Geometry-Driven Fabrication of Mini-Tablets via 3D Printing: Correlating Release Kinetics with Polyhedral Shapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Theophylline-Loaded Filaments via HME
2.3. Moisture Uptake
2.4. Three-Point Bend Test
2.5. Three-Dimensional Printing for Mini-Tablet of Polyhedron Shapes
2.6. Physicochemical Characterizations
2.6.1. Differential Scanning Calorimetry (DSC)
2.6.2. Powder X-ray Diffraction (PXRD)
2.6.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Scanning Electron Microscopy (SEM)
2.8. Characterization of Tablets Morphology
2.9. Drug Content Analysis and Dissolution Tests
2.10. Release Kinetics Studies
- Zero-order model
- First-order model
- Hixon-Crowell model
- Higuchi model
3. Results and Discussion
3.1. Preparation of 3D-Printable Filaments
3.2. Texture Analysis
3.3. Filaments Dissolution
3.4. Physicochemical Characterizations
3.5. Three-Dimensional printing and Morphological Characterization of Mini-Tablets
3.6. In Vitro Release Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trenfield, S.J.; Awad, A.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D-printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci. 2018, 39, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Filho, M.; Araújo, M.R.; Gelfuso, G.M.; Gratieri, T. FDM 3D-printing of modified drug-delivery systems using hot melt extrusion: A new approach for individualized therapy. Ther. Deliv. 2017, 8, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Kar, R.K.; Biswal, P.K.; Bindhani, S. Approaches of 3D-printing in current drug delivery. Sens. Int. 2022, 3, 100146. [Google Scholar] [CrossRef]
- BG, P.K.; Mehrotra, S.; Marques, S.M.; Kumar, L.; Verma, R. 3D-printing in personalized medicines: A focus on applications of the technology. Mater. Today Commun. 2023, 35, 105875. [Google Scholar] [CrossRef]
- Kim, N.; He, N.; Kim, C.; Zhang, F.; Lu, Y.; Yu, Q.; Stemake-Hale, K.; Greshock, J.; Wooster, R.; Yoon, S.; et al. Systematic analysis of genotype-specific drug responses in cancer. Int. J. Cancer 2012, 131, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz-Latała, M.; Nartowski, K.P.; Dominik, A.; Malec, K.; Gołkowska, A.M.; Złocińska, A.; Rusińska, M.; Szymczyk-Ziółkowska, P.; Ziółkowski, G.; Górniak, A.; et al. Binder jetting 3D-printing of challenging medicines: From low dose tablets to hydrophobic molecules. Eur. J. Pharm. Biopharm. 2022, 170, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, R.; Prada, M.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Oral fixed-dose combination pharmaceutical products: Industrial manufacturing versus personalized 3D-printing. Pharm. Res. 2020, 37, 132. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Choudhury, H.; Fern, J.L.C.; Kee, A.T.K.; Kou, J.; Jing, J.L.J.; Her, H.C.; Yong, H.; Ming, H.; Bhattamisra, S.K.; et al. 3D-printing for oral drug delivery: A new tool to customize drug delivery. Drug Deliv. Transl. Res. 2020, 10, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Li, M.; Wang, Z.; Zheng, A. A review of 3D-printing technology in pharmaceutics: Technology and applications, now and future. Pharmaceutics 2023, 15, 416. [Google Scholar] [CrossRef]
- Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D-printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm. 2015, 12, 4077–4084. [Google Scholar] [CrossRef]
- Ian Gibson, I.G. Additive Manufacturing Technologies 3D-Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mathew, E.; Pitzanti, G.; Larrañeta, E.; Lamprou, D.A. 3D-Printing of Pharmaceuticals and Drug Delivery Devices; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; Volume 12, p. 266. [Google Scholar]
- Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D-printing in pharmaceutical and medical applications–recent achievements and challenges. Pharm. Res. 2018, 35, 176. [Google Scholar] [CrossRef] [PubMed]
- Serajuddin, A. Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: An overview and commentary. ADMET DMPK 2023, 11, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D-printing by fused deposition modeling. Int. J. Pharm. 2016, 509, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Doolaanea, A.; Latif, N.; Singh, S.; Kumar, M.; Safa’at, M.F.; Alfatama, M.; Edros, R.; Bhatia, A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023, 24, 116. [Google Scholar] [CrossRef] [PubMed]
- Rippie, E.; Johnson, J. Regulation of dissolution rate by pellet geometry. J. Pharm. Sci. 1969, 58, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhu, J.; Song, X.; Sun, L.; Zhang, J. Studies of hydroxypropyl methylcellulose donut-shaped tablets. Drug Dev. Ind. Pharm. 1999, 25, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Bayomi, M.A. Geometric approach for zero-order release of drugs dispersed in an inert matrix. Pharm. Res. 1994, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Karasulu, H.Y.; Ertan, G. Different geometric shaped hydrogel theophylline tablets: Statistical approach for estimating drug release. Il Farm. 2002, 57, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Martinez, P.R.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D-printed tablets. Int. J. Pharm. 2015, 494, 657–663. [Google Scholar] [CrossRef]
- Krause, J.; Müller, L.; Sarwinska, D.; Seidlitz, A.; Sznitowska, M.; Weitschies, W. 3D-printing of mini tablets for pediatric use. Pharmaceuticals 2021, 14, 143. [Google Scholar] [CrossRef]
- Wang, Z.; Han, X.; Chen, R.; Li, J.; Gao, J.; Zhang, H.; Liu, N.; Gao, X.; Zheng, A. Innovative color jet 3D-printing of levetiracetam personalized paediatric preparations. Asian J. Pharm. Sci. 2021, 16, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Bracken, L.; Habashy, R.; McDonough, E.; Wilson, F.; Shakeshaft, J.; Ohia, U.; Garcia-Sorribes, T.; Isreb, A.; Alhnan, M.A.; Peak, M. Creating acceptable tablets 3D (CAT 3D): A feasibility study to evaluate the acceptability of 3D-printed tablets in children and young people. Pharmaceutics 2022, 14, 516. [Google Scholar] [CrossRef] [PubMed]
- Aleksovski, A.; Dreu, R.; Gašperlin, M.; Planinšek, O. Mini-tablets: A contemporary system for oral drug delivery in targeted patient groups. Expert Opin. Drug Deliv. 2015, 12, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathematical models of drug dissolution: A review. Sch. Acad. J. Pharm. 2014, 3, 388–396. [Google Scholar]
- Fu, Y. and W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol. (IJPRT) 2018, 8, 12–20. [Google Scholar]
- Ullah, M.; Wahab, A.; Khan, S.U.; Naeem, M.; ur Rehman, K.; Ali, H.; Ullah, A.; Khan, A.; Khan, N.R.; Rizg, W.Y.; et al. 3D-printing technology: A new approach for the fabrication of personalized and customized pharmaceuticals. Eur. Polym. J. 2023, 195, 112240. [Google Scholar] [CrossRef]
- Prakash, K.; Reddy, B.; Sreenivasulu, V. Effect of tablet surface area and surface area/volume on drug release from lamivudine extended release matrix tablets. Int. J. Pharm. Sci. Nanotechnol. (IJPSN) 2010, 3, 872–876. [Google Scholar]
- Varma, M.V.; Kaushal, A.M.; Garg, A.; Garg, S. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am. J. Drug Deliv. 2004, 2, 43–57. [Google Scholar] [CrossRef]
- Acosta-Vélez, G.F.; Wu, B. 3D pharming: Direct printing of personalized pharmaceutical tablets. Polym. Sci. 2016, 2, 11. [Google Scholar]
- Muhindo, D.; Elkanayati, R.; Srinivasan, P.; Repka, M.A.; Ashour, E.A. Recent advances in the applications of additive manufacturing (3D-printing) in drug delivery: A comprehensive review. AAPS PharmSciTech 2023, 24, 57. [Google Scholar] [CrossRef] [PubMed]
- Wagh, S.C.; Kumar, J.S.; Banerjee, S. Development and evaluation of a novel extended release venlafaxine hydrochloride matrix tablets. J. Pharm. Res. 2012, 5, 2184–2190. [Google Scholar]
- Hixson, A.; Crowell, J. Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. 1931, 23, 923–931. [Google Scholar] [CrossRef]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, X.; Patil, H.; Tiwari, R.V.; Repka, M.A. Coupling 3D-printing with hot-melt extrusion to produce controlled-release tablets. Int. J. Pharm. 2017, 519, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Öblom, H.; Zhang, J.; Pimparade, M.; Speer, I.; Preis, M.; Repka, M.; Sandler, N. 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis—Personalized dosing and drug release. AAPS PharmSciTech 2019, 20, 52. [Google Scholar]
- Miyamoto, T.; Long, M.; Donkai, N. Preparation of new types of temperature-responsive cellulose derivatives. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 1995. [Google Scholar]
- Dumpa, N.; Butreddy, A.; Wang, H.; Komanduri, N.; Bandari, S.; Repka, M.A. 3D-printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int. J. Pharm. 2021, 600, 120501. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M.; Kapoor, Y.; Klinzing, G.R.; Procopio, A.T. Pharmaceutical 3D-printing: Design and qualification of a single step print and fill capsule. Int. J. Pharm. 2018, 544, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, E.; Forde, M.; Healy, A.V.; Devine, D.M.; Lyons, J.G.; McConville, C.; Major, I. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 2018, 10, 44. [Google Scholar] [CrossRef]
- Phadnis, N.V.; Suryanarayanan, R. Polymorphism in anhydrous theophylline—Implications on the dissolution rate of theophylline tablets. J. Pharm. Sci. 1997, 86, 1256–1263. [Google Scholar] [CrossRef]
- Rojek, B.; Wesolowski, M. Compatibility study of theophylline with excipients using thermogravimetry supported by kinetic analysis. J. Therm. Anal. Calorim. 2021, 143, 227–236. [Google Scholar] [CrossRef]
- Sakkal, M.; Arafat, M.; Yuvaraju, P.; Beiram, R.; Ali, L.; Altarawneh, M.; Hajamohideen, A.R.; AbuRuz, S. Effect of Hydration Forms and Polymer Grades on Theophylline Controlled-Release Tablet: An Assessment and Evaluation. Pharmaceuticals 2024, 17, 271. [Google Scholar] [CrossRef]
- Jelvehgari, M.; Barar, J.; Valizadeh, H.; Shadrou, S.; Nokhodchi, A. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique. Pharm. Dev. Technol. 2011, 16, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Liao, C.M.; Hsiue, G.H.; Liang, R.C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry. Thermochim. Acta 1995, 254, 153–166. [Google Scholar] [CrossRef]
- González-González, J.; Zúñiga-Lemus, O.; Hernández-Galindo, M. Hydrated solid forms of theophylline and caffeine obtained by mechanochemistry. IOSR J. Pharm. 2017, 7, 28–30. [Google Scholar] [CrossRef]
- Asada, M.; Takahashi, H.; Okamoto, H.; Tanino, H.; Danjo, K. Theophylline particle design using chitosan by the spray drying. Int. J. Pharm. 2004, 270, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sekharan, T.R.; Palanichamy, S.; Tamilvanan, S.; Shanmuganathan, S.; Thirupathi, A.T. Formulation and evaluation of hydroxypropyl methylcellulose-based controlled release matrix tablets for theophylline. Indian J. Pharm. Sci. 2011, 73, 451. [Google Scholar] [PubMed]
- Reynolds, T.D.; Mitchell, S.A.; Balwinski, K.M. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev. Ind. Pharm. 2002, 28, 457–466. [Google Scholar] [CrossRef]
- Giri, B.R.; Song, E.S.; Kwon, J.; Lee, J.H.; Park, J.B.; Kim, D.W. Fabrication of intragastric floating, controlled release 3D-printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics 2020, 12, 77. [Google Scholar] [CrossRef]
- Shi, K.; Salvage, J.P.; Maniruzzaman, M.; Nokhodchi, A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D-printed tablets. Int. J. Pharm. 2021, 597, 120315. [Google Scholar] [CrossRef]
- Siyawamwaya, M.; du Toit, L.C.; Kumar, P.; Choonara, Y.E.; Kondiah, P.P.; Pillay, V. 3D-printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery. Eur. J. Pharm. Biopharm. 2019, 138, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Castro, B.M.; Elbadawi, M.; Ong, J.J.; Pollard, T.; Song, Z.; Gaisford, S.; Pérez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. Machine learning predicts 3D-printing performance of over 900 drug delivery systems. J. Control. Release 2021, 337, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Klausner, E.A.; Lavy, E.; Friedman, M.; Hoffman, A. Expandable gastroretentive dosage forms. J. Control. Release 2003, 90, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Kluk, A.; Sznitowska, M.; Brandt, A.; Sznurkowska, K.; Plata-Nazar, K.; Mysliwiec, M.; Kaminska, B.; Kotlowska, H. Can preschool-aged children swallow several minitablets at a time? Results from a clinical pilot study. Int. J. Pharm. 2015, 485, 1–6. [Google Scholar] [CrossRef]
- Jacobsen, L.; Riley, K.; Lee, B.; Bradford, K.; Jhaveri, R. Tablet/capsule size variation among the most commonly prescribed medications for children in the USA: Retrospective review and firsthand pharmacy audit. Pediatr. Drugs 2016, 18, 65–73. [Google Scholar] [CrossRef]
- Lou, H.; Liu, M.; Wang, L.; Mishra, S.R.; Qu, W.; Johnson, J.; Brunson, E.; Almoazen, H. Development of a mini-tablet of co-grinded prednisone–neusilin complex for pediatric use. AAPS PharmSciTech 2013, 14, 950–958.1. [Google Scholar] [CrossRef]
Theophylline (% w/w) | HPC (% w/w) | EU (% w/w) | Stearic Acid (% w/w) | |
---|---|---|---|---|
TP1 | 20.0 | 77.5 | - | 2.5 |
TP2 | 20.0 | 66.3 | 11.3 | 2.5 |
TP3 | 20.0 | 51.7 | 25.9 | 2.5 |
TP4 | 20.0 | 38.8 | 38.8 | 2.5 |
TP5 | 20.0 | - | 77.5 | 2.5 |
Filaments Thickness | Average of Thickness (mm) | RSD to Average (%) | Average of Error to 1.75 mm (%) | Long/Short Ratio | |
---|---|---|---|---|---|
Non-pre-drying | Long axis | 2.18 ± 0.21 | 9.45% | 24.63 ± 11.77% | 1.56 ± 0.21 |
Short axis | 1.41 ± 0.16 | 11.57% | 19.40 ± 9.33% | ||
Pre-drying | Long axis | 1.77 ± 0.07 | 3.93% | 3.31 ± 2.41% | 1.05 ± 0.03 |
Short axis | 1.69 ± 0.09 | 5.20% | 4.31 ± 4.14% |
(n = 5) | Maximum Flexure Load (N) | Maximum Flexure Extension (mm) | Maximum Flexure Stress (MPa) | Maximum Flexure Strain (%) | Modulus (MPa) | Property |
---|---|---|---|---|---|---|
TP1 | 7.25 ± 1.66 | 3.92 ± 0.92 | 39.22 ± 6.50 | 19.88 ± 3.63 | 1215.00 ± 163.68 | Adequate |
TP2 | 5.33 ± 0.33 | 4.26 ± 0.58 | 40.33 ± 3.86 | 19.50 ± 2.74 | 1428.20 ± 196.05 | Adequate |
TP3 | 11.72 ± 0.73 | 2.86 ± 0.17 | 80.89 ± 8.93 | 13.52 ± 0.99 | 2508.67 ± 406.25 | Adequate |
TP4 | 14.46 ± 0.87 | 2.77 ± 0.53 | 90.77 ± 8.61 | 13.58 ± 3.10 | 2422.80 ± 228.93 | Adequate |
TP5 | 5.24 ± 0.41 | 1.12 ± 0.05 | 28.28 ± 2.88 | 5.72 ± 0.36 | 2329.40 ± 169.20 | Brittle |
PLA | 20.81 ± 0.26 | 6.61 ± 1.29 | 149.87 ± 3.08 | 30.74 ± 6.05 | 3694.20 ± 121.47 | Adequate |
Weight (mg) | Volume (mm3) | Density (mg/mm3) | Edge (mm) | SA (mm2) | SA/V (1/mm) | SA/W (mm2/mg) | |
---|---|---|---|---|---|---|---|
Tetrahedron | 96.87 ± 4.77 | 87.49 ± 4.09 | 1.107 ± 0.013 | 9.05 ± 0.14 | 141.99 ± 4.44 | 1.624 ± 0.026 | 1.467 ± 0.030 |
Hexahedron | 96.27 ± 2.91 | 97.59 ± 4.06 | 0.987 ± 0.019 | 4.60 ± 0.06 | 127.16 ± 3.54 | 1.304 ± 0.018 | 1.321 ± 0.017 |
Octahedron | 107.83 ± 5.86 | 97.16 ± 2.49 | 1.109 ± 0.039 | 5.91 ± 0.05 | 120.86 ± 2.06 | 1.244 ± 0.011 | 1.123 ± 0.047 |
Dodecahedron | 110.37 ± 6.58 | 99.91 ± 3.87 | 1.104 ± 0.027 | 2.35 ± 0.03 | 114.35 ± 2.96 | 1.145 ± 0.015 | 1.038 ± 0.038 |
Icosahedron | 112.30 ± 1.32 | 99.83 ± 1.28 | 1.125 ± 0.002 | 3.58 ± 0.02 | 110.79 ± 0.95 | 1.110 ± 0.005 | 0.987 ± 0.004 |
Formulation | Zero-Order | First-Order | Hixson–Crowell | Higuchi | ||||
---|---|---|---|---|---|---|---|---|
R2 | k0 | R2 | k1 | R2 | kHC | R2 | kH | |
Tetrahedron | 0.9172 ± 0.0051 | 13.23 ± 0.33 | 0.9894 ± 0.0011 | 0.04 ± 0.00 | 0.9811 ± 0.0017 | 0.26 ± 0.01 | 0.9992 ± 0.0003 | 30.14 ± 0.73 |
Hexahedron | 0.9278 ± 0.0070 | 11.59 ± 0.24 | 0.9898 ± 0.0031 | 0.03 ± 0.00 | 0.9835 ± 0.0036 | 0.21 ± 0.01 | 0.9997 ± 0.0003 | 26.40 ± 0.62 |
Octahedron | 0.9345 ± 0.0033 | 10.99 ± 0.37 | 0.9905 ± 0.0011 | 0.03 ± 0.00 | 0.9848 ± 0.0013 | 0.20 ± 0.01 | 0.9998 ± 0.0001 | 25.14 ± 0.87 |
Dodecahedron | 0.9386 ± 0.0045 | 10.49 ± 0.37 | 0.9911 ± 0.0018 | 0.03 ± 0.00 | 0.9859 ± 0.0022 | 0.19 ± 0.01 | 0.9996 ± 0.0003 | 24.00 ± 0.85 |
Icosahedron | 0.9377 ± 0.0015 | 10.28 ± 0.06 | 0.9904 ± 0.0015 | 0.02 ± 0.00 | 0.9852 ± 0.0019 | 0.18 ± 0.00 | 0.9997 ± 0.0002 | 23.53 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Choi, Y.-R.; Kang, J.-H.; Park, Y.-S.; Kim, D.-W.; Park, C.-W. Geometry-Driven Fabrication of Mini-Tablets via 3D Printing: Correlating Release Kinetics with Polyhedral Shapes. Pharmaceutics 2024, 16, 783. https://doi.org/10.3390/pharmaceutics16060783
Kim Y-J, Choi Y-R, Kang J-H, Park Y-S, Kim D-W, Park C-W. Geometry-Driven Fabrication of Mini-Tablets via 3D Printing: Correlating Release Kinetics with Polyhedral Shapes. Pharmaceutics. 2024; 16(6):783. https://doi.org/10.3390/pharmaceutics16060783
Chicago/Turabian StyleKim, Young-Jin, Yu-Rim Choi, Ji-Hyun Kang, Yun-Sang Park, Dong-Wook Kim, and Chun-Woong Park. 2024. "Geometry-Driven Fabrication of Mini-Tablets via 3D Printing: Correlating Release Kinetics with Polyhedral Shapes" Pharmaceutics 16, no. 6: 783. https://doi.org/10.3390/pharmaceutics16060783
APA StyleKim, Y. -J., Choi, Y. -R., Kang, J. -H., Park, Y. -S., Kim, D. -W., & Park, C. -W. (2024). Geometry-Driven Fabrication of Mini-Tablets via 3D Printing: Correlating Release Kinetics with Polyhedral Shapes. Pharmaceutics, 16(6), 783. https://doi.org/10.3390/pharmaceutics16060783