A Physiologically Based Pharmacokinetic (PBPK) Study to Assess the Adjuvanticity of Three Peptides in an Oral Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Literature
2.1.1. Step 1—Research Literature
2.1.2. Step 2—Screening
2.1.3. Step 3—Selection of Peptides for the PBPK Analysis Based on Results
2.2. PBPK Models Preparation
2.2.1. MDP—Model Preparation and Optimization
- First Step
- Second Step
- Third Step
2.2.2. MTP-PE—Model Preparation and Optimization
- First Step
- Second Step
- Third Step
- Fourth Step
- Fifth Step
2.2.3. Murabutide—Model Preparation and Optimization
- First Step
- Second Step
- Third Step
3. Results
3.1. Results Related to Models Optimization
- MDP
- MTP-PE
- Murabutide
3.2. Compartmental Absorption Chart Bars of MDP, MTP_PE and Murabutide
- MDP
- MTP-PE
- Murabutide
3.3. Optimized-MDP vs. Optimized-MTP-PE vs. Optimized-Murabutide
4. Discussion
4.1. Summary of Findings
4.2. Context of Findings
4.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tizard, I.R. Chapter 7—Adjuvants and adjuvanticity. In Vaccines for Veterinarians; Tizard, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–86.e71. [Google Scholar]
- Marriott, M.; Post, B.; Chablani, L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat. Res. Commun. 2023, 34, 100667. [Google Scholar] [CrossRef] [PubMed]
- Apostólico, J.d.S.; Lunardelli, V.A.; Coirada, F.C.; Boscardin, S.B.; Rosa, D.S. Adjuvants: Classification, Modus Operandi, and Licensing. J. Immunol. Res. 2016, 2016, 1459394. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Visalli, G.; Laganà, A.; Di Pietro, A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines 2022, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Awate, S.; Babiuk, L.; Mutwiri, G. Mechanisms of Action of Adjuvants. Front. Immunol. 2013, 4, 50795. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; O’Hagan, D.T. Recent Advances in Vaccine Adjuvants. Pharm. Res. 2002, 19, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine adjuvants: Mechanisms and platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Amberg, A. In Silico Methods. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Vogel, H.G., Maas, J., Hock, F.J., Mayer, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1273–1296. [Google Scholar]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef]
- Viceconti, M.; Pappalardo, F.; Rodriguez, B.; Horner, M.; Bischoff, J.; Musuamba Tshinanu, F. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 2021, 185, 120–127. [Google Scholar] [CrossRef]
- Guideline on the Reporting of Physiologically Based Pharmacokinetic (PBPK) Modelling and Simulation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-and-simulation_en.pdf (accessed on 4 May 2024).
- Physiologically Based Pharmacokinetic Analyses—Format and Content Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry (accessed on 4 May 2024).
- Jones, H.; Rowland-Yeo, K. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016, 6, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ouyang, D. Opportunities and challenges of physiologically based pharmacokinetic modeling in drug delivery. Drug Discov. Today 2022, 27, 2100–2120. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, L.; Langel, Ü.; Vale, N. In Silico Studies to Support Vaccine Development. Pharmaceutics 2023, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Tegenge, M.A.; Mitkus, R.J. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in human influenza vaccine adjuvant. Regul. Toxicol. Pharmacol. 2015, 71, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. [Google Scholar] [CrossRef]
- Meshcheryakova, E.; Guryanova, S.; Makarov, E.; Andronova, T.; Ivanov, V. Structure-function investigation of glucosaminylmuramoylpeptides. Influence of chemical modification of N-acetylglucosaminyl-Nacetylmuramoyldipeptide (GMDP) on its immunomodulatory properties in vivo and in vitro. Bioorg. Chem. 1991, 17, 1157–1165. [Google Scholar]
- Kager, L.; Pötschger, U.; Bielack, S. Review of mifamurtide in the treatment of patients with osteosarcoma. Ther. Clin. Risk Manag. 2010, 6, 279–286. [Google Scholar] [CrossRef]
- Guryanova, S.V.; Khaitov, R.M. Strategies for Using Muramyl Peptides—Modulators of Innate Immunity of Bacterial Origin—in Medicine. Front. Immunol. 2021, 12, 607178. [Google Scholar] [CrossRef]
- Frampton, J.E. Mifamurtide. Pediatr. Drugs 2010, 12, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, K.; Liu, Y.; Noe, D.; Mertz, J.; Bargfrede, M.; Marbury, T.; Farbakhsh, K.; Oliva, C.; Milton, A. Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br. J. Clin. Pharmacol. 2014, 77, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- EMA. Available online: https://www.ema.europa.eu/en/documents/product-information/mepact-epar-product-information_en.pdf (accessed on 10 December 2023).
- Ando, K.; Mori, K.; Corradini, N.; Redini, F.; Heymann, D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacother. 2011, 12, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, L.; Vale, N. The First Physiologically Based Pharmacokinetic (PBPK) Model for an Oral Vaccine Using Alpha-Tocopherol as an Adjuvant. Pharmaceutics 2023, 15, 2313. [Google Scholar] [CrossRef] [PubMed]
- ADMET Predictor®. Available online: https://www.simulations-plus.com/software/admetpredictor/ (accessed on 18 May 2024).
- Sun, Y.; Hou, T.; He, X.; Man, V.H.; Wang, J. Development and test of highly accurate endpoint free energy methods. 2: Prediction of logarithm of n-octanol-water partition coefficient (logP) for druglike molecules using MM-PBSA method. J. Comput. Chem. 2023, 44, 1300–1311. [Google Scholar] [CrossRef]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2020, 15, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Roos, C.; Sjögren, E.; Lennernäs, H. Direct In Vivo Human Intestinal Permeability (Peff) Determined with Different Clinical Perfusion and Intubation Methods. J. Pharm. Sci. 2015, 104, 2702–2726. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [Google Scholar] [CrossRef]
- Moroz, E.; Matoori, S.; Leroux, J.-C. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef]
- Sun, L.; Liu, X.; Xiang, R.; Wu, C.; Wang, Y.; Sun, Y.; Sun, J.; He, Z. Structure-based prediction of human intestinal membrane permeability for rapid in silico BCS classification. Biopharm. Drug Dispos. 2013, 34, 321–335. [Google Scholar] [CrossRef]
- Maher, S.; Brayden, D.J.; Casettari, L.; Illum, L. Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J. 2016, 24, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Amiel, C.; De La Tribonnière, X.; Vidal, V.; Darcissac, E.; Mouton, Y.; Bahr, G.M. Clinical Tolerance and Immunologic Effects After Single or Repeated Administrations of the Synthetic Immunomodulator Murabutide in HIV-1-Infected Patients. JAIDS J. Acquir. Immune Defic. Syndr. 2002, 30, 294–305. [Google Scholar] [CrossRef] [PubMed]
Adjuvant | |
---|---|
Licensed | Clinical Trials |
Aluminium salts | Freund’s adjuvant |
MF59 | Poly-IC |
R837/R848 | MDP |
AS04 | CpG ODN |
AS03 | AS01 |
Flagellin | |
AS02 |
Construct | |||||
---|---|---|---|---|---|
Pubmed | vaccine* (Title) | AND | “peptide*” (Title) | AND | “adjuvant*” (Title) |
Results | Peptides | Alpha-Tocopherol Oral PBPK Model [29] Capsule 150 mg Volume 200 mL | ||
---|---|---|---|---|
Optimized-MDP | Optimized-MTP-PE | Optimized-murabutide | ||
Fa (%) | 85.31 | 100.0 | 75.91 | 100 |
FDp (%) | 85.27 | 100.0 | 75.91 | 100 |
F (%) | 65.90 | 81.69 | 47.71 | 82.096 |
Cmax (μg/mL) | 0.051 | 0.017 | 0.034 | 1.0473 |
Tmax (h) | 1.2 | 1.2 | 1.4 | 0.8 |
AUC 0-inf (μg-h/mL) | 0.152 | 0.300 | 0.128 | 14.596 |
AUC 0-t (μg-h/mL) | 0.152 | 0.286 | 0.128 | 12.501 |
Cmax liver (μg/mL) | 0.016 | 0.270 | 0.024 | 19.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldanha, L.; Langel, Ü.; Vale, N. A Physiologically Based Pharmacokinetic (PBPK) Study to Assess the Adjuvanticity of Three Peptides in an Oral Vaccine. Pharmaceutics 2024, 16, 780. https://doi.org/10.3390/pharmaceutics16060780
Saldanha L, Langel Ü, Vale N. A Physiologically Based Pharmacokinetic (PBPK) Study to Assess the Adjuvanticity of Three Peptides in an Oral Vaccine. Pharmaceutics. 2024; 16(6):780. https://doi.org/10.3390/pharmaceutics16060780
Chicago/Turabian StyleSaldanha, Leonor, Ülo Langel, and Nuno Vale. 2024. "A Physiologically Based Pharmacokinetic (PBPK) Study to Assess the Adjuvanticity of Three Peptides in an Oral Vaccine" Pharmaceutics 16, no. 6: 780. https://doi.org/10.3390/pharmaceutics16060780
APA StyleSaldanha, L., Langel, Ü., & Vale, N. (2024). A Physiologically Based Pharmacokinetic (PBPK) Study to Assess the Adjuvanticity of Three Peptides in an Oral Vaccine. Pharmaceutics, 16(6), 780. https://doi.org/10.3390/pharmaceutics16060780