General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antler Samples
2.2. Production of DVA Extract and Protein Quantification
2.3. Cell Cultures and Cell Culture Materials
2.4. Cell Viability Assay
2.5. Scratch Assay
2.6. M1/M2 Macrophages
2.7. Cytokine Array
2.8. Subcutaneous Xenograft Model
2.9. Functional Enrichment Analysis
3. Results
3.1. Generality of DVA Anticancer Effects: Direct Effects on Glioblastoma, Leukaemia, Colorectal and Breast Cancer Cell Lines vs. Non-Cancerous Cell Lines
3.1.1. Glioblastoma
3.1.2. Other Cancer and Non-Cancer Cell Lines
3.2. DVA Antitumoral Effect in Mice with Xenograft Glioblastoma
3.2.1. Effects at Macroscopic Level
3.2.2. Effects at Microscopic Level
3.2.3. DVA Effects on Serum Proteins’ Expression and Related Coding Genes
4. Discussion
The Potential of DVA or Its Molecules as a Future Medicine against Cancer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gaspar-López, E.; Landete-Castillejos, T.; Estevez, J.A.; Ceacero, F.; Gallego, L.; García, A.J. Biometrics, Testosterone, Cortisol and Antler Growth Cycle in Iberian Red Deer Stags (Cervus elaphus hispanicus). Reprod. Domest. Anim. 2010, 45, 243–249. [Google Scholar] [CrossRef]
- Gomez, S.; Garcia, A.J.; Luna, S.; Kierdorf, U.; Kierdorf, H.; Gallego, L.; Landete-Castillejos, T. Labeling Studies on Cortical Bone Formation in the Antlers of Red Deer (Cervus elaphus). Bone 2013, 52, 506–515. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Kierdorf, H.; Gomez, S.; Luna, S.; García, A.J.; Cappelli, J.; Pérez-Serrano, M.; Pérez-Barbería, J.; Gallego, L.; Kierdorf, U. Antlers-Evolution, Development, Structure, Composition, and Biomechanics of an Outstanding Type of Bone. Bone 2019, 128, 115046. [Google Scholar] [CrossRef]
- Valerius, G. Deer of the World, Their Evolution, Behaviour, and Ecology; Stackpole Book: Mechanicsburg PA, USA, 1998; ISBN 0-8117-0496-3. [Google Scholar]
- Goss, R.J. Problems of Antlerogenesis. Clin. Orthop. Rel. Res. 1970, 69, 221–238. [Google Scholar]
- Wang, D.; Landete-Castillejos, T. Stem Cells Drive Antler Regeneration. Science 2023, 379, 757–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Wang, N.; Li, Z.; Heller, R.; Liu, R.; Zhao, Y.; Han, J.; Pan, X.; Zheng, Z.; et al. Genetic Basis of Ruminant Headgear and Rapid Antler Regeneration. Science 2019, 364, eaav6335. [Google Scholar] [CrossRef]
- Fan, Y.L.; Xing, Z.; Wei, Q.; Liu, G.R.; Li, H.P.; Zhou, S.Q. A Study on the Extraction Separation and Anticancer Activity of Velvet Antler Protein. J. Econ. Anim. 1998, 3, 27–31. [Google Scholar]
- Xiong, H.L. Extraction and Isolation of Activity Component from Velvet Antler and Research of Its Anti-Tumor Effect. Master’s Thesis, Northwest A & F University, Yangling, China, 2007. [Google Scholar]
- Yang, H.; Wang, L.; Sun, H.; He, X.; Zhang, J.; Liu, F. Anticancer Activity in Vitro and Biological Safety Evaluation in Vivo of Sika Deer Antler Protein. J. Food Biochem. 2017, 41, e12421. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, M.; Choi, Y.-J.; Yu, Y.; Yao, G.; Deng, Y.; Moon, S.-H.; Kim, E.-K. Sika Deer (Cervus nippon) Velvet Antler Extract Attenuates Prostate Cancer in Xenograft Model. Biosci. Biotechnol. Biochem. 2019, 83, 348–356. [Google Scholar] [CrossRef]
- Chonco, L.; Landete-Castillejos, T.; Serrano-Heras, G.; Serrano, M.P.; Pérez-Barbería, F.J.; González-Armesto, C.; García, A.; de Cabo, C.; Lorenzo, J.M.; Li, C.; et al. Anti-Tumour Activity of Deer Growing Antlers and Its Potential Applications in the Treatment of Malignant Gliomas. Sci. Rep. 2021, 11, 42. [Google Scholar] [CrossRef]
- Hu, W.; Qi, L.; Tian, Y.H.; Hu, R.; Wu, L.; Meng, X.Y. Studies on the Purification of Polypeptide from Sika Antler Plate and Activities of Antitumor. BMC Complement. Altern. Med. 2015, 15, 328. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Q.; Dong, H.; Zhao, S.; Ning, J.; Bai, X.; Yue, X.; Xie, A. Pilose Antler Polypeptides Enhance Chemotherapy Effects in Triple-Negative Breast Cancer by Activating the Adaptive Immune System. Int. J. Biol. Macromol. 2022, 222, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Haines, S.R.; Stuart, E.C.; Scandlyn, M.J.; Alexander, A.; Somers-Edgar, T.J.; Rosengren, R.J. Deer Velvet Supplementation Decreases the Grade and Metastasis of Azoxymethane-Induced Colon Cancer in the Male Rat. Food Chem. Toxicol. 2010, 48, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.-Q.; An, H.-X.; Ma, R.-J.; Dai, K.-Y.; Ji, H.-Y.; Liu, A.-J.; Zhou, J.-P. Structural Characteristics of a Low Molecular Weight Velvet Antler Protein and the Anti-Tumor Activity on S180 Tumor-Bearing Mice. Bioorg. Chem. 2023, 131, 106304. [Google Scholar] [CrossRef] [PubMed]
- Landete-Castillejos, T.; Rossetti, A.; Garcia, A.J.; de Cabo, C.; Festuccia, C.; Luna, S.; Chonco, L. From a General Anti-Cancer Treatment to Antioxidant or Deer Osteoporosis: The Consequences of Antler as the Fastest-Growing Tissue. Anim. Prod. Sci. 2022, 63, 1607–1614. [Google Scholar] [CrossRef]
- Liu, L.; Jiao, Y.; Yang, M.; Wu, L.; Long, G.; Hu, W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int. J. Mol. Sci. 2023, 24, 10370. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Wang, W.; Scimeca, M.; Melino, G.; Du, R.; Shi, Y. Deer Antlers: The Fastest Growing Tissue with Least Cancer Occurrence. Cell Death Differ. 2023, 30, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Ugel, S.; Peranzoni, E.; Desantis, G.; Chioda, M.; Walter, S.; Weinschenk, T.; Ochando, J.C.; Cabrelle, A.; Mandruzzato, S.; Bronte, V. Immune Tolerance to Tumor Antigens Occurs in a Specialized Environment of the Spleen. Cell Rep. 2012, 2, 628–639. [Google Scholar] [CrossRef]
- Yang, M.; Pu, L.; Yang, S.; Chen, Z.; Guo, J.; Liu, Y.; Chang, S.; Peng, Y. Engineered Antler Stem Cells Derived Exosomes Potentiate Anti-Tumor Efficacy of Immune Checkpoint Inhibitor by Reprogramming Immunosuppressive Tumor Microenvironment. Chem. Eng. J. 2024, 479, 147421. [Google Scholar] [CrossRef]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological Aspects of Cancer Chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Marvel, D.; Gabrilovich, D.I. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Expect the Unexpected. J. Clin. Investig. 2015, 125, 3356–3364. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wei, Y.; Li, Z.-Y.; Cai, X.-Y.; Zhang, L.-L.; Dong, X.-R.; Zhang, S.; Zhang, R.-G.; Meng, R.; Zhu, F.; et al. Catecholamines Contribute to the Neovascularization of Lung Cancer via Tumor-Associated Macrophages. Brain Behav. Immun. 2019, 81, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, Y.; Wei, W.; Li, J.-W.; Li, L.; Zhang, C.; Zhang, S.-Q.; Kong, G.-Y.; Li, Z.-F. Spleen Contributes to Restraint Stress Induced Hepatocellular Carcinoma Progression. Int. Immunopharmacol. 2020, 83, 106420. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.W. Tumour-Educated Macrophages Promote Tumour Progression and Metastasis. Nat. Rev. Cancer 2004, 4, 71–78. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Guo, X.; Zhao, J.; Zhou, S. A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy. Small 2020, 16, e2003543. [Google Scholar] [CrossRef] [PubMed]
- Genin, M.; Clement, F.; Fattaccioli, A.; Raes, M.; Michiels, C. M1 and M2 Macrophages Derived from THP-1 Cells Differentially Modulate the Response of Cancer Cells to Etoposide. BMC Cancer 2015, 15, 577. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bao, X.; Zou, Y.; Wang, L.; Li, Y.; Yang, L.; Liao, A.; Zhang, X.; Jiang, X.; Liang, D.; et al. D-Lactate Modulates M2 Tumor-Associated Macrophages and Remodels Immunosuppressive Tumor Microenvironment for Hepatocellular Carcinoma. Sci. Adv. 2023, 9, eadg2697. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.H.; Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; et al. Origins of Tumor-Associated Macrophages and Neutrophils. Proc. Natl. Acad. Sci. USA 2012, 109, 2491–2496. [Google Scholar] [CrossRef]
- Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Ryan, R.; Pucci, F.; Sio, S.W.; Kuswanto, W.; Rauch, P.J.; Chudnovskiy, A.; Iwamoto, Y.; et al. Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity 2013, 38, 296–308. [Google Scholar] [CrossRef]
- Wu, C.; Ning, H.; Liu, M.; Lin, J.; Luo, S.; Zhu, W.; Xu, J.; Wu, W.-C.; Liang, J.; Shao, C.-K.; et al. Spleen Mediates a Distinct Hematopoietic Progenitor Response Supporting Tumor-Promoting Myelopoiesis. J. Clin. Investig. 2018, 128, 3425–3438. [Google Scholar] [CrossRef]
- Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016, 37, 208–220. [Google Scholar] [CrossRef]
- Muir, P.D.; Sykes, A.R.; Barrell, G.K. Growth and mineralisation of antlers in red deer (Cervus elaphus). N. Z. J. Agric. Res. 1987, 30, 305–315. [Google Scholar] [CrossRef]
- García Bueno, J.M.; Ocaña, A.; Castro-García, P.; Gil Gas, C.; Sánchez-Sánchez, F.; Poblet, E.; Serrano, R.; Calero, R.; Ramírez-Castillejo, C. An Update on the Biology of Cancer Stem Cells in Breast Cancer. Clin. Transl. Oncol. 2008, 10, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Gundara, J.S.; Gill, A.J.; Samra, J.S. Efficacy of Primary Tumour Volume as a Predictor of Survival Compared with Size Alone in Pancreatic Ductal Adenocarcinoma. Oncol. Lett. 2015, 10, 744–748. [Google Scholar] [CrossRef]
- Sánchez-Díez, M.; Alegría-Aravena, N.; López-Montes, M.; Quiroz-Troncoso, J.; González-Martos, R.; Menéndez-Rey, A.; Sánchez-Sánchez, J.L.; Pastor, J.M.; Ramírez-Castillejo, C. Implication of Different Tumor Biomarkers in Drug Resistance and Invasiveness in Primary and Metastatic Colorectal Cancer Cell Lines. Biomedicines 2022, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J. CD26 and Cancer. Cancers 2022, 14, 5194. [Google Scholar] [CrossRef] [PubMed]
- Chee, C.W.; Mohd Hashim, N.; Nor Rashid, N. Morindone as a Potential Therapeutic Compound Targeting TP53 and KRAS Mutations in Colorectal Cancer Cells. Chem. Biol. Interact. 2024, 392, 110928. [Google Scholar] [CrossRef]
- Marks, M.P.; Giménez, C.A.; Isaja, L.; Vera, M.B.; Borzone, F.R.; Pereyra-Bonnet, F.; Romorini, L.; Videla-Richardson, G.A.; Chasseing, N.A.; Calvo, J.C.; et al. Role of Hydroxymethylglutharyl-Coenzyme A Reductase in the Induction of Stem-like States in Breast Cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 106. [Google Scholar] [CrossRef]
- Gil-Gas, C.; Sánchez-Díez, M.; Honrubia-Gómez, P.; Sánchez-Sánchez, J.L.; Alvarez-Simón, C.B.; Sabater, S.; Sánchez-Sánchez, F.; Ramírez-Castillejo, C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers 2023, 15, 5422. [Google Scholar] [CrossRef]
- Zuben de Valega Negrão, C.V.; Cerize, N.N.; da Silva Justo-Junior, A.; Liszbinski, R.B.; Meneguetti, G.P.; Araujo, L.; Rocco, S.A.; de Almeida Gonçalves, K.; Cornejo, D.R.; Leo, P.; et al. HER2 Aptamer-Conjugated Iron Oxide Nanoparticles with PDMAEMA-b-PMPC Coating for Breast Cancer Cell Identification. Nanomedicine 2024, 19, 231–254. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.P.; Maggiolino, A.; Pateiro, M.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Franco, D.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass Characteristics and Meat Quality of Deer. In More Than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 227–268. ISBN 978-3-030-05484-7. [Google Scholar]
- Cui, X.; Morales, R.-T.T.; Qian, W.; Wang, H.; Gagner, J.-P.; Dolgalev, I.; Placantonakis, D.; Zagzag, D.; Cimmino, L.; Snuderl, M.; et al. Hacking Macrophage-Associated Immunosuppression for Regulating Glioblastoma Angiogenesis. Biomaterials 2018, 161, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Emi, M.; Tanabe, K.; Uchida, Y.; Toge, T. The Role of Fas Ligand and Transforming Growth Factor β in Tumor Progression. Cancer 2004, 100, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Simińska, D.; Kojder, K.; Grochans, S.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Fractalkine/CX3CL1 in Neoplastic Processes. Int. J. Mol. Sci. 2020, 21, 3723. [Google Scholar] [CrossRef]
- Kumar, A.; Taghi Khani, A.; Sanchez Ortiz, A.; Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022, 13, 901277. [Google Scholar] [CrossRef]
- Rébé, C.; Ghiringhelli, F. Interleukin-1β and Cancer. Cancers 2020, 12, 1791. [Google Scholar] [CrossRef]
- Duan, J.; Gao, Y.; Zhang, X.; Wang, X.; Wang, B.; Meng, X.; Yoshikai, Y.; Wang, Y.; Sun, X. CD30 Ligand Deficiency Accelerates Glioma Progression by Promoting the Formation of Tumor Immune Microenvironment. Int. Immunopharmacol. 2019, 71, 350–360. [Google Scholar] [CrossRef]
- Djureinovic, D.; Wang, M.; Kluger, H.M. Agonistic CD40 Antibodies in Cancer Treatment. Cancers 2021, 13, 1302. [Google Scholar] [CrossRef]
- Sunwoo, H.H.; Nakano, T.; Hudson, R.J.; Sim, J.S. Chemical composition of antlers from Wapiti (Cervus elaphus). J. Agric. Food Chem. 1995, 43, 2846–2849. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossetti, A.; Chonco, L.; Alegría, N.; Zelli, V.; García, A.J.; Ramírez-Castillejo, C.; Tessitore, A.; de Cabo, C.; Landete-Castillejos, T.; Festuccia, C. General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics 2024, 16, 610. https://doi.org/10.3390/pharmaceutics16050610
Rossetti A, Chonco L, Alegría N, Zelli V, García AJ, Ramírez-Castillejo C, Tessitore A, de Cabo C, Landete-Castillejos T, Festuccia C. General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics. 2024; 16(5):610. https://doi.org/10.3390/pharmaceutics16050610
Chicago/Turabian StyleRossetti, Alessandra, Louis Chonco, Nicolas Alegría, Veronica Zelli, Andrés J. García, Carmen Ramírez-Castillejo, Alessandra Tessitore, Carlos de Cabo, Tomás Landete-Castillejos, and Claudio Festuccia. 2024. "General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma" Pharmaceutics 16, no. 5: 610. https://doi.org/10.3390/pharmaceutics16050610
APA StyleRossetti, A., Chonco, L., Alegría, N., Zelli, V., García, A. J., Ramírez-Castillejo, C., Tessitore, A., de Cabo, C., Landete-Castillejos, T., & Festuccia, C. (2024). General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics, 16(5), 610. https://doi.org/10.3390/pharmaceutics16050610