Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Instrumentation
2.3. Graphene Oxide Preparation
2.4. Amino-Modified GOQDs Preparation
2.5. Conjugation of GOQDs-NH2 with HA
2.6. GOQDs-Rhodamine B Labeling
2.7. Oil/Water Nanoemulsion (O/W NE) Preparation
2.8. Modification of Chitosan with Fluorescein Isothiocyanate
2.9. Layer-by-Layer GOQDs-HA Deposition on Chitosan-Coated NE
2.10. Curcumin Loading and Release
2.11. Cell Culture
2.12. Calibration Curve for GOQDs-NH2, GOQDs-HA, and Cells
2.13. Quantification of Cell Internalization
2.14. Co-Localization with Lysosomes
2.15. Statistical Analysis
2.16. 3D Dermis for Penetration Tests
3. Results and Discussion
3.1. Amino-Modified GOQDs-HA Preparation and Characterization
3.2. Curcumin Loading and Release
3.3. GOQD-HA-Coated Ct-NEs
3.4. Cellular Internalization and Cell Viability of GOQD-HA
3.5. Penetration Analyses in HDE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
EDC | 1-(3-Dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride |
NH3 | ammonium solution |
CT | chitosan |
CTFitc | chitosan labeled with fluorescein isothiocyanate |
Ct-NEs | chitosan-coated nanoemulsions |
Cur | curcumin |
DI | deionized water |
DMSO | dimethyl sulfoxide |
DLS | dynamic light scattering |
EMEM | Eagle’s minimal essential medium |
EDX | energy dispersive X-ray spectroscopy |
EPR | enhanced permeability and retention |
EDTA | ethylenediaminetetraacetic acid |
FESEM | field emission scanning electron microscopy |
FBS | fetal bovine serum |
FITC | fluorescein isothiocyanate |
FTIR | Fourier transform infrared spectroscopy |
GO | graphene oxide |
GOHummer | graphene oxide obtained with Hummer’s method |
GOQDs | graphene oxide quantum dots |
GOQDs-HA-Ct-NE | graphene oxide quantum dots coated with hyaluronic acid deposited on Ct-NE |
GOQDs-HARhod-Ct-NE | graphene oxide quantum dots coated with hyaluronic acid labeled with Rhodamine B deposited on Ct-NE |
GOQDs-HA | graphene oxide quantum dots functionalized with hyaluronic acid |
GOQDs-HARhod | graphene oxide quantum dots functionalized with hyaluronic acid labeled with Rhodamine B |
HCl | hydrogen chloride |
H2O2 | hydrogen peroxide |
HA | hyaluronic acid |
HA-CT-NE | hyaluronic acid chitosan-coated nanoemulsions |
HA-CTFitc-NE | hyaluronic acid chitosan labeled with fluorescein isothiocyanate-coated nanoemulsions |
MCF-7 | mammary adenocarcinoma cells |
MEM | minimum essential medium |
nGO | nano-graphene oxide |
NTA | nanoparticle tracking analysis |
NIR | near-infrared region |
NHS | N-hydroxysuccinimide |
NMR | nuclear magnetic resonance spectroscopy |
O/W NE | oil-in-water nanoemulsion |
PBS | phosphate-buffered saline |
PC | phosphatidylcholine |
PE | phosphatidyl ethanolamine |
PDI | polydispersity index |
KMnO4 | potassium permanganate |
Rhod | Rhodamine B |
SEM | scanning electron microscopy |
NaNO3 | sodium nitrate |
H2SO4 | sulfuric acid |
TEM | transmission electron microscopy |
UV/Vis | ultraviolet-visible |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
References
- Tufano, I.; Vecchione, R.; Netti, P.A. Methods to Scale Down Graphene Oxide Size and Size Implication in Anti-cancer Applications. Front. Bioeng. Biotechnol. 2020, 8, 1381. [Google Scholar] [CrossRef]
- Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527–2537. [Google Scholar] [CrossRef]
- Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popović, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431. [Google Scholar] [CrossRef]
- İlgar, M.; Karakuş, S.; Kilislioğlu, A. Design, characterization and evaluation of the drug-loaded chitosan/cerium oxide nanoparticles with pH-controlled drug release. Polym. Bull. 2022, 79, 6693–6708. [Google Scholar] [CrossRef]
- Özbaş, F.; Tüzün, E.; Yıldız, A.; Karakuş, S. Sonosynthesis and characterization of konjac gum/xanthan gum supported ironoxide nanoparticles. Int. J. Biol. Macromol. 2021, 183, 1047–1057. [Google Scholar] [CrossRef]
- Yan, Y.; Björnmalm, M.; Caruso, F. Assembly of layer-by-layer particles and their interactions with biological systems. Chem. Mater. 2014, 26, 452–460. [Google Scholar] [CrossRef]
- Johnston, A.P.R.; Cortez, C.; Angelatos, A.S.; Caruso, F. Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid. Interface Sci. 2006, 11, 203–209. [Google Scholar] [CrossRef]
- Fleige, E.; Quadir, M.A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64, 866–884. [Google Scholar] [CrossRef]
- Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P.A. Tunable stability of monodisperse secondary O/W nano-emulsions. Nanoscale 2014, 6, 9300–9307. [Google Scholar] [CrossRef]
- Vecchione, R.; Quagliariello, V.; Calabria, D.; Calcagno, V.; De Luca, E.; Iaffaioli, R.V.; Netti, P.A. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. J. Control Release 2016, 233, 88–100. [Google Scholar] [CrossRef]
- Quagliariello, V.; Vecchione, R.; De Capua, A.; Lagreca, E.; Iaffaioli, R.V.; Botti, G.; Netti, P.A.; Maurea, N. Nano-encapsulation of coenzyme Q10 in secondary and tertiary nano-emulsions for enhanced cardioprotection and hepatoprotection in human cardiomyocytes and hepatocytes during exposure to anthracyclines and trastuzumab. Int. J. Nanomed. 2020, 15, 4859. [Google Scholar] [CrossRef]
- Quagliariello, V.; Vecchione, R.; Coppola, C.; Di Cicco, C.; De Capua, A.; Piscopo, G.; Paciello, R.; Narciso, V.; Formisano, C.; Taglialatela-Scafati, O.; et al. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients 2018, 10, 1304. [Google Scholar] [CrossRef]
- Iaccarino, G.; Profeta, M.; Vecchione, R.; Netti, P.A. Matrix metalloproteinase-cleavable nanocapsules for tumor-activated drug release. Acta Biomater. 2019, 89, 265–278. [Google Scholar] [CrossRef]
- Vecchione, R.; Quagliariello, V.; Giustetto, P.; Calabria, D.; Sathya, A.; Marotta, R.; Profeta, M.; Nitti, S.; Silvestri, N.; Pellegrino, T.; et al. Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: In vitro and preclinical studies. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 275–286. [Google Scholar] [CrossRef]
- Calcagno, V.; Vecchione, R.; Quagliariello, V.; Marzola, P.; Busato, A.; Giustetto, P.; Profeta, M.; Gargiulo, S.; Di Cicco, C.; Yu, H.; et al. Oil Core–PEG Shell Nanocarriers for In Vivo MRI Imaging. Adv. Healthc. Mater. 2019, 8, e1801313. [Google Scholar] [CrossRef]
- Gonçalves, G.; Vila, M.; Portolés, M.T.; Vallet-Regi, M.; Gracio, J.; Marques, P.A.A.P. Nano-graphene oxide: A potential multifunctional platform for cancer therapy. Adv. Healthc. Mater. 2013, 2, 1072–1090. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Pan, Z.; Chen, Y.; Fan, Z.; Tian, H.; Zhou, S.; Zhang, Y.; Shang, J.; Jiang, B.; et al. Multifunctional Nanosystem Based on Graphene Oxide for Synergistic Multistage Tumor-Targeting and Combined Chemo-Photothermal Therapy. Mol. Pharm. 2019, 16, 1982–1998. [Google Scholar] [CrossRef]
- Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 2011, 31, 1305–1312. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef]
- Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv. 2017, 7, 5251–5261. [Google Scholar] [CrossRef]
- He, S.; Zhong, S.; Meng, Q.; Fang, Y.; Dou, Y.; Gao, Y.; Cui, X. Sonochemical preparation of folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules for targeted drug delivery. Carbohydr. Polym. 2021, 266, 118174. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef]
- Knudson, C.B.; Knudson, W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993, 7, 1233–1241. [Google Scholar] [CrossRef]
- Banerji, S.; Wright, A.J.; Noble, M.; Mahoney, D.J.; Campbell, I.D.; Day, A.J.; Jackson, D.G. Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat. Struct. Mol. Biol. 2007, 14, 234–239. [Google Scholar] [CrossRef]
- De Capua, A.; Palladino, A.; Chino, M.; Attanasio, C.; Lombardi, A.; Vecchione, R.; Netti, P.A. Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Adv. 2021, 11, 24487–24499. [Google Scholar] [CrossRef]
- Maeda, H.; Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 2018, 7, 11. [Google Scholar] [CrossRef]
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016, 244, 108–121. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. N. Y. 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Ghanbari, N.; Salehi, Z.; Khodadadi, A.A.; Shokrgozar, M.A.; Saboury, A.A.; Farzaneh, F. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J. Drug Deliv. Sci. Technol. 2021, 61, 102137. [Google Scholar] [CrossRef]
- Kim, H.C.; Park, W.H. Fluorescent property of glycol chitosan-fluorescein isothiocyanate conjugate for bio-imaging material. Int. J. Biol. Macromol. 2019, 135, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, R.; Iaccarino, G.; Bianchini, P.; Marotta, R.; D’Autilia, F.; Quagliariello, V.; Diaspro, A.; Netti, P.A. Ultrastable Liquid–Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules. Small 2016, 12, 3005–3013. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Imparato, G.; Urciuolo, F.; Casale, C.; Netti, P. The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 2013, 34, 7851–7861. [Google Scholar] [CrossRef] [PubMed]
- Casale, C.; Imparato, G.; Urciuolo, F.; Netti, P. Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials 2016, 101, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.; Vila, M.; Bdikin, I.; de Andrés, A.; Emami, N.; Ferreira, R.A.S.; Carlos, L.D.; Grácio, J.; Marques, P.A.A.P. Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation. Sci. Rep. 2014, 4, 6735. [Google Scholar] [CrossRef] [PubMed]
- Karakoçak, B.B.; Laradji, A.; Primeau, T.; Berezin, M.Y.; Li, S.; Ravi, N. Hyaluronan-conjugated carbon quantum dots for bioimaging use. ACS Appl. Mater. Interfaces 2020, 13, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kalil, H.; Maher, S.; Bose, T.; Bayachou, M. Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J. Electrochem. Soc. 2018, 165, G3133. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; Newman, L.; Lozano, N.; Mukherjee, S.P.; Fadeel, B.; Bussy, C.; Kostarelos, K. A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Materials 2018, 5, 35020. [Google Scholar] [CrossRef]
- Mirzaie, Z.; Reisi-Vanani, A.; Barati, M. Polyvinyl alcohol-sodium alginate blend, composited with 3D-graphene oxide as a controlled release system for curcumin. J. Drug Deliv. Sci. Technol. 2019, 50, 380–387. [Google Scholar] [CrossRef]
- Jung, H.S.; Kong, W.H.; Sung, D.K.; Lee, M.-Y.; Beack, S.E.; Keum, D.H.; Kim, K.S.; Yun, S.H.; Hahn, S.K. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 2014, 8, 260–268. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Parvin, P.; Mirzaie, Z.H.; Karimi, R.; Sanderson, J.H. Atyabi F Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO+ DOX. Biomed. Opt. Express 2020, 11, 3783–3794. [Google Scholar] [CrossRef] [PubMed]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Lal, S.; Hall, R.M.; Tipper, J.L. Concentration and size distribution data of silicon nitride nanoparticles measured using nanoparticle tracking analysis. Data Br. 2017, 15, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, J.; Benítez, A.; Otero, R.; Esquivel, D.; Jiménez-Sanchidrián, C.; Morales, J.; Caballero, Á.; Romero-Salguero, F.J. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials 2019, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, G.; Cantelli, A.; Mazzaro, R.; Ortolani, L.; Morandi, V.; Montalti, M. Tracking graphene by fluorescence imaging: A tool for detecting multiple populations of graphene in solution. Nanoscale 2016, 8, 8505–8511. [Google Scholar] [CrossRef] [PubMed]
- Frascogna, C.; Mottareale, R.; La Verde, G.; Arrichiello, C.; Muto, P.; Netti, P.A.; Pugliese, M.; Panzetta, V. Role of the mechanical microenvironment on CD-44 expression of breast adenocarcinoma in response to radiotherapy. Sci. Rep. 2024, 14, 391. [Google Scholar] [CrossRef]
- Paliwal, S.R.; Paliwal, R.; Agrawal, G.P.; Vyas, S.P. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular de livery of doxorubicin. J. Liposome Res. 2016, 26, 276–287. [Google Scholar] [CrossRef]
- Palmiero, C.; Imparato, G.; Urciuolo, F.; Netti, P. Engineered dermal equivalent tissue in vitro by assembly of microtissue precusors. Acta Biomater. 2010, 6, 2548–2553. [Google Scholar] [CrossRef]
Sample | C1s (%) | O1s (%) | N1s (%) | O/C |
---|---|---|---|---|
G | 95.02 | 4.98 | 5.24 | |
GOHummer | 79.3 | 17.0 | 21.4 | |
GOQDs-NH2 | 43.4 | 45.1 | 5.2 | 103.9 |
GOQDs-HA | 51.0 | 23.7 | 13.9 | 46.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufano, I.; Vecchione, R.; Panzetta, V.; Battista, E.; Casale, C.; Imparato, G.; Netti, P.A. Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell. Pharmaceutics 2024, 16, 827. https://doi.org/10.3390/pharmaceutics16060827
Tufano I, Vecchione R, Panzetta V, Battista E, Casale C, Imparato G, Netti PA. Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell. Pharmaceutics. 2024; 16(6):827. https://doi.org/10.3390/pharmaceutics16060827
Chicago/Turabian StyleTufano, Immacolata, Raffaele Vecchione, Valeria Panzetta, Edmondo Battista, Costantino Casale, Giorgia Imparato, and Paolo Antonio Netti. 2024. "Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell" Pharmaceutics 16, no. 6: 827. https://doi.org/10.3390/pharmaceutics16060827
APA StyleTufano, I., Vecchione, R., Panzetta, V., Battista, E., Casale, C., Imparato, G., & Netti, P. A. (2024). Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell. Pharmaceutics, 16(6), 827. https://doi.org/10.3390/pharmaceutics16060827