rueda, J.R.; Romero, G.A.; Pinzón-Flórez, C.E.; Osorio-Arango, K.; Silveira Maia-Elkhoury, A.N.; Reveiz, L.; Elias, V.M.; Tweed, J.A. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst. Rev. 2020, 8, CD004834. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.R.; Penna, G. Miltefosine and cutaneous leishmaniasis. Curr. Opin. Infect. Dis. 2012, 25, 141–144. [Google Scholar] [CrossRef]
- Soto, J.A.; Berman, J.D. Miltefosine Treatment of Cutaneous Leishmaniasis. Clin. Infect. Dis. 2021, 73, e2463–e2464. [Google Scholar] [CrossRef] [PubMed]
- Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.; Zembower, T.R. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 619–635. [Google Scholar] [CrossRef] [PubMed]
- McGhee, S.; Gonzalez, J.; Nadeau, C.; Ortega, J. Assessment and treatment of cutaneous leishmaniasis in the emergency department. Emerg. Nurse. 2020, 28, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Acevedo, C.; Perdomo-Madrigal, C.; Muratov, E.N.; Scotti, L.; Scotti, M.T. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021, 16, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015, 147, 59–110. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; Arcanjo, D.D.R.; Peron, A.P. Drug development, Brazilian biodiversity and political choices: Where are we heading? J. Toxicol. Environ. Health B Crit. Rev. 2023, 26, 257–274. [Google Scholar] [CrossRef]
- Peixoto, J.C.; Neves, B.J.; Vasconcelos, F.G.; Napolitano, H.B.; Barbalho, M.G.D.S.; Silva, S.D.E.; Rosseto, L.P. Flavonoids from Brazilian Cerrado: Biosynthesis, Chemical and Biological Profile. Molecules 2019, 24, 2891. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Neto, J.A.; Pimenta Tarôco, B.R.; Batista Dos Santos, H.; Thomé, R.G.; Wolfram, E.; Maciel de ARibeiro, R.I. Using the plants of Brazilian Cerrado for wound healing: From traditional use to scientific approach. J. Ethnopharmacol. 2020, 260, 112547. [Google Scholar] [CrossRef]
- Arruda, H.S.; Araújo, M.V.L.; Marostica Junior, M.R. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. Food Chem. 2022, 5, 100148. [Google Scholar] [CrossRef]
- Do Nascimento, J.R.; de Jesus Alves Miranda, A.; Vieira, F.C.; Rodrigues, C.D.P.; Vasconcelos, L.N.; Filho, J.L.P.; Lopes, A.C.C.B.; Tangerina, M.M.P.; Vilegas, W.; da Rocha, C.Q. A Review of the Phytochemistry and Pharmacological Properties of the Genus Arrabidaea. Pharmaceuticals 2022, 15, 658, Published 25 May 2022. [Google Scholar] [CrossRef]
- Da Rocha, C.Q.; Queiroz, E.F.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Marcourt, L.; Vilegas, W.; Wolfender, J.L. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J. Nat. Prod. 2014, 77, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, C.Q.; Vilela, F.C.; Cavalcante, G.P.; Santa-Cecília, F.V.; Santos-e-Silva, L.; dos Santos, M.H.; Giusti-Paiva, A. Anti-inflammatory and antinociceptive effects of Arrabidaea brachypoda (DC.) Bureau roots. J. Ethnopharmacol. 2011, 133, 396–401. [Google Scholar] [CrossRef]
- Rocha, P.C.; Queiroz, E.F.; Marcourt, L.; Vilegas, W.; Grimaldi, G.B.; Furrer, P.; Allemann, E.; Soares, M.B. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules 2018, 24, 1. [Google Scholar] [CrossRef]
- Li, S.; Yang, C.; Li, J.; Zhang, C.; Zhu, L.; Song, Y.; Guo, Y.; Wang, R.; Gan, D.; Shi, J.; et al. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int. J. Nanomed. 2023, 18, 4485–4505. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.C.V.; de Morais, F.A.P.; Campanholi, K.D.S.S.; Bidóia, D.L.; Balbinot, R.B.; Nakamura, C.V.; Caetano, W.; Hioka, N.; dos Santos Monteiro, O.; da Rocha, C.Q.; et al. Melanoma-targeted photodynamic therapy based on hypericin-loaded multifunctional P123-spermine/folate micelles. Photodiagnosis Photodyn. Ther. 2022, 40, 103103. [Google Scholar] [CrossRef] [PubMed]
- Sakita, K.M.; Conrado, P.C.; Faria, D.R.; Arita, G.S.; Capoci, I.R.; Rodrigues-Vendramini, F.A.; Pieralisi, N.; Cesar, G.B.; Gonçalves, R.S.; Caetano, W.; et al. Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of Candida species. Future Microbiol. 2019, 14, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Torne, S.R.; Sheela, A.; Sarada, N.C. A Review on Oral Liquid as an Emerging Technology in Controlled Drug Delivery System. Curr. Pharm. Des. 2018, 24, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, J.; Zhang, Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm. Nanotechnol. 2020, 8, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- ANVISA. Guia de Estabilidade de Produtos Cosméticos—Séries Temáticas, 1st ed.; ANVISA: Brasília, Brazil, 2004. [Google Scholar]
- Cosmetic Europe—The Person Care Association. Guidelines on Stability Testing of Cosmetic. 2004. Available online: https://www.cosmeticseurope.eu/files/5914/6407/8121/Guidelines_on_Stability_Testing_o_Cosmetics_CE-CTFA_-_2004.pdf (accessed on 1 September 2022).
- United States Pharmacopeia and National Formulary (USP 41-NF 36). United States Pharmacopeial Convention. 2016. Available online: https://online.uspnf.com/uspnf/document/GUID-AC788D41-90A2-4F36-A6E7-769954A9ED09_1_en-US (accessed on 1 November 2023).
- Liang, W.; Shi, H.; Yang, X.; Wang, J.; Yang, W.; Zhang, H.; Liu, L. Recent advances in AFM-based biological characterization and applications at multiple levels [published online ahead of print, 2020 Sep 30]. Soft Matter. 2020, 16, 8962–8984. [Google Scholar] [CrossRef]
- Szymonski, M.; Targosz-Korecka, M.; Malek-Zietek, K.E. Nano-mechanical model of endothelial dysfunction for AFM-based diagnostics at the cellular level. Pharmacol. Rep. 2015, 67, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Darling, E.M. Force scanning: A rapid, high-resolution approach for spatial mechanical property mapping. Nanotechnology 2011, 22, 175707. [Google Scholar] [CrossRef]
- Bini, M.; Brancolini, G.; Tozzini, V. Aggregation behavior of nanoparticles: Revisiting the phase diagram of colloids. Front. Mol. Biosci. 2022, 9, 986223. [Google Scholar] [CrossRef]
- Vandoolaeghe, P.; Tiberg, F.; Nylander, T. Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces. Langmuir 2006, 22, 9169–9174. [Google Scholar] [CrossRef] [PubMed]
- Landazuri, G.; Fernandez, V.V.; Soltero, J.F.; Rharbi, Y. Kinetics of the sphere-to-rod like micelle transition in a pluronic triblock copolymer. J. Phys. Chem. B. 2012, 116, 11720–11727. [Google Scholar] [CrossRef]
- Dan, N.; Safran, S.A. Junctions and end-caps in self-assembled non-ionic cylindrical micelles. Adv. Colloid. Interface Sci. 2006, 123–126, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Nga, N.K.; Giang, L.T.; Huy, T.Q.; Viet, P.H.; Migliaresi, C. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids Surf. B Biointerfaces. 2014, 116, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Abreu, C.; Shrestha, R.G.; Shrestha, L.K.; Harush, E.; Regev, O. Worm-like soft nanostructures in nonionic systems: Principles, properties and application as templates. J. Nanosci. Nanotechnol. 2013, 13, 4497–4520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Fu, Q.; Liu, D.; Ma, Y.; Racette, K.; He, Z.; Liu, F. Shape-controlled paclitaxel nanoparticles with multiple morphologies: Rod-shaped, worm-like, spherical, and fingerprint-like. Mol. Pharm. 2014, 11, 3766–3771. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Wang, X.; Shen, Z.; Li, B.; Hu, J.; Zhang, Y. Nanoscale mapping of dielectric properties based on surface adhesion force measurements. Beilstein J. Nanotechnol. 2018, 9, 900–906. [Google Scholar] [CrossRef]
- Lim, C.; Ramsey, J.D.; Hwang, D.; Teixeira, S.C.; Poon, C.D.; Strauss, J.D.; Rosen, E.P.; Sokolsky-Papkov, M.; Kabanov, A.V. Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. Small 2022, 18, e2103552. [Google Scholar] [CrossRef]
- Geng, Y.; Discher, D.E. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc. 2005, 127, 12780–12781. [Google Scholar] [CrossRef] [PubMed]
- Champion, J.A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244–249. [Google Scholar] [CrossRef]
- Verwey, E.J. Theory of the stability of lyophobic colloids. J. Phys. Colloid. Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, J.R.; Ribeiro, G.A.C.; Serrano, S.H.P.; Lima, R.B.; Tanaka, A.A.; da Silva, I.S.; da Rocha, C.Q. Electrochemical Behavior of Unusual Dimeric Flavonoids Isolated from Fridericia platyphylla. J. Braz. Chem. Soc. 2021, 32, 1286–1293. [Google Scholar] [CrossRef]
- Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B. 1999, 16, 3–27. [Google Scholar] [CrossRef]
- Sharma, P.K.; Bhatia, S.R. Effect of anti-inflammatories on Pluronic F127: Micellar assembly, gelation and partitioning. Int. J. Pharm. 2004, 278, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Braga, G.; Campanholi, K.S.S.; Ferreira, S.S.S.; Calori, I.R.; de Oliveira, J.H.; Vanzin, D.; Bruschi, M.L.; Pontes, R.M.; Março, P.H.; Tessaro, A.L.; et al. Tautomeric and Aggregational Dynamics of Curcumin- Supersaturated Pluronic Nanocarriers. ACS Appl. Polym. Mater. 2020, 2, 4493–4511. [Google Scholar] [CrossRef]
- Bodratti, A.M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control Release 2002, 82, 189–212. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Holzwarthf, J.F.; Hatton, T.A. Micellization of Poly(ethy1ene oxide)-Poly(propy1ene oxide)-Poly(ethy1ene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Montanha, M.C.; Silva, L.L.; Pangoni, F.B.B.; Cesar, G.B.; Gonçalves, R.S.; Caetano, W.; Hioka, N.; Tominaga, T.T.; Lopes Consolaro, M.E.; Diniz, A.; et al. Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. J. Photochem. Photobiol. B. 2017, 170, 247–255. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; de Oliveira, A.C.V.; Hioka, N.; Caetano, W. Elucidation the binding interaction of hypericin-loaded P84 copolymeric micelles by using 1D and 2D NMR techniques. Nat. Prod. Res. 2022, 36, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008, 130, 98–106. [Google Scholar] [CrossRef]
- Nagarajan, R. Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO–PPO–PEO) block copolymers. Colloids Surf. B. 1999, 16, 55–72. [Google Scholar] [CrossRef]
- Huang, S.J.; Sun, S.L.; Feng, T.H.; Sung, K.H.; Lui, W.L.; Wang, L.F. Folate-mediated chondroitin sulfate-Pluronic 127 nanogels as a drug carrier. Eur. J. Pharm. Sci. 2009, 38, 64–73. [Google Scholar] [CrossRef]
Compound Class | Wavenumber (cm−1) | Assignment | |
---|---|---|---|
BRA | LF-B500 | ||
Methyl | 2931 | 2966 | symmetric C-H stretching |
2846 | 2875 | anti-symmetric C-H stretching | |
1369 | 1369 | symmetric deformation | |
Alkene | 1612 | 1647 | C=C stretching |
960 | - | CH wag (1,2-trans-disubstituted) | |
Benzene | 1469 | 1469 | C=C stretching |
821 | 871 | C-H out-of-plane bending (mono-substituted benzene) | |
698 | 698 | C-H out-of-plane bending (1,4-substituted benzene) | |
Phenol | 1269 | 1300 | O-H bending |
1207 | 1249 | C-C-O out-of-plane stretching | |
Ether | 1107 | 1107 | C-O-C stretching of aromatic ether |
1029 | - | C-O-C stretching of cyclic ether |
Formulation | P ± SD (nm) (A (%)) | Dh (nm) | PDI (%) | ζ (mV) | ||
---|---|---|---|---|---|---|
F127 | 717 ± 300 | 214 ± 48 | 16 ± 5 | 796 | 30 | −17 |
(60) | (35) | (5) | ||||
LF-B500 | 247 ± 100 | 23 ± 10 | 359 ± 119 | 157 | 28 | −13 |
(56) | (35) | (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, C.S.; Marques, E.M.; do Nascimento, J.R.; Lima, V.A.S.; Santos-Oliveira, R.; Figueredo, A.S.; de Jesus, C.M.; de Souza Nunes, G.C.; Brandão, C.M.; de Jesus, E.T.; et al. Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis. Pharmaceutics 2024, 16, 252. https://doi.org/10.3390/pharmaceutics16020252
da Costa CS, Marques EM, do Nascimento JR, Lima VAS, Santos-Oliveira R, Figueredo AS, de Jesus CM, de Souza Nunes GC, Brandão CM, de Jesus ET, et al. Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis. Pharmaceutics. 2024; 16(2):252. https://doi.org/10.3390/pharmaceutics16020252
Chicago/Turabian Styleda Costa, Camila Silva, Estela Mesquita Marques, Jessyane Rodrigues do Nascimento, Victor Antônio Silva Lima, Ralph Santos-Oliveira, Aline Santana Figueredo, Caroline Martins de Jesus, Glécilla Colombelli de Souza Nunes, Clenilma Marques Brandão, Edson Tobias de Jesus, and et al. 2024. "Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis" Pharmaceutics 16, no. 2: 252. https://doi.org/10.3390/pharmaceutics16020252
APA Styleda Costa, C. S., Marques, E. M., do Nascimento, J. R., Lima, V. A. S., Santos-Oliveira, R., Figueredo, A. S., de Jesus, C. M., de Souza Nunes, G. C., Brandão, C. M., de Jesus, E. T., Sa, M. C., Tanaka, A. A., Braga, G., Santos, A. C. F., de Lima, R. B., Silva, L. A., Alencar, L. M. R., da Rocha, C. Q., & Gonçalves, R. S. (2024). Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis. Pharmaceutics, 16(2), 252. https://doi.org/10.3390/pharmaceutics16020252