An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery
Abstract
:1. Introduction
2. The Blood–Brain Barrier
2.1. BBB Structure
2.1.1. Endothelial Cells and Junctions
2.1.2. Basement Membrane
2.1.3. Pericytes
2.1.4. Astrocytes
2.1.5. Microglia
2.2. BBB Transport Mechanisms
3. Brain Diseases
3.1. Stroke
3.2. Neurodegenerative Diseases
3.3. Brain Tumors
3.4. Infectious Diseases
4. Drug Delivery across the BBB
4.1. Bypassing the BBB
4.1.1. Intracerebroventricular
4.1.2. Intracerebral/Intraparenchymal
4.1.3. Convection-Enhanced Delivery
4.1.4. Implants
4.1.5. Intranasal Delivery
4.2. Temporary Disruption of the BBB
4.2.1. Osmotic Disruption
4.2.2. Ultrasound Disruption
4.2.3. Optical Disruption
4.2.4. Electrical Disruption
4.2.5. Radiation Therapy Disruption
4.3. Ligands Conjugation for Active Brain Targeting
4.3.1. Adsorptive-Mediated Transcytosis
Cardiolipin
Heparin
Cell-Penetrating Peptides
4.3.2. Receptor-Mediated Transcytosis
Transferrin Receptor
Lactoferrin Receptor
Lipoproteins Receptor
Nicotinic Acetylcholine Receptors
4.3.3. Transporter-Mediated Transport
Glutathione
Acetycholine
Glucose
4.3.4. RGD Peptides
4.3.5. Antibodies
4.3.6. Aptamers
4.3.7. Polyethylene Glycol
5. Lipid-Based Nanocarriers
5.1. Liposomes
- -
- AmBisome® for the treatment of cryptococcal meningitis, composed of amphotericin B encapsulated in a lipid bilayer of hydrogenated soy phosphatidylcholine (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), and cholesterol (Chol);
- -
- Abelcet® for the treatment of cryptococcal meningitis, composed of amphotericin B encapsulated in a liposome made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG);
- -
- Daunoxome®, composed of distearoylphosphatidylcholine (DSPC) and Chol liposomes carrying daunorubicin for the treatment of pediatric brain tumors;
- -
- Depocyt®, cytarabine encapsulated in Chol, triolein, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) liposomes for the treatment of lymphomatous meningitis;
- -
- Doxil®/Caelyx® also proposed for the treatment of GBM and pediatric brain tumors by encapsulating doxorubicin in HSPC, Chol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol) 2000 (DSPE-PEG2000) liposomes;
- -
- Myocet® liposome composed of egg phosphatidylcholine (EPC) and Chol-encapsulating doxorubin were also proposed for the GBM [8].
- -
- NCT05768919: liposomal curcumin is associated with radiotherapy and temozolomide for patients with newly diagnosed high-grade gliomas (HGG).
- -
- NCT00944801: pegylated liposomal doxorubicine and temozolomide in addition to radiotherapy in newly diagnosed GBM [107].
- -
- NCT04573140: RNA-lipid particle vaccines are used for the therapy of newly diagnosed pediatric HGG and GBM [108].
- -
- NCT00019630 and NCT00465673: liposomal doxorubicin HCl for the pediatric treatment of refractory brain tumors or brain metastases from breast cancer.
- -
- NCT00992602: IC injection of liposomal cytarabine combined with methotrexate for breast cancer brain metastasis.
- -
- NCT01386580 and NCT01818713: a GSH-functionalized pegylated liposome loaded with doxorubicin hydrochloride is administered in patients with HGG and leptomeningeal breast cancer metastasis [109].
- -
- NCT04590664: a repurposing of the drug verteporfin for the treatment of recurrent high-grade EGFR-mutated GBM [110].
- -
- NCT05864534: liposomal doxorubicin is administered in combination with a device with nine US emitters to disrupt the BBB and enhance drug penetration into the brain tumor.
- -
- NCT01044966: ICV administration of liposomes encapsulating Ara-C (DepoCyt®) in patients with recurrent GBM.
- -
- -
- NCT03086616 and NCT02022644: CED of irinotecan liposome with real-time imaging with gadolinium in children with diffuse intrinsic pontine glioma and adults with HGG [113].
- -
- NCT01356290: oral thalidomide, fenofibrate, celecoxib, and alternating 21-day cycles of oral etoposide and cyclophosphamide, supplemented by intravenous bevacizumab and intraventricular therapy via an Ommaya reservoir consisting of alternating etoposide and liposomal cytarabine for children with medulloblastoma and ependydoma [114].
- -
- NCT01222780: Marqibo® (liposomal Vincristine) for children and adolescents with refractory tumors.
- -
- NCT05496894: mitoxantrone hydrochloride is encapsulated in a liposomal formulation for the treatment of MS.
- -
- NCT01039103: intravenous PEG-liposomal prednisolone sodium phosphate (Nanocort®) for the treatment of MS.
- -
- NCT02686853: intrathecal administration of liposomal amphotericin B in cryptococcal meningitis in immunocompetent patients;
- -
- NCT05453539: a novel liposomal device constituted by DSPE-DOTA-Gadolinium for contrast-enabled MR imaging of amyloid plaques for the diagnosis of AD.
- -
- NCT04976127: liposomal talineuren for PD.
5.2. Solid–Lipid NPs
5.3. Other Synthetic Lipid Nanocarriers
5.3.1. Nanoemulsions
5.3.2. Nanostructured Lipid Carriers
5.3.3. Niosomes and Proniosomes
5.3.4. Cubosomes
LNC | Composition | Drug | Surface Functionalization | Size (nm) | ZP (mV) | Disease | Administration Route | Reference |
---|---|---|---|---|---|---|---|---|
NE | Capmul MCM + Tween 80 + Transcutol P + propylene glycol | Quetiapine fumarate | - | 144.0± 0.5 | −8.1 ± 1.8 | Brain delivery | Intranasal | [173] |
Capryol PGMC + Kolliphore® RH40 + Transcutol®-P | Zolmitriptan | Chitosan | 43.5 ± 1.9 | +5.2 ± 0.9 | Migraine | Intranasal | [174] | |
Isopropyl myristate + Capryol + Cremophor EL + Labrasol | Huperzine A | Lf | 15.2 ± 0.7 | −4.5 ± 1.0 | AD | Intranasal | [175] | |
oleic acid + α-tocopherol + Span 8 + olive oil + Tween 80 | Indinavir | 112 ± 4 | −33 ± 3 | HIV | Intravenous | [176] | ||
NLCs | Precirol ATO 5+ Capmul MCM + Tween 80 + Span 20 | Carbamazepine | - | 132.8 | −29 ± 6 | Epilepsy | Intranasal inside gel | [177] |
Compritol + Sweet almond oil + L-PC + gelucire 44/14 | Flibanserin | - | 115 | - | Brain delivery | Intranasal inside gel | [178] | |
Precirol ATO 5 + Lauroglycol 90 + Tween 80 | Escitalopram and paroxetine | - | 165 ± 2 | +11.2 ± 0.4 | Depression | Intravenous and intranasal | [179] | |
Cetyl palmitate + oleic acid + Tween 80 + Polaxomer 188 | Sesamol | - | 92 ± 6 | −27.9 ± 0.6 | Ischemic stroke | Intravenous | [180] | |
Compritol + Labrafil + Tween 80 + lauroglycol | Almotriptan malate | Chitosan | 254.9 ± 1.9 | +34.1 ± 0.1 | Migraine | Intranasal | [181] | |
Glyceryl monostearate + oleic acid + Tween 80 + pluronic F127 | Lorazepam | 72 ± 5 | −20 ± 3 | Epilepsy | Intranasal | [182] | ||
Palmityl palmitate + Miglyol® + sphingosylphosphorylcholine + Solutol HS15® + DSPE-PEG2000 | Nimodipine | Lf | 170 ± 14 | −15.9 ± 1.1 | Ischemic stroke | Intravenous | [183] | |
PC + chol oleate + glycerol trioleate + S100-COOH | Curcumin | 103.8 ± 0.6 | −5.8 ± 0.7 | AD | IC | [184] | ||
Niosomes | Span60 + Chol | Bromocriptine mesylate | - | 180 ± 5 | −14.2 ± 1.8 | Brain delivery | Intranasal | [185] |
DOTMA + lycopene + polysorbate 60 | pCMS-EGFP plasmid | - | 119 ± 3 | +23 ± 2 | Brain delivery | IC | [186] | |
Chol + Tween60 | Thymoquinone | - | 78 | −5 | Ischemic stroke | Intravenous | [187] | |
SUR II + Chol + PEG2000 | Pramipexole | - | 103 ± 0.4 | −13.8 ± 0.2 | PD | Intraperitoneal | [120] | |
Tween60 + Chol | Oleuropein | - | 79.37 ± 0.12 | +1.38 ± 0.07 | Metastatic brain tumors | Intravenous | [188] | |
Span 60 + Solulan C24 | Albumin | Glucopyranose and alanine | 94 ± 10 | −3.8 ± 1.0 | Brain delivery | Intravenous | [189] | |
Span + Chol | Olanzapine | Chitosan | 250 ± 5 | - | Schizophrenia | Intranasal | [190] | |
Span 60 + Chol | Lacosamide | 194 | +36 | Epilepsy | Intravenous | [191] | ||
Dicetyl phosphate + Chol + Tween20 | Pentamidine | 118 ± 2 | −26.7 ± 0.7 | Brain delivery | Intranasal | [192] | ||
Cubosomes | Phytantriol + Tween80 | - | - | 170–250 | - | Brain delivery | Intravenous | [193] |
Gold NPs | - | 196 ± 3 | - | Intravenous | [194] | |||
Selachyl alcohol + Tween80 | Phenytoin | - | 144 ± 4 | - | Seizure | Intravenous | [195] | |
Glycerol mono-oleate + poloxamer 407 | Donepezil HCl | - | 138–231 | −40 | AD | Intranasal | [196] | |
Glycerol monooleate + Poloxamer 407 + Tween 80 | Granisetron | - | 267 ± 3 | −27 ± 2 | Chemotherapy-induced emesis | Intranasal | [197] | |
Glyceryl monooleate + poloxamer 407 + ethanol + polyethylene glycol 200 | Tizanidine hydrochloride | - | 50.2 | −6.4 | Brin delivery | Intranasal | [198] | |
Monoolein + Tween80 | Paliperidone palmitate | Chitosan | 306 ± 23 | +42.4 ± 0.2 | Schizophrenia | Intranasal | [199] | |
Glyceryl monooleate + Pluronic 127 | Gambogenic acid and PLHSpT | Angiopep-2 | 128.7 ± 1.0 | >30 | GBM | Intravenous | [200] | |
Monoolein + amphiphilic polymer | Temozolomide or cisplatin | ∼280 | +18 | GBM | Intravenous | [201] |
5.4. Extracellular Vesicles
- -
- NCT03384433: EVs from allogenic placenta MSCs are IC injected to ameliorate the brain injury by promoting neurogenesis after an ischemic stroke [207];
- -
- NCT05490173: MSC-derived EVs are intranasally administered to low-birth-weight infants to mitigate neurodevelopmental outcomes;
- -
- NCT04202770: MSCs-derived EVs with transcranial focused US in patients with refractory, treatment-resistant depression, anxiety, and neurodegenerative dementia;
- -
- NCT06138210: intravenous injection of EVs derived from human-induced pluripotent stem cells for ischemic stroke;
- -
- NCT04388982: intranasal administration of allogenic adipose MSC-EVs in the treatment of mild to moderate dementia due to AD [208].
5.5. Cell-Membrane-Derived Nanocarriers
Membranes’ Origin | Carrier | Cargo | Surface Functionalization | Disease | Administration Route | Reference |
---|---|---|---|---|---|---|
4T1 and platelet hybrid | Polymetformin + hyaluronic acid liposomes | Paeonol | - | Ischemic stroke | Intravenous | [314] |
Aorta endothelial cells | HOP NPs | Rapamycin | CXCR4 | Ischemic stroke | Intravenous | [315] |
Brain microvasculature endothelial cells | Mesoporous silica NPs | Dihydroartemisinin | - | Cerebral malaria | Intravenous | [316] |
PLGA-PEG NPs | Doxorubicin | - | GBM | Intravenous | [317] | |
Dendritic cells | PLGA NPs | Rapamycin | Glioma | Intravenous | [318] | |
Macrophages | - | Molybdenum disulfide quantum dots | - | AD | Intravenous | [319] |
- | Cannabidiol | - | Post-traumatic stress disorder | Intravenous and US | [320] | |
- | aPD-L1 and CXCL10 | Angiopep-2 | GBM | Intravenous | [321] | |
Liposomes (DSPE-PEG2000) | IR-792 | - | PTT of GBM | Intravenous | [322] | |
Liposomes (DPPC, Chol, and DSPE-PEG2000) | Oxytocin | - | AD | Intranasal | [323] | |
Mesoporous silica NPs | anti-NF-κB peptides | - | GBM | Intravenous | [324] | |
Poly(N-vinylcaprolactam) nanogel | Manganese dioxide and cisplatin | - | Glioma | Intravenous | [325] | |
Liposomes (Chol and soybean lecithin) | Baicalin | - | Ischemic stroke | Intravenous | [326] | |
Cu2−x Se and PVP NPs | Curcumin | DSPE-PEG2000-TPP | PD | Intravenous | [327] | |
SLN (glycerol monostearate, Tween 80, and soya lecithin) | Genistein | RVG29 and TPP | AD | Intravenous | [328] | |
PLGA | Rapamycin | PD-1 | GBM | Intravenous | [329] | |
Microglia cells | Poly(propylene glycol dithiopropionate) | Zoledronate | - | GBM | Intravenous | [330] |
PLGA NPs | PLX3397 | DSPE-PEG2000 | Cognitive impairment | Intravenous | [331] | |
MSCs | Liposomes (PC) | Curcumin | - | Ischemic stroke | Intravenous | [332] |
Monocytes | PLGA | Rapamycin | - | Ischemic stroke | Intravenous | [333] |
Neutrophil | - | Fingolimod hydrochloride | - | Intravenous | [334] | |
- | Mesoporous Prussian blue nanozyme | - | Intravenous | [335] | ||
PLGA NPs | Superparamagnetic iron oxide NPs | - | Neuroinflammation imaging | Intravenous | [336] | |
Liposomes (DPPC + Chol + DSPE-PEG2000) | Leonurine | - | Ischemic stroke | Intravenous | [337] | |
Dendrigraft poly-L-lysine and PEG NPs | Catalase | N-acetyl Pro-Gly-Pro | Intravenous | [338] | ||
β-cyclodextrin PBAP | Edaravone | SHp-PEG-DSPE | Intravenous | [339] | ||
PEI NPs | Octanoic acid | RVG29 | Intravenous | [340] | ||
Neural stem cells | - | Oncolytic adenovirus A4/k37 | - | GBM | Intravenous | [341] |
Zein NPs | Antisense oligonucleotide | Aptamer 19S | PD | Intravenous | [342] | |
NK cells | PLGA NPs | Temozolomide and IL-15 | cRGD peptide | GBM | Intravenous | [343] |
Neuron cells | Cu2–xSe-PVP | Quercetin | VCAM-1 | PD | Intravenous and US | [344] |
Platelets | - | L-arginine and γ-Fe2O3 magnetic nanoparticles | - | Ischemic stroke | Intravenous | [345] |
T7-PEG-poly-histidine-poly-lysine | miRNA-Let-7c | Intravenous | [346] | |||
PLGA NPs | Human fat extract | RGD peptide | Intravenous | [347] | ||
Dextran NPs | Neuroprotectant (ZL006e) | Recombinant tissue plasminogen activator (rtPA) and thrombin-cleavable Tat-peptide | Intravenous | [348] | ||
RBCs | - | Celecoxib | - | AD | Intranasal | [349] |
Mesoporous silica NPs + upconversion NPs | S-nitrosoglutathione | - | PD | Intravenous | [350] | |
- | Doxorubicin | CDX peptide | Glioma | Intravenous | [351] | |
- | Docetaxel nanocrystals | pHA-VAP peptide | [352] | |||
Surfactant | Docetaxel | cRGDyK peptide | [353] | |||
pH-sensitive NPs of acetal-dextran | Doxorubicin and lexiscan | Angiopep-2 | GBM | Intravenous | [354] | |
PEI + Poly-L-lysine NPs | siRNA | Intravenous | [355] | |||
Nanogel (Poly(deca-4,6-diynedioic acid) + Puilulan) | Temozolomide and indocyanine green | ApoE | Intravenous | [356] | ||
Acetal dextran | Temozolomide and OTX015 | Intravenous | [357] | |||
ABT + A12 inhibitors | Intravenous | [358] | ||||
NLC (Tween 80 + cetyl palmitate + oleic acid + chol + DSPE-PEG2000) | Resveratrol | RVG29 and TPP | AD | Intravenous | [359] | |
Human serum albumin NPs | Curcumin | T807 and TPP | Intravenous | [360] | ||
- | Curcumin nanocrystals | RVG29 | PD | Intravenous | [361] | |
Boronic ester-Dextran | NR2B9C | Stroke-homing peptide | Ischemic stroke | Intravenous | [362] | |
NLC (Chol oleate + Chol + soybean lecithin + triolein) | PARP inhibitor olaparib | C3 and SS31 peptides | Traumatic brain injury | Intravenous | [363] | |
Cancer cell-derived | PCL NPs | Indocyanine green | - | Fluorescent imaging and phototherapy of GBM | Intravenous | [364] |
Brain cancer | Nanocomposite of PDPP3T + PLGA + PVA | Ultrasmall iron oxide NPs | cRGD peptide | Brain tumors | Intravenous | [365] |
Breast cancer | PEG–PDPA | Succinobucol | - | Ischemic stroke | Intravenous | [366] |
Brain metastatic breast cancer cell | mPEG-PLGA | Doxorubicin | - | Brain delivery | Intravenous | [367] |
GBM cell line | pH-sensitive biomimetic NPs of acetal dextran | Temozolomide and cisplatin | - | GBM | Intravenous | [368] |
pH-sensitive polyglutamic acid | Doxorubicin | - | Intravenous + US | [369] | ||
PEI | pDNA (pHSVtk) | - | Intravenous/Intranasal | [370] | ||
Boron nitride nanotubes | Doxorubicin | - | Intravenous | [371] | ||
- | CuFeSe2 nanocrystals | - | Photothermal therapy GBM | Intravenous | [372] | |
Nanosuspension | 10-hydroxycamptothecin | - | Glioma | Intravenous | [373] | |
PVP K30 + Sodium deoxycholate | Paclitaxel | WSW peptide | Intravenous | [374] | ||
Poly(MIs)-PEI | Paclitaxel | siPGK1 | GBM | Intravenous | [375] | |
GBM from the patient | - | Au Nanorods | - | GBM | Intravenous | [376] |
Glioma cell line | Cu2−x Se NPs | Cinobufotalin | - | GBM | Intravenous | [377] |
Liposomes (DPPC, DSPC, DOPC, and Chol) | Indocyanine green | - | PTT of glioma | Intravenous | [378] | |
Metastatic melanoma | Citraconic anhydride grafted poly-lysine and polyethyleneimine xanthate | siPGK1 | - | GBM | Intravenous | [356] |
Brain metastatic breast cancer cells and glioma cells | Oleic acid, TPGS, and lanthanide-doped NPs | Gambogic acid and indocyanine green | - | Glioma | Intravenous | [379] |
Dendritic cells and glioma cells | NE (lecithin) | Docetaxel | - | Glioma | Intravenous | [380] |
GBM, macrophage, and microglia cells | Amphiphilic polymer chlorin e6, cucurbit[7]urils, and PEG | 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide | - | GBM | Intravenous | [381] |
Mitochondria and GBM cells | PEG-PHB | Gboxin | - | GBM | Intravenous | [382] |
Neutrophils and macrophages | PLGA NPs | Rapamycin | - | Glioma | Intravenous | [383] |
Platelets and glioma cells | PLGA NPs | β-mangostin | - | Glioma | Intravenous | [384] |
Platelets and RBCs | - | Hypoxia inducible factor-1α inhibitor YC-1 | - | Ischemic stroke | Intravenous | [385] |
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Zhao, S.; Xu, T.; Wang, Q.; Lan, M.; Yan, L.; Chen, X. Getting drugs to the brain: Advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood–brain barrier. J. Mater. Chem. B 2022, 10, 9314–9333. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.I.; Lopes, C.M.; Amaral, M.H.; Costa, P.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf. B Biointerfaces 2023, 221, 112999. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Buabeid, M.; Ibrahim, N.A.; Kharaba, Z.J.; Ijaz, M.; Noreen, S.; Murtaza, G. Potential of nanocarrier-based drug delivery systems for brain targeting: A current review of literature. Int. J. Nanomed. 2021, 16, 7517–7533. [Google Scholar] [CrossRef]
- Ahmad, F.; Varghese, R.; Panda, S.; Ramamoorthy, S.; Areeshi, M.Y.; Fagoonee, S.; Haque, S. Smart Nanoformulations for Brain Cancer Theranostics: Challenges and Promises. Cancers 2022, 14, 5389. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.B.; Gamarra, L.F. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomed. 2016, 11, 5381–5414. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 2022, 102, 1025–1151. [Google Scholar] [CrossRef]
- Murayi, R.; Chittiboina, P. Glucocorticoids in the management of peritumoral brain edema: A review of molecular mechanisms. Childs Nerv. Syst. 2016, 32, 2293–2302. [Google Scholar] [CrossRef]
- Hendricks, B.K.; Cohen-Gadol, A.A.; Miller, J.C. Novel delivery methods bypassing the blood-brain and blood-tumor barriers. Neurosurg. Focus. FOC 2015, 38, E10. [Google Scholar] [CrossRef] [PubMed]
- Alahmari, A. Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plast. 2021, 2021, 6564585. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front. Physiol. 2020, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sharma, P.; Maheshwari, R.; Tekade, M.; Shrivastava, S.K.; Tekade, R.K. Chapter 15—Beyond the Blood–Brain Barrier: Facing New Challenges and Prospects of Nanotechnology-Mediated Targeted Delivery to the Brain. In Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Kesharwani, P., Gupta, U., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 397–437. [Google Scholar] [CrossRef]
- Bauer, A.H.; Erly, W.; Moser, F.G.; Maya, M.; Nael, K. Differentiation of solitary brain metastasis from glioblastoma multiforme: A predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 2015, 57, 697–703. [Google Scholar] [CrossRef]
- De Bock, M.; Van Haver, V.; Vandenbroucke, R.E.; Decrock, E.; Wang, N.; Leybaert, L. Into rather unexplored terrain—Transcellular transport across the blood–brain barrier. Glia 2016, 64, 1097–1123. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; Krizbai, I.A. Heterogeneity of the blood-brain barrier. Tissue Barriers 2016, 4, e1143544. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020, 37, 112–125. [Google Scholar] [CrossRef]
- Gawdi, R.; Shumway, K.R.; Emmady, P.D. Physiology, Blood Brain Barrier; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zaragozá, R. Transport of Amino Acids Across the Blood-Brain Barrier. Front. Physiol. 2020, 11, 973. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 370, 153–164. [Google Scholar] [CrossRef]
- Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull. 2020, 160, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E.; et al. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Bhunia, S.; Kolishetti, N.; Vashist, A.; Yndart Arias, A.; Brooks, D.; Nair, M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023, 15, 2658. [Google Scholar] [CrossRef]
- Candelario-Jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022, 53, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018, 163–164, 144–171. [Google Scholar] [CrossRef]
- Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2017, 18, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Tyson, J.; Patel, S.; Patel, M.; Katakam, S.; Mao, X.; He, W. Emerging Nanotechnology for Treatment of Alzheimer’s and Parkinson’s Disease. Front. Bioeng. Biotechnol. 2021, 9, 672594. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wong, L.-W.; Su, Y.; Huang, X.; Wang, N.; Chen, H.; Yi, C. Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Front. Neuroendocrinol. 2020, 59, 100857. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.D.; Tran, N.-M.-A.; Van Vo, G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem. Res. 2022, 47, 552–573. [Google Scholar] [CrossRef] [PubMed]
- Balasa, R.; Barcutean, L.; Mosora, O.; Manu, D. Reviewing the Significance of Blood–Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int. J. Mol. Sci. 2021, 22, 8370. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, M.; Zhu, C. Neuroinflammation in Prion Disease. Int. J. Mol. Sci. 2021, 22, 2196. [Google Scholar] [CrossRef] [PubMed]
- de Robles, P.; Fiest, K.M.; Frolkis, A.D.; Pringsheim, T.; Atta, C.; St. Germaine-Smith, C.; Day, L.; Lam, D.; Jette, N. The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro-Oncol. 2014, 17, 776–783. [Google Scholar] [CrossRef]
- Sonali; Viswanadh, M.K.; Singh, R.P.; Agrawal, P.; Mehata, A.K.; Pawde, D.M.; Narendra; Sonkar, R.; Muthu, M.S. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018, 2, 70–86. [Google Scholar] [CrossRef]
- Condos, A.M.; Wangaryattawanich, P.; Rath, T.J. Bacterial, Viral, and Prion Infectious Diseases of the Brain. Magn. Reson. Imaging Clin. N. Am. 2024, 32, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Gama, L.; Cinque, P. Strategies to target the central nervous system HIV reservoir. Curr. Opin. HIV AIDS 2024, 19, 133–140. [Google Scholar] [CrossRef]
- Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, G.; Thysiadou, A.; Kyzas, G.Z. Progress in the Application of Nanoparticles and Graphene as Drug Carriers and on the Diagnosis of Brain Infections. Molecules 2021, 26, 186. [Google Scholar] [CrossRef]
- Le Guennec, L.; Coureuil, M.; Nassif, X.; Bourdoulous, S. Strategies used by bacterial pathogens to cross the blood–brain barrier. Cell. Microbiol. 2020, 22, e13132. [Google Scholar] [CrossRef]
- Ayala-Nunez, N.V.; Gaudin, R. A viral journey to the brain: Current considerations and future developments. PLoS Pathog. 2020, 16, e1008434. [Google Scholar] [CrossRef] [PubMed]
- Wouk, J.; Rechenchoski, D.Z.; Rodrigues, B.C.D.; Ribelato, E.V.; Faccin-Galhardi, L.C. Viral infections and their relationship to neurological disorders. Arch. Virol. 2021, 166, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P. Viral diseases and the brain. EMBO Rep. 2022, 23, e54342. [Google Scholar] [CrossRef] [PubMed]
- Strickland, A.B.; Shi, M. Mechanisms of fungal dissemination. Cell. Mol. Life Sci. 2021, 78, 3219–3238. [Google Scholar] [CrossRef] [PubMed]
- Le Govic, Y.; Demey, B.; Cassereau, J.; Bahn, Y.S.; Papon, N. Pathogens infecting the central nervous system. PLoS Pathog. 2022, 18, e1010234. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.H.; Nath, A.; Del Brutto, O.H. Parasitic infections of the nervous system. Semin. Neurol. 2019, 39, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Fahoum, F.; Eyal, S. Intracerebroventricular administration for delivery of antiseizure therapeutics: Challenges and opportunities. Epilepsia 2023, 64, 1750–1765. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.J., Jr. Intracerebroventricular drug administration. Transl. Clin. Pharmacol. 2017, 25, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Slavc, I.; Cohen-Pfeffer, J.L.; Gururangan, S.; Krauser, J.; Lim, D.A.; Maldaun, M.; Schwering, C.; Shaywitz, A.J.; Westphal, M. Best practices for the use of intracerebroventricular drug delivery devices. Mol. Genet. Metab. 2018, 124, 184–188. [Google Scholar] [CrossRef]
- Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv. Mater. 2018, 30, 1801362. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018, 10, 269. [Google Scholar] [CrossRef]
- Pandit, R.; Chen, L.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 2020, 165–166, 1–14. [Google Scholar] [CrossRef]
- Ramadi, K.B.; Bashyam, A.; Frangieh, C.J.; Rousseau, E.B.; Cotler, M.J.; Langer, R.; Graybiel, A.M.; Cima, M.J. Computationally Guided Intracerebral Drug Delivery via Chronically Implanted Microdevices. Cell Rep. 2020, 31, 107734. [Google Scholar] [CrossRef]
- Cesca, F.; Limongi, T.; Accardo, A.; Rocchi, A.; Orlando, M.; Shalabaeva, V.; Di Fabrizio, E.; Benfenati, F. Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Adv. 2014, 4, 45696–45702. [Google Scholar] [CrossRef]
- Limongi, T.; Rocchi, A.; Cesca, F.; Tan, H.; Miele, E.; Giugni, A.; Orlando, M.; Perrone Donnorso, M.; Perozziello, G.; Benfenati, F. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration. Mol. Neurobiol. 2018, 55, 8788–8798. [Google Scholar] [CrossRef]
- Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019, 224, 119491. [Google Scholar] [CrossRef]
- Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44–52. [Google Scholar] [CrossRef]
- Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 2020, 25, 1929. [Google Scholar] [CrossRef]
- Nguyen, T.-T.-L.; Maeng, H.-J. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022, 14, 572. [Google Scholar] [CrossRef]
- Umlauf, B.J.; Shusta, E.V. Exploiting BBB disruption for the delivery of nanocarriers to the diseased CNS. Curr. Opin. Biotechnol. 2019, 60, 146–152. [Google Scholar] [CrossRef]
- Pinkiewicz, M.; Pinkiewicz, M.; Walecki, J.; Zaczyński, A.; Zawadzki, M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood–Brain Barrier Disruption. Cancers 2024, 16, 236. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-T.; Wei, K.-C.; Liu, H.-L. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment. Front. Pharmacol. 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Thombre, R.; Mess, G.; Kempski Leadingham, K.M.; Kapoor, S.; Hersh, A.; Acord, M.; Kaovasia, T.; Theodore, N.; Tyler, B.; Manbachi, A. Towards standardization of the parameters for opening the blood–brain barrier with focused ultrasound to treat glioblastoma multiforme: A systematic review of the devices, animal models, and therapeutic compounds used in rodent tumor models. Front. Oncol. 2023, 12, 1072780. [Google Scholar] [CrossRef] [PubMed]
- Gorick, C.M.; Breza, V.R.; Nowak, K.M.; Cheng, V.W.; Fisher, D.G.; Debski, A.C.; Hoch, M.R.; Demir, Z.E.; Tran, N.M.; Schwartz, M.R. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv. Drug Deliv. Rev. 2022, 191, 114583. [Google Scholar] [CrossRef]
- Anastasiadis, P.; Gandhi, D.; Guo, Y.; Ahmed, A.K.; Bentzen, S.M.; Arvanitis, C.; Woodworth, G.F. Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc. Natl. Acad. Sci. USA 2021, 118, e2103280118. [Google Scholar] [CrossRef]
- Mainprize, T.; Lipsman, N.; Huang, Y.; Meng, Y.; Bethune, A.; Ironside, S.; Heyn, C.; Alkins, R.; Trudeau, M.; Sahgal, A.; et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci. Rep. 2019, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Pople, C.B.; Suppiah, S.; Llinas, M.; Huang, Y.; Sahgal, A.; Perry, J.; Keith, J.; Davidson, B.; Hamani, C.; et al. MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors. Neuro Oncol. 2021, 23, 1789–1797. [Google Scholar] [CrossRef]
- Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.-Y.; et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 2016, 8, 343re2. [Google Scholar] [CrossRef]
- Chen, K.-T.; Chai, W.-Y.; Lin, Y.-J.; Lin, C.-J.; Chen, P.-Y.; Tsai, H.-C.; Huang, C.-Y.; Kuo, J.S.; Liu, H.-L.; Wei, K.-C. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv. 2021, 7, eabd0772. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, M.J.; Jung, H.H.; Chang, W.S.; Choi, H.S.; Rachmilevitch, I.; Zadicario, E.; Chang, J.W. One-Year Outcome of Multiple Blood-Brain Barrier Disruptions With Temozolomide for the Treatment of Glioblastoma. Front. Oncol. 2020, 10, 1663. [Google Scholar] [CrossRef] [PubMed]
- Abrahao, A.; Meng, Y.; Llinas, M.; Huang, Y.; Hamani, C.; Mainprize, T.; Aubert, I.; Heyn, C.; Black, S.E.; Hynynen, K.; et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 2019, 10, 4373. [Google Scholar] [CrossRef]
- Pineda-Pardo, J.A.; Gasca-Salas, C.; Fernández-Rodríguez, B.; Rodríguez-Rojas, R.; Del Álamo, M.; Obeso, I.; Hernández-Fernández, F.; Trompeta, C.; Martínez-Fernández, R.; Matarazzo, M.; et al. Striatal Blood-Brain Barrier Opening in Parkinson’s Disease Dementia: A Pilot Exploratory Study. Mov. Disord. 2022, 37, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Meng, Y.; Bethune, A.J.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A.; et al. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 2018, 9, 2336. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.I.; Carpenter, J.S.; Mehta, R.I.; Haut, M.W.; Wang, P.; Ranjan, M.; Najib, U.; D’Haese, P.F.; Rezai, A.R. Ultrasound-mediated blood-brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer’s disease. Fluids Barriers CNS 2023, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Goubran, M.; Rabin, J.S.; McSweeney, M.; Ottoy, J.; Pople, C.B.; Huang, Y.; Storace, A.; Ozzoude, M.; Bethune, A.; et al. Blood-brain barrier opening of the default mode network in Alzheimer’s disease with magnetic resonance-guided focused ultrasound. Brain 2023, 146, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Pan, M.; Fiaz, M.; Hao, Y.; Yan, Y.; Sun, L.; Yan, F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv. Rev. 2022, 190, 114539. [Google Scholar] [CrossRef] [PubMed]
- Stamp, M.E.M.; Halwes, M.; Nisbet, D.; Collins, D.J. Breaking barriers: Exploring mechanisms behind opening the blood–brain barrier. Fluids Barriers CNS 2023, 20, 87. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, W.; Vodovozova, E.; Tretiakova, D.; Boldyrevd, I.; Li, Y.; Kürths, J.; Yu, T.; Semyachkina-Glushkovskaya, O.; Zhu, D. Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window. Biomed. Opt. Express 2018, 9, 4850–4862. [Google Scholar] [CrossRef]
- Butt, O.H.; Zhou, A.Y.; Huang, J.; Leidig, W.A.; Silberstein, A.E.; Chheda, M.G.; Johanns, T.M.; Ansstas, G.; Liu, J.; Talcott, G.; et al. A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma. Neurooncol. Adv. 2021, 3, vdab164. [Google Scholar] [CrossRef]
- Hwang, H.; Huang, J.; Khaddour, K.; Butt, O.H.; Ansstas, G.; Chen, J.; Katumba, R.G.; Kim, A.H.; Leuthardt, E.C.; Campian, J.L. Prolonged response of recurrent IDH-wild-type glioblastoma to laser interstitial thermal therapy with pembrolizumab. CNS Oncol. 2022, 11, Cns81. [Google Scholar] [CrossRef] [PubMed]
- Sharabi, S.; Bresler, Y.; Ravid, O.; Shemesh, C.; Atrakchi, D.; Schnaider-Beeri, M.; Gosselet, F.; Dehouck, L.; Last, D.; Guez, D. Transient blood–brain barrier disruption is induced by low pulsed electrical fields in vitro: An analysis of permeability and trans-endothelial electric resistivity. Drug Deliv. 2019, 26, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Upton, D.H.; Ung, C.; George, S.M.; Tsoli, M.; Kavallaris, M.; Ziegler, D.S. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics 2022, 12, 4734. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016, 235, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int. J. Mol. Sci. 2021, 22, 11654. [Google Scholar] [CrossRef] [PubMed]
- Al Gailani, M.; Liu, M.; Wen, J. Ligands for oral delivery of peptides across the blood-brain-barrier. Acta Mater. Medica 2022, 1, 106–123. [Google Scholar] [CrossRef]
- Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci. 2019, 14, 480–496. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Lakkadwala, S.; Modgil, A.; Singh, J. The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. Int. J. Mol. Sci. 2016, 17, 806. [Google Scholar] [CrossRef] [PubMed]
- Agwa, M.M.; Sabra, S. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int. J. Biol. Macromol. 2021, 167, 1527–1543. [Google Scholar] [CrossRef]
- Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Front. Bioeng. Biotechnol. 2020, 8, 238. [Google Scholar] [CrossRef]
- Mojarad-Jabali, S.; Farshbaf, M.; Walker, P.R.; Hemmati, S.; Fatahi, Y.; Zakeri-Milani, P.; Sarfraz, M.; Valizadeh, H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int. J. Pharm. 2021, 602, 120645. [Google Scholar] [CrossRef]
- Scicluna, M.C.; Vella-Zarb, L. Evolution of Nanocarrier Drug-Delivery Systems and Recent Advancements in Covalent Organic Framework–Drug Systems. ACS Appl. Nano Mater. 2020, 3, 3097–3115. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Javed, M.N.; Deeb, H.H.; Nicola, M.K.; Mirza, M.; Alam, M.S.; Akhtar, M.H.; Waziri, A. Lipid nanocarriers for neurotherapeutics: Introduction, challenges, blood-brain barrier, and promises of delivery approaches. CNS Neurol. Disord.-Drug Targets 2022, 21, 952–965. [Google Scholar] [PubMed]
- Susa, F.; Bucca, G.; Limongi, T.; Cauda, V.; Pisano, R. Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology 2021, 98, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Frankel, B.M.; Cachia, D.; Patel, S.J.; Das, A. Targeting Subventricular Zone Progenitor Cells with Intraventricular Liposomal Encapsulated Cytarabine in Patients with Secondary Glioblastoma: A Report of Two Cases. SN Compr. Clin. Med. 2020, 2, 836–843. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.F.A.D.; Bredius, R.G.M.; Verdijk, R.M.; Smiers, F.J.W.; van der Beek, M.T.; Goemans, B.F.; Zwaan, C.M.; Brüggemann, R.J.; Rijnders, B.J.A. Management of cerebral azole-resistant Aspergillus fumigatus infection: A role for intraventricular liposomal-amphotericin B. J. Glob. Antimicrob. Resist. 2020, 22, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Toprak, D.; Öcal Demir, S.; Kadayifci, E.K.; Türel, Ö.; Soysal, A.; Bakir, M. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B. Case Rep. Infect. Dis. 2015, 2015, 340725. [Google Scholar] [CrossRef]
- Stepien, N.; Peyrl, A.; Azizi, A.; Gojo, J.; Mayr, L.; Reisinger, D.; Haberler, C.; Czech, T.; Slavc, I. DDEL-03. Long-term intraventricular therapy alternating etoposide and liposomal cytarabine: Experience in 75 children and adolescents with malignant brain tumors. Neuro-Oncol. 2020, 22, iii284. [Google Scholar] [CrossRef]
- Juhairiyah, F.; de Lange, E.C.M. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. AAPS J. 2021, 23, 114. [Google Scholar] [CrossRef]
- Zalba, S.; Ten Hagen, T.L.; Burgui, C.; Garrido, M.J. Stealth nanoparticles in oncology: Facing the PEG dilemma. J. Control. Release 2022, 351, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Abuwatfa, W.H.; Pitt, W.G.; Husseini, G.A. Liposomes for the Treatment of Brain Cancer-A Review. Pharmaceuticals 2023, 16, 1056. [Google Scholar] [CrossRef]
- William, P.; Ande, B.; John, F.; Vibhudutta, A.; Toral, P.; Marc, H.; Norman, L.; Cheri, R.; Joel, M.; Jeffrey, W.; et al. Rhenium-186-NanoLiposome (186RNL) in the treatment of relapse/recurrent glioblastoma (rGBM): A novel approach for cancer therapy. J. Nucl. Med. 2022, 63, 2488. [Google Scholar]
- Woodall, R.T.; Hormuth Ii, D.A.; Wu, C.; Abdelmalik, M.R.A.; Phillips, W.T.; Bao, A.; Hughes, T.J.R.; Brenner, A.J.; Yankeelov, T.E. Patient specific, imaging-informed modeling of rhenium-186 nanoliposome delivery via convection-enhanced delivery in glioblastoma multiforme. Biomed. Phys. Eng. Express 2021, 7, 045012. [Google Scholar] [CrossRef] [PubMed]
- Beier, C.P.; Schmid, C.; Gorlia, T.; Kleinletzenberger, C.; Beier, D.; Grauer, O.; Steinbrecher, A.; Hirschmann, B.; Brawanski, A.; Dietmaier, C.; et al. RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma—A phase II study. BMC Cancer 2009, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Melnick, K.; Dastmalchi, F.; Mitchell, D.; Rahman, M.; Sayour, E.J. Contemporary RNA Therapeutics for Glioblastoma. Neuromolecular Med. 2022, 24, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, D.; Kerklaan, B.M.; Diéras, V.; Altintas, S.; Anders, C.K.; Ballester, M.A.; Gelderblom, H.; Soetekouw, P.M.M.B.; Gladdines, W.; Lonnqvist, F.; et al. 472P—Phase 1/2A Study of Glutathione Pegylated Liposomal Doxorubicin (2B3-101) in Patients with Brain Metastases (Bm) from Solid Tumors or Recurrent High Grade Gliomas (Hgg). Ann. Oncol. 2014, 25, iv157. [Google Scholar] [CrossRef]
- Read, R.D. Repurposing the drug verteporfin as anti-neoplastic therapy for glioblastoma. Neuro Oncol. 2022, 24, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.L.; Molinaro, A.M.; Cabrera, J.R.; DeSilva, A.A.; Rabbitt, J.E.; Prey, J.; Drummond, D.C.; Kim, J.; Noble, C.; Fitzgerald, J.B.; et al. A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother. Pharmacol. 2017, 79, 603–610. [Google Scholar] [CrossRef]
- Clarke, J.L.; Molinaro, A.M.; DeSilva, A.A.; Rabbitt, J.E.; Drummond, D.C.; Chang, S.M.; Butowski, N.A.; Prados, M. A phase I trial of intravenous liposomal irinotecan in patients with recurrent high-grade gliomas. J. Clin. Oncol. 2015, 33, 2029. [Google Scholar] [CrossRef]
- Young, J.S.; Aghi, M.K. Chronic convection-enhanced intratumoural delivery of chemotherapy for glioblastoma. Lancet Oncol. 2022, 23, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Peyrl, A.; Chocholous, M.; Sabel, M.; Lassaletta, A.; Sterba, J.; Leblond, P.; Nysom, K.; Torsvik, I.; Chi, S.N.; Perwein, T.; et al. Sustained Survival Benefit in Recurrent Medulloblastoma by a Metronomic Antiangiogenic Regimen: A Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Mao, K.-L.; Tian, F.-R.; Yang, J.-J.; Chen, P.-P.; Xu, J.; Fan, Z.-L.; Zhao, Y.-P.; Li, W.-F.; Zheng, L.; et al. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother. Pharmacol. 2016, 77, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Ghaferi, M.; Raza, A.; Koohi, M.; Zahra, W.; Akbarzadeh, A.; Ebrahimi Shahmabadi, H.; Alavi, S.E. Impact of PEGylated liposomal doxorubicin and carboplatin combination on glioblastoma. Pharmaceutics 2022, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Fortin, D.; Paquette, B.; Sanche, L. Convection-enhancement delivery of liposomal formulation of oxaliplatin shows less toxicity than oxaliplatin yet maintains a similar median survival time in F98 glioma-bearing rat model. Investig. New Drugs 2016, 34, 269–276. [Google Scholar] [CrossRef]
- Ashizawa, A.T.; Holt, J.; Faust, K.; Liu, W.; Tiwari, A.; Zhang, N.; Ashizawa, T. Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells. Cerebellum 2019, 18, 99–108. [Google Scholar] [CrossRef]
- Hirunagi, T.; Sahashi, K.; Tachikawa, K.; Leu, A.I.; Nguyen, M.; Mukthavaram, R.; Karmali, P.P.; Chivukula, P.; Tohnai, G.; Iida, M. Selective suppression of polyglutamine-expanded protein by lipid nanoparticle-delivered siRNA targeting CAG expansions in the mouse CNS. Mol. Ther.-Nucleic Acids 2021, 24, 1–10. [Google Scholar] [CrossRef]
- Gunay, M.S.; Ozer, A.Y.; Erdogan, S.; Bodard, S.; Baysal, I.; Gulhan, Z.; Guilloteau, D.; Chalon, S. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J. Nanosci. Nanotechnol. 2017, 17, 5155–5167. [Google Scholar] [CrossRef]
- Xie, X.; Kong, Q.; Chen, Y.; Yang, Z.; Wu, Z.; Xiao, Y.; Chen, Y.; Yu, Z.; Luo, X.; Qu, W. Liposome-based loading enhances the distribution of nicotinamide riboside chloride into the brain and its neuroprotective effects in cerebral ischemic mice. J. Neurorestoratology 2024, 12, 100111. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, W.; Xing, H.; Guo, S.; Huang, L.; Wang, L.; Sui, X.; Lu, K.; Luo, Y.; Wang, Y.; et al. A mix & act liposomes of phospholipase A2-phosphatidylserine for acute brain detoxification by blood–brain barrier selective-opening. Acta Pharm. Sin. B 2024, 14, 1827–1844. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Liu, L.; Chen, Y.-H.; You, Y.; Gao, Y.; Liu, Y.-Y.; Yang, L.; Tong, K.; Chen, D.-S. Transferrin-Pep63-liposomes accelerate the clearance of Aβ and rescue impaired synaptic plasticity in early Alzheimer’s disease models. Cell Death Discov. 2021, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, A.; Cutrignelli, A.; Denora, N.; Lopedota, A.; Franco, M.; Laquintana, V. Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood–Brain Barrier. Nanomaterials 2018, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.C.; Morton, S.W.; Wyckoff, J.; Vu Han, T.-L.; Hwang, M.K.; Maffa, A.; Balkanska-Sinclair, E.; Yaffe, M.B.; Floyd, S.R.; Hammond, P.T. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun. 2018, 9, 1991. [Google Scholar] [CrossRef]
- Kong, L.; Li, X.-T.; Ni, Y.-N.; Xiao, H.-H.; Yao, Y.-J.; Wang, Y.-Y.; Ju, R.-J.; Li, H.-Y.; Liu, J.-J.; Fu, M. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int. J. Nanomed. 2020, 15, 2841–2858. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, H.; You, Y.; Wang, R.; Tan, T.; Wang, W.; Yin, L.; Zeng, Z.; Zeng, Y.; Xie, T. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J. Nanobiotechnol. 2021, 19, 289. [Google Scholar] [CrossRef]
- Kim, S.-S.; Rait, A.; Kim, E.; DeMarco, J.; Pirollo, K.F.; Chang, E.H. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett. 2015, 369, 250–258. [Google Scholar] [CrossRef]
- Kim, S.-S.; Rait, A.; Garrido-Sanabria, E.R.; Pirollo, K.F.; Harford, J.B.; Chang, E.H. Nanotherapeutics for gene modulation that prevents apoptosis in the brain and fatal neuroinflammation. Mol. Ther. 2018, 26, 84–94. [Google Scholar] [CrossRef]
- Gregori, M.; Orlando, A.; Re, F.; Sesana, S.; Nardo, L.; Salerno, D.; Mantegazza, F.; Salvati, E.; Zito, A.; Malavasi, F.; et al. Novel Antitransferrin Receptor Antibodies Improve the Blood–Brain Barrier Crossing Efficacy of Immunoliposomes. J. Pharm. Sci. 2016, 105, 276–283. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Jung, H.-J.; Oh, J.-S.; Song, D.-Y. Use of PEGylated Immunoliposomes to Deliver Dopamine Across the Blood–Brain Barrier in a Rat Model of Parkinson’s Disease. CNS Neurosci. Ther. 2016, 22, 817–823. [Google Scholar] [CrossRef]
- Johnsen, K.B.; Burkhart, A.; Melander, F.; Kempen, P.J.; Vejlebo, J.B.; Siupka, P.; Nielsen, M.S.; Andresen, T.L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 2017, 7, 10396. [Google Scholar] [CrossRef]
- Shein, S.A.; Kuznetsov, I.I.; Abakumova, T.O.; Chelushkin, P.S.; Melnikov, P.A.; Korchagina, A.A.; Bychkov, D.A.; Seregina, I.F.; Bolshov, M.A.; Kabanov, A.V.; et al. VEGF- and VEGFR2-Targeted Liposomes for Cisplatin Delivery to Glioma Cells. Mol. Pharm. 2016, 13, 3712–3723. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, Y.; Zhao, H.; Qiao, G.; Liu, M.; Zhang, C.; Cui, D.; Ma, L. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Deliv. 2018, 25, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-J.; Chuang, E.-Y.; Cheng, Y.-H.; Anilkumar, T.; Chen, H.-A.; Chen, J.-P. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chem. Eng. J. 2019, 373, 720–733. [Google Scholar] [CrossRef]
- Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int. J. Nanomed. 2020, 15, 2809–2828. [Google Scholar] [CrossRef] [PubMed]
- Rajora, M.; Ding, L.; Valic, M.; Jiang, W.; Overchuk, M.; Chen, J.; Zheng, G. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem. Sci. 2017, 8, 5371–5384. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, Y.; Dong, S.; Sun, Y.; Hao, F.; Xie, J.; Teng, L.; Lee, R.J.; Fu, Y.; Bi, Y. Cell-penetrating peptide-coated liposomes for drug delivery across the blood–brain barrier. Anticancer Res. 2019, 39, 237–243. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, L.; Xu, C.; Yu, Q.; Shi, K.; Zhang, L.; Wang, Y.; Zhang, Q.; Gao, H.; Zhang, Z. Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy. Theranostics 2016, 6, 177. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Chen, C.-L.; Rajesh, R. Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater. 2019, 87, 207–222. [Google Scholar] [CrossRef]
- Arora, S.; Layek, B.; Singh, J. Design and validation of liposomal ApoE2 gene delivery system to evade blood–brain barrier for effective treatment of Alzheimer’s disease. Mol. Pharm. 2020, 18, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Lin, Q.; He, S.; Wang, L.; Fu, Y.; Zhang, Z.; Zhang, L. A brain targeting functionalized liposomes of the dopamine derivative N-3, 4-bis (pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release 2018, 277, 173–182. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Tsai, H.-C.; Rajesh, R. Glutathione liposomes carrying ceftriaxone, fk506, and nilotinib to control overexpressed dopamine markers and apoptotic factors in neurons. ACS Biomater. Sci. Eng. 2021, 7, 3242–3255. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-H.; Hong, S.-T.; Wang, H.-T.; Lo, Y.-L.; Lin, A.M.-Y.; Yang, J.C.-H. Enhancing Anticancer Effect of Gefitinib across the Blood–Brain Barrier Model Using Liposomes Modified with One α-Helical Cell-Penetrating Peptide or Glutathione and Tween 80. Int. J. Mol. Sci. 2016, 17, 1998. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, K.; Tang, X.; Wei, J.; Cun, X.; Chen, X.; Yu, Q.; Zhang, Z.; He, Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci. 2018, 124, 240–248. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Chen, Y.; Yang, Z.; Zhang, L.; Xiao, W.; Yang, J.; Guo, L.; Wu, Y. Dual-targeting for brain-specific liposomes drug delivery system: Synthesis and preliminary evaluation. Bioorganic Med. Chem. 2018, 26, 4677–4686. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.R.; Vajanthri, K.Y.; Balavigneswaran, C.K.; Mahto, S.K.; Mishra, N.; Muthu, M.S.; Singh, S. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf. B Biointerfaces 2016, 145, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Sharma, G.; Kumari, L.; Koch, B.; Singh, S.; Bharti, S.; Rajinikanth, P.S.; Pandey, B.L.; Muthu, M.S. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces 2016, 147, 129–141. [Google Scholar]
- Sonkar, R.; Sonali; Jha, A.; Viswanadh, M.K.; Burande, A.S.; Narendra; Pawde, D.M.; Patel, K.K.; Singh, M.; Koch, B.; et al. Gold liposomes for brain-targeted drug delivery: Formulation and brain distribution kinetics. Mater. Sci. Eng. C 2021, 120, 111652. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-C.; Chen, I.-Y.; Rajesh, R. Astragaloside IV-and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson’s disease treatment. Mater. Sci. Eng. C 2021, 129, 112361. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, X.; Xu, H.; Yan, H.; Li, X.; Tang, H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int. J. Nanomed. 2017, 12, 1369–1384. [Google Scholar] [CrossRef]
- Lewicky, J.D.; Fraleigh, N.L.; Boraman, A.; Martel, A.L.; Nguyen, T.M.-D.; Schiller, P.W.; Shiao, T.C.; Roy, R.; Montaut, S.; Le, H.-T. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. Eur. J. Pharm. Biopharm. 2020, 154, 290–296. [Google Scholar] [CrossRef]
- Cai, J.-Y.; Liu, Y.; Zhang, L.; Guo, R.-B.; Liu, Y.; Li, X.-T.; Ma, L.-Y.; Kong, L. Menthol-modified paclitaxel multifunctional cationic liposomes cross the blood-brain barrier and target glioma stem cells for treatment of glioblastoma. J. Drug Deliv. Sci. Technol. 2024, 93, 105387. [Google Scholar] [CrossRef]
- Zhao, W.-Y.; Zhang, C.-X.; Liu, L.; Mu, L.-M.; Zeng, F.; Ju, R.-J.; Xie, H.-J.; Yan, Y.; Zhao, Y.; Lu, W.-L. Construction of functional targeting daunorubicin liposomes used for eliminating brain glioma and glioma stem cells. J. Biomed. Nanotechnol. 2016, 12, 1404–1420. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.H.; Osman, R.; Mamdouh, W.; Abdel-Bar, H.M.; Awad, G.A.S. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. Int. J. Biol. Macromol. 2020, 165, 483–494. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, M.K.; Yen, T.-L.; Jan, J.-S.; Tang, R.-D.; Wang, J.-Y.; Taliyan, R.; Yang, C.-H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021, 13, 1183. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, S.; Wang, J.; Chen, Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front. Nutr. 2021, 8, 783831. [Google Scholar] [CrossRef]
- Hady, M.A.; Sayed, O.M.; Akl, M.A. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in-vivo evaluation. Colloids Surf. B Biointerfaces 2020, 193, 111076. [Google Scholar]
- Rassu, G.; Soddu, E.; Posadino, A.M.; Pintus, G.; Sarmento, B.; Giunchedi, P.; Gavini, E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf. B Biointerfaces 2017, 152, 296–301. [Google Scholar] [CrossRef]
- Pinheiro, R.; Granja, A.; Loureiro, J.A.; Pereira, M.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci. 2020, 148, 105314. [Google Scholar] [CrossRef]
- Muntoni, E.; Martina, K.; Marini, E.; Giorgis, M.; Lazzarato, L.; Salaroglio, I.C.; Riganti, C.; Lanotte, M.; Battaglia, L. Methotrexate-Loaded Solid Lipid Nanoparticles: Protein Functionalization to Improve Brain Biodistribution. Pharmaceutics 2019, 11, 65. [Google Scholar] [CrossRef]
- Singh, I.; Swami, R.; Pooja, D.; Jeengar, M.K.; Khan, W.; Sistla, R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J. Drug Target. 2016, 24, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-C.; Cheng, S.-J. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int. J. Pharm. 2016, 499, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Topal, G.R.; Mészáros, M.; Porkoláb, G.; Szecskó, A.; Polgár, T.F.; Siklós, L.; Deli, M.A.; Veszelka, S.; Bozkir, A. ApoE-Targeting Increases the Transfer of Solid Lipid Nanoparticles with Donepezil Cargo across a Culture Model of the Blood–Brain Barrier. Pharmaceutics 2021, 13, 38. [Google Scholar] [CrossRef]
- Kadari, A.; Pooja, D.; Gora, R.H.; Gudem, S.; Kolapalli, V.R.M.; Kulhari, H.; Sistla, R. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur. J. Pharm. Biopharm. 2018, 132, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.A.; Andrade, S.; Duarte, A.; Neves, A.R.; Queiroz, J.F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.A.N.; et al. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules 2017, 22, 277. [Google Scholar] [CrossRef]
- Gandomi, N.; Varshochian, R.; Atyabi, F.; Ghahremani, M.H.; Sharifzadeh, M.; Amini, M.; Dinarvand, R. Solid lipid nanoparticles surface modified with anti-Contactin-2 or anti-Neurofascin for brain-targeted delivery of medicines. Pharm. Dev. Technol. 2017, 22, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Zanjani, M.R.S.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today 2019, 24, 1104–1115. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Sharma, A.; Jain, V. An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes. Adv. Pharm. Bull. 2023, 13, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Limongi, T.; Susa, F.; Marini, M.; Allione, M.; Torre, B.; Pisano, R.; di Fabrizio, E. Lipid-Based Nanovesicular Drug Delivery Systems. Nanomaterials 2021, 11, 3391. [Google Scholar] [CrossRef]
- Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci. 2018, 2018, 6847971. [Google Scholar] [CrossRef]
- Boche, M.; Pokharkar, V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech 2017, 18, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Abdou, E.M.; Kandil, S.M.; El Miniawy, H.M. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm. 2017, 529, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, C.; Zhai, W.; Zhuang, N.; Han, T.; Ding, Z. The Optimization Design Of Lactoferrin Loaded HupA Nanoemulsion For Targeted Drug Transport Via Intranasal Route. Int. J. Nanomed. 2019, 14, 9217–9234. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Saghatchi Zanjani, M.R.; Rezaee, S.; Rostamizadeh, K.; Hamidi, M. Neuropharmacokinetic evaluation of lactoferrin-treated indinavir-loaded nanoemulsions: Remarkable brain delivery enhancement. Drug Dev. Ind. Pharm. 2019, 45, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Deshkar, S.S.; Jadhav, M.S.; Shirolkar, S.V. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery. Adv. Pharm. Bull. 2021, 11, 150. [Google Scholar] [CrossRef]
- Fahmy, U.A.; Ahmed, O.A.; Badr-Eldin, S.M.; Aldawsari, H.M.; Okbazghi, S.Z.; Awan, Z.A.; Bakhrebah, M.A.; Alomary, M.N.; Abdulaal, W.H.; Medina, C. Optimized nanostructured lipid carriers integrated into in situ nasal gel for enhancing brain delivery of flibanserin. Int. J. Nanomed. 2020, 15, 5253–5264. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Bicker, J.; Fonseca, C.; Ferreira, N.R.; Vitorino, C.; Alves, G.; Falcão, A.; Fortuna, A. Encapsulated escitalopram and paroxetine intranasal co-administration: In vitro/in vivo evaluation. Front. Pharmacol. 2021, 12, 751321. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R.; Dehpour, A.-R.; Azhdarzadeh, M.; Dinarvand, M. Application of nanostructured lipid carriers: The prolonged protective effects for sesamol in in vitro and in vivo models of ischemic stroke via activation of PI3K signalling pathway. DARU J. Pharm. Sci. 2017, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Salem, L.H.; El-Feky, G.S.; Fahmy, R.H.; El Gazayerly, O.N.; Abdelbary, A. Coated Lipidic Nanoparticles as a New Strategy for Enhancing Nose-to-Brain Delivery of a Hydrophilic Drug Molecule. J. Pharm. Sci. 2020, 109, 2237–2251. [Google Scholar] [CrossRef]
- Taymouri, S.; Minaiyan, M.; Ebrahimi, F.; Tavakoli, N. In-vitro and in-vivo evaluation of chitosan-based thermosensitive gel containing lorazepam NLCs for the treatment of status epilepticus. Iet Nanobiotechnol. 2020, 14, 148–154. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; Hu, H.; Qiao, M.; Chen, D.; Zhao, X.; Yang, C. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Mater. Sci. Eng. C 2018, 92, 1031–1040. [Google Scholar] [CrossRef]
- Meng, F.; Asghar, S.; Gao, S.; Su, Z.; Song, J.; Huo, M.; Meng, W.; Ping, Q.; Xiao, Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf. B Biointerfaces 2015, 134, 88–97. [Google Scholar] [CrossRef]
- Sita, V.G.; Jadhav, D.; Vavia, P. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling. J. Drug Deliv. Sci. Technol. 2020, 58, 101791. [Google Scholar] [CrossRef]
- Mashal, M.; Attia, N.; Soto-Sánchez, C.; Martínez-Navarrete, G.; Fernández, E.; Puras, G.; Pedraz, J.L. Non-viral vectors based on cationic niosomes as efficient gene delivery vehicles to central nervous system cells into the brain. Int. J. Pharm. 2018, 552, 48–55. [Google Scholar] [CrossRef]
- Hatami Nemati, S.; Bigdeli, M.R.; Mortazavi Moghadam, F.; Sharifi, K. Neuroprotective effects of niosomes loaded with thymoquinone in the cerebral ischemia model of male Wistar rats. Nanomed. Nanotechnol. Biol. Med. 2023, 48, 102637. [Google Scholar] [CrossRef]
- Al-Jammal, A.; Bigdeli, M.R.; Mortazavi Moghadam, F. pH-sensitive oleuropein-loaded niosome: Efficient treatment for metastatic brain tumors in initial steps in-vivo. OpenNano 2022, 8, 100095. [Google Scholar] [CrossRef]
- Mészáros, M.; Porkoláb, G.; Kiss, L.; Pilbat, A.-M.; Kóta, Z.; Kupihár, Z.; Kéri, A.; Galbács, G.; Siklós, L.; Tóth, A.; et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Eur. J. Pharm. Sci. 2018, 123, 228–240. [Google Scholar] [CrossRef]
- Khallaf, R.A.; Aboud, H.M.; Sayed, O.M. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J. Liposome Res. 2020, 30, 163–173. [Google Scholar] [CrossRef]
- Tulbah, A.S.; Elkomy, M.H.; Zaki, R.M.; Eid, H.M.; Eissa, E.M.; Ali, A.A.; Yassin, H.A.; Aldosari, B.N.; Naguib, I.A.; Hassan, A.H. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int. J. Pharm. X 2023, 6, 100206. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Hanieh, P.N.; Chan, L.K.N.; Angeloni, L.; Passeri, D.; Rossi, M.; Wang, J.T.-W.; Imbriano, A.; Carafa, M.; Marianecci, C. Chitosan Glutamate-Coated Niosomes: A Proposal for Nose-to-Brain Delivery. Pharmaceutics 2018, 10, 38. [Google Scholar] [CrossRef]
- Azhari, H.; Strauss, M.; Hook, S.; Boyd, B.J.; Rizwan, S.B. Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood–brain barrier. Eur. J. Pharm. Biopharm. 2016, 104, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Azhari, H.; Younus, M.; Hook, S.M.; Boyd, B.J.; Rizwan, S.B. Cubosomes enhance drug permeability across the blood–brain barrier in zebrafish. Int. J. Pharm. 2021, 600, 120411. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, Y.; Prentice, R.N.; Boyd, B.J.; Rizwan, S.B. Comparison of cubosomes and hexosomes for the delivery of phenytoin to the brain. J. Colloid Interface Sci. 2022, 605, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.P.; Pawara, D.D.; Gudewar, C.S.; Tekade, A.R. Nanostructured cubosomes in an in situ nasal gel system: An alternative approach for the controlled delivery of donepezil HCl to brain. J. Liposome Res. 2019, 29, 264–273. [Google Scholar] [CrossRef]
- Eissa, E.M.; Elkomy, M.H.; Eid, H.M.; Ali, A.A.; Abourehab, M.A.S.; Alsubaiyel, A.M.; Naguib, I.A.; Alsalahat, I.; Hassan, A.H. Intranasal Delivery of Granisetron to the Brain via Nanostructured Cubosomes-Based In Situ Gel for Improved Management of Chemotherapy-Induced Emesis. Pharmaceutics 2022, 14, 1374. [Google Scholar] [CrossRef]
- Thakkar, H.; Modi, B.; Patel, B. Intranasal spray of cubosomal tizanidine hydrochloride for brain targeting: In vitro and in vivo characterisation. J. Microencapsul. 2023, 40, 366–383. [Google Scholar] [CrossRef]
- Deruyver, L.; Rigaut, C.; Gomez-Perez, A.; Lambert, P.; Haut, B.; Goole, J. In vitro Evaluation of Paliperidone Palmitate Loaded Cubosomes Effective for Nasal-to-Brain Delivery. Int. J. Nanomed. 2023, 18, 1085–1106. [Google Scholar] [CrossRef]
- Lin, T.; Wei, Q.; Zhang, H.; Yang, Y.; Jiang, B.; Wang, Z.; Li, S.; Wang, Q.; Hu, M.; Chen, W.; et al. Novel dual targeting cubosomes modified with angiopep-2 for co-delivery GNA and PLHSpT to brain glioma. J. Biomater. Appl. 2023, 38, 743–757. [Google Scholar] [CrossRef]
- Cai, X.; Refaat, A.; Gan, P.-Y.; Fan, B.; Yu, H.; Thang, S.H.; Drummond, C.J.; Voelcker, N.H.; Tran, N.; Zhai, J. Angiopep-2-Functionalized Lipid Cubosomes for Blood–Brain Barrier Crossing and Glioblastoma Treatment. ACS Appl. Mater. Interfaces 2024, 16, 12161–12174. [Google Scholar] [CrossRef]
- Limongi, T.; Susa, F.; Dumontel, B.; Racca, L.; Perrone Donnorso, M.; Debellis, D.; Cauda, V. Extracellular Vesicles Tropism: A Comparative Study between Passive Innate Tropism and the Active Engineered Targeting Capability of Lymphocyte-Derived EVs. Membranes 2021, 11, 886. [Google Scholar] [CrossRef]
- Ramos-Zaldívar, H.M.; Polakovicova, I.; Salas-Huenuleo, E.; Corvalán, A.H.; Kogan, M.J.; Yefi, C.P.; Andia, M.E. Extracellular vesicles through the blood–brain barrier: A review. Fluids Barriers CNS 2022, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Lino, M.M.; Simões, S.; Tomatis, F.; Albino, I.; Barrera, A.; Vivien, D.; Sobrino, T.; Ferreira, L. Engineered extracellular vesicles as brain therapeutics. J. Control. Release 2021, 338, 472–485. [Google Scholar] [CrossRef]
- Rezaie, J.; Feghhi, M.; Etemadi, T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signal. 2022, 20, 145. [Google Scholar] [CrossRef]
- Katakowski, M.; Chopp, M. Exosomes as Tools to Suppress Primary Brain Tumor. Cell. Mol. Neurobiol. 2016, 36, 343–352. [Google Scholar] [CrossRef]
- Dehghani, L.; Khojasteh, A.; Soleimani, M.; Oraee-Yazdani, S.; Keshel, S.H.; Saadatnia, M.; Saboori, M.; Zali, A.; Hashemi, S.M.; Soleimani, R. Safety of Intraparenchymal Injection of Allogenic Placenta Mesenchymal Stem Cells Derived Exosome in Patients Undergoing Decompressive Craniectomy Following Malignant Middle Cerebral Artery Infarct, A Pilot Randomized Clinical Trial. Int. J. Prev. Med. 2022, 13, 7. [Google Scholar] [CrossRef]
- Xie, X.; Song, Q.; Dai, C.; Cui, S.; Tang, R.; Li, S.; Chang, J.; Li, P.; Wang, J.; Li, J.; et al. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: A phase I/II clinical trial. Gen. Psychiatr. 2023, 36, e101143. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Li, Y.; Zhu, L.; Zhou, Z. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp. Cell Res. 2019, 382, 111474. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, G.; Chen, Y.; Yuan, J.; Zhang, J.; Wang, S.; Li, Q.; Wang, Y.; Deng, Z. Embryonic Stem Cell Derived Small Extracellular Vesicles Modulate Regulatory T Cells to Protect against Ischemic Stroke. ACS Nano 2021, 15, 7370–7385. [Google Scholar] [CrossRef]
- Elia, C.A.; Tamborini, M.; Rasile, M.; Desiato, G.; Marchetti, S.; Swuec, P.; Mazzitelli, S.; Clemente, F.; Anselmo, A.; Matteoli, M. Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced Aβ plaque burden in early stages of a preclinical model of Alzheimer’s disease. Cells 2019, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, M.A.; Saraiva, L.M.; de Carvalho, L.R.; Vasconcelos-dos-Santos, A.; Beiral, H.J.; Ramos, A.B.; de Paula Silva, L.R.; Leal, R.B.; Monteiro, V.H.; Braga, C.V. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J. Biol. Chem. 2018, 293, 1957–1975. [Google Scholar] [CrossRef] [PubMed]
- Bodart-Santos, V.; de Carvalho, L.R.; de Godoy, M.A.; Batista, A.F.; Saraiva, L.M.; Lima, L.G.; Abreu, C.A.; De Felice, F.G.; Galina, A.; Mendez-Otero, R. Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res. Ther. 2019, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, M.; Pedrazzoli, M.; D’Agostino, C.; Elia, C.A.; Massenzio, F.; Lonati, E.; Mauri, M.; Rizzi, L.; Molteni, L.; Bresciani, E.; et al. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl. Med. 2020, 9, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Cone, A.S.; Yuan, X.; Sun, L.; Duke, L.C.; Vreones, M.P.; Carrier, A.N.; Kenyon, S.M.; Carver, S.R.; Benthem, S.D.; Stimmell, A.C.; et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 2021, 11, 8129–8142. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, M.; Zheng, M.; Dai, C.; Song, Q.; Zhang, Q.; Li, Q.; Gu, X.; Chen, H.; Jiang, G.; et al. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J. Control. Release 2020, 327, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Bonafede, R.; Turano, E.; Scambi, I.; Busato, A.; Bontempi, P.; Virla, F.; Schiaffino, L.; Marzola, P.; Bonetti, B.; Mariotti, R. ASC-Exosomes Ameliorate the Disease Progression in SOD1(G93A) Murine Model Underlining Their Potential Therapeutic Use in Human ALS. Int. J. Mol. Sci. 2020, 21, 3651. [Google Scholar] [CrossRef] [PubMed]
- Geffen, Y.; Perets, N.; Horev, R.; Yudin, D.; Oron, O.; Elliott, E.; Marom, E.; Danon, U.; Offen, D. Exosomes derived from adipose mesenchymal stem cells: A potential non-invasive intranasal treatment for autism. Cytotherapy 2020, 22, S49. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, L.; Xu, X.; Li, X.; Liu, M.; Chen, H.; Lu, J.; Xia, J. Mesenchymal Stem Cell-Derived Exosomes for Treatment of Autism Spectrum Disorder. ACS Appl. Bio Mater. 2020, 3, 6384–6393. [Google Scholar] [CrossRef] [PubMed]
- Perets, N.; Oron, O.; Herman, S.; Elliott, E.; Offen, D. Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism Shank3B. Mol. Autism 2020, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Upadhya, D.; Hattiangady, B.; Kim, D.-K.; An, S.Y.; Shuai, B.; Prockop, D.J.; Shetty, A.K. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc. Natl. Acad. Sci. USA 2017, 114, E3536–E3545. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, B.; Sun, E.; Lu, X.; Li, Z.; Wang, R.; Fang, D. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Brain Damage Following Subarachnoid Hemorrhage via the Interaction of miR-140-5p and HDAC7. Mol. Neurobiol. 2024, 15, 5253–5264. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Chen, C.H.; Wallace, C.G.; Yuen, C.M.; Kao, G.S.; Chen, Y.L.; Shao, P.L.; Chen, Y.L.; Chai, H.T.; Lin, K.C.; et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget 2016, 7, 74537–74556. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 2013, 33, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Moon, G.J.; Sung, J.H.; Kim, D.H.; Kim, E.H.; Cho, Y.H.; Son, J.P.; Cha, J.M.; Bang, O.Y. Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and MicroRNA Study. Transl. Stroke Res. 2019, 10, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kawabori, M.; Zheng, Y.; Yamaguchi, S.; Gotoh, S.; Nakahara, Y.; Yoshie, E.; Fujimura, M. Intranasal Administration of Mesenchymal Stem Cell-Derived Exosome Alleviates Hypoxic-Ischemic Brain Injury. Pharmaceutics 2024, 16, 446. [Google Scholar] [CrossRef]
- Xue, C.; Li, X.; Ba, L.; Zhang, M.; Yang, Y.; Gao, Y.; Sun, Z.; Han, Q.; Zhao, R.C. MSC-Derived Exosomes can Enhance the Angiogenesis of Human Brain MECs and Show Therapeutic Potential in a Mouse Model of Parkinson’s Disease. Aging Dis. 2021, 12, 1211–1222. [Google Scholar] [CrossRef]
- Thomi, G.; Surbek, D.; Haesler, V.; Joerger-Messerli, M.; Schoeberlein, A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res. Ther. 2019, 10, 105. [Google Scholar] [CrossRef]
- Tsivion-Visbord, H.; Perets, N.; Sofer, T.; Bikovski, L.; Goldshmit, Y.; Ruban, A.; Offen, D. Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Transl. Psychiatry 2020, 10, 305. [Google Scholar] [CrossRef]
- Zhang, Y.; Chopp, M.; Zhang, Z.G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 2017, 111, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, W.; Peng, Y.; Lin, Y.; Tian, M. Human umbilical cord mesenchymal stem cell-derived exosomes provide neuroprotection in traumatic brain injury through the lncRNA TUBB6/Nrf2 pathway. Brain Res. 2024, 1824, 148689. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Dennahy, I.S.; Bhatti, U.F.; Halaweish, I.; Xiong, Y.; Chang, P.; Nikolian, V.C.; Chtraklin, K.; Brown, J.; Zhang, Y. Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J. Neurotrauma 2019, 36, 54–60. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration. Neural Regen. Res. 2024, 19, 49–54. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; He, T.; Qu, M.; Jiang, L.; Li, W.; Shi, X.; Pan, J.; Zhang, L.; Wang, Y. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 2019, 9, 2910. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.L.; Kaiser, E.E.; Jurgielewicz, B.J.; Spellicy, S.; Scoville, S.L.; Thompson, T.A.; Swetenburg, R.L.; Hess, D.C.; West, F.D.; Stice, S.L. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke 2018, 49, 1248–1256. [Google Scholar] [CrossRef]
- Webb, R.L.; Kaiser, E.E.; Scoville, S.L.; Thompson, T.A.; Fatima, S.; Pandya, C.; Sriram, K.; Swetenburg, R.L.; Vaibhav, K.; Arbab, A.S. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl. Stroke Res. 2018, 9, 530–539. [Google Scholar] [CrossRef]
- Sun, X.; Jung, J.-H.; Arvola, O.; Santoso, M.R.; Giffard, R.G.; Yang, P.C.; Stary, C.M. Stem Cell-Derived Exosomes Protect Astrocyte Cultures From in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Front. Cell. Neurosci. 2019, 13, 394. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L.; Kuang, Y.; Venkataramani, V.; Jin, F.; Hein, K.; Zafeiriou, M.P.; Lenz, C.; Moebius, W.; Kilic, E. Extracellular vesicles derived from neural progenitor cells––A preclinical evaluation for stroke treatment in mice. Transl. Stroke Res. 2021, 12, 185–203. [Google Scholar] [CrossRef]
- Mahdavipour, M.; Hassanzadeh, G.; Seifali, E.; Mortezaee, K.; Aligholi, H.; Shekari, F.; Sarkoohi, P.; Zeraatpisheh, Z.; Nazari, A.; Movassaghi, S. Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion. Cell Biochem. Funct. 2020, 38, 373–383. [Google Scholar] [CrossRef]
- Apodaca, L.A.; Baddour, A.A.D.; Garcia, C.; Alikhani, L.; Giedzinski, E.; Ru, N.; Agrawal, A.; Acharya, M.M.; Baulch, J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimer’s Res. Ther. 2021, 13, 57. [Google Scholar] [CrossRef]
- Thome, A.D.; Thonhoff, J.R.; Zhao, W.; Faridar, A.; Wang, J.; Beers, D.R.; Appel, S.H. Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Front. Immunol. 2022, 13, 875825. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Zhu, Y.; Chen, S.; Wang, D.; Zhang, S.; Xia, J.; Li, S.; Qiu, Q.; Lee, H.; Wang, J. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood–brain-barrier penetration and tumor microenvironment modulation. J. Nanobiotechnol. 2023, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhang, Z.; Tan, X.; Wang, Z.; Tang, B.; Wang, Z.; Li, M.; Mi, T.; Shen, L.; Long, C.; et al. Antitumor effect of Escherichia coli-derived outer membrane vesicles on neuroblastoma in vitro and in vivo. Acta Biochim. Biophys. Sin. 2022, 54, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gao, Z.; Yang, Z.; Zhang, Y.; Chen, H.; Yang, X.; Fang, X.; Zhu, Y.; Zhang, J.; Ouyang, F. Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol. Res. 2022, 182, 106332. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, Y.-K.; Han, P.-L. Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice. Exp. Neurobiol. 2019, 28, 158. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Wang, L.; Dou, Y.-n.; Fei, F.; Zhang, Y.; Lv, W.; He, X.; Wu, X.; Chao, W.; Chen, H. Extracellular vesicle encapsulated Homer1a as novel nanotherapeutics against intracerebral hemorrhage in a mouse model. J. Neuroinflammation 2024, 21, 85. [Google Scholar] [CrossRef] [PubMed]
- Kutchy, N.A.; Ma, R.; Liu, Y.; Buch, S.; Hu, G. Extracellular vesicle-mediated delivery of ultrasmall superparamagnetic iron oxide nanoparticles to mice brain. Front. Pharmacol. 2022, 13, 819516. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, H.; Hu, Q.; Wang, J.; Zhang, S.; Cui, W.; Shi, Y.; Bai, H.; Zhou, J.; Han, L.; et al. Astrocyte-Derived Extracellular Vesicular miR-143-3p Dampens Autophagic Degradation of Endothelial Adhesion Molecules and Promotes Neutrophil Transendothelial Migration after Acute Brain Injury. Adv. Sci. 2024, 11, 2305339. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Lin, Q.; Huang, L.; Fu, Y.; Wang, L.; He, S.; Fu, Y.; Yang, S.; Zhang, Z.; Zhang, L. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release 2018, 287, 156–166. [Google Scholar] [CrossRef]
- Yang, T.; Fogarty, B.; LaForge, B.; Aziz, S.; Pham, T.; Lai, L.; Bai, S. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS J. 2017, 19, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Cao, T.G.; Kang, J.H.; Kang, S.J.; Truong Hoang, Q.; Kang, H.C.; Rhee, W.J.; Zhang, Y.S.; Ko, Y.T.; Shim, M.S. Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood–brain barrier. Acta Pharm. Sin. B 2023, 13, 3834–3848. [Google Scholar] [CrossRef]
- Shamshiripour, P.; Rahnama, M.; Nikoobakht, M.; Rad, V.F.; Moradi, A.-R.; Ahmadvand, D. Extracellular vesicles derived from dendritic cells loaded with VEGF-A siRNA and doxorubicin reduce glioma angiogenesis in vitro. J. Control. Release 2024, 369, 128–145. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Peng, H.; Liu, R.; Ji, W.; Shi, Z.; Shen, J.; Ma, G.; Zhang, X. Targeted exosome coating gene-chem nanocomplex as “nanoscavenger” for clearing α-synuclein and immune activation of Parkinson’s disease. Sci. Adv. 2020, 6, eaba3967. [Google Scholar] [CrossRef] [PubMed]
- Izco, M.; Blesa, J.; Schleef, M.; Schmeer, M.; Porcari, R.; Al-Shawi, R.; Ellmerich, S.; de Toro, M.; Gardiner, C.; Seow, Y. Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol. Ther. 2019, 27, 2111–2122. [Google Scholar] [CrossRef] [PubMed]
- Kalani, A.; Chaturvedi, P.; Kamat, P.K.; Maldonado, C.; Bauer, P.; Joshua, I.G.; Tyagi, S.C.; Tyagi, N. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol. 2016, 79, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Ling, X.; Yang, Y.; Zhang, J.; Li, Q.; Niu, X.; Hu, G.; Chen, B.; Li, H.; Wang, Y. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. 2019, 6, 1801899. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Zhang, W.; Chen, Y.; Bihl, J.C. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci. Ther. 2020, 26, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Pineda, L.; Sunyecz, A.; Salazar-Puerta, A.I.; Rincon-Benavides, M.A.; Alzate-Correa, D.; Anaparthi, A.L.; Guilfoyle, E.; Mezache, L.; Struckman, H.L.; Duarte-Sanmiguel, S.; et al. Designer Extracellular Vesicles Modulate Pro-Neuronal Cell Responses and Improve Intracranial Retention. Adv. Healthc. Mater. 2022, 11, 2100805. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, T.; He, W.; Jin, H.; Liu, C.; Yang, Z.; Ren, J. Methotrexate-Loaded Extracellular Vesicles Functionalized with Therapeutic and Targeted Peptides for the Treatment of Glioblastoma Multiforme. ACS Appl. Mater. Interfaces 2018, 10, 12341–12350. [Google Scholar] [CrossRef] [PubMed]
- Monfared, H.; Jahangard, Y.; Nikkhah, M.; Mirnajafi-Zadeh, J.; Mowla, S.J. Potential Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat Model of Glioblastoma. Front. Oncol. 2019, 9, 782. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhai, Y.; Hao, Y.; Wang, Q.; Han, F.; Zheng, W.; Hong, J.; Cui, L.; Jin, W.; Ma, S.; et al. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides. J. Extracell. Vesicles 2022, 11, e12255. [Google Scholar] [CrossRef]
- Chen, K.; Si, Y.; Guan, J.-S.; Zhou, Z.; Kim, S.; Kim, T.; Shan, L.; Willey, C.D.; Zhou, L.; Liu, X. Targeted Extracellular Vesicles Delivered Verrucarin A to Treat Glioblastoma. Biomedicines 2022, 10, 130. [Google Scholar] [CrossRef]
- Kim, G.; Kim, M.; Lee, Y.; Byun, J.W.; Lee, M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J. Control. Release 2020, 317, 273–281. [Google Scholar] [CrossRef]
- Yu, X.; Bai, Y.; Han, B.; Ju, M.; Tang, T.; Shen, L.; Li, M.; Yang, L.; Zhang, Z.; Hu, G.; et al. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours. J. Extracell. Vesicles 2022, 11, e12185. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, Y.; Xue, F.; Zheng, Y.; Huang, H.; Wang, W.; Chang, Y.; Yang, H.; Zhang, J. Exosomal DNA aptamer targeting α-synuclein aggregates reduced neuropathological deficits in a mouse Parkinson’s disease model. Mol. Ther.-Nucleic Acids 2019, 17, 726–740. [Google Scholar] [CrossRef]
- Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F. Extracellular vesicle–mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 2020, 142, 556–574. [Google Scholar] [CrossRef]
- Yang, J.; Wu, S.; Hou, L.; Zhu, D.; Yin, S.; Yang, G.; Wang, Y. Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Mol. Ther.-Nucleic Acids 2020, 21, 512–522. [Google Scholar] [CrossRef]
- Cai, H.; Pang, Y.; Ren, Z.; Fu, X.; Jia, L. Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. BMC Med. 2024, 22, 138. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Guo, X.; Sun, Y.; Chai, W.; Chang, Y.; Huang, Q.; Wang, P.; Wang, X. Ultrasound-Assisted CRISPRi-Exosome for Epigenetic Modification of α-Synuclein Gene in a Mouse Model of Parkinson’s Disease. ACS Nano 2024, 18, 7837–7851. [Google Scholar] [CrossRef]
- Zhang, L.-K.; Liu, L.; Liu, Q.; Zhang, Y.; Li, Z.; Xu, H.; Bai, W.; Guo, Y.; Zhang, D.; Chen, Z. Hippocampal-derived extracellular vesicle synergistically deliver active adenosine hippocampus targeting to promote cognitive recovery after stroke. Colloids Surf. B Biointerfaces 2024, 234, 113746. [Google Scholar] [CrossRef]
- Gu, W.; Luozhong, S.; Cai, S.; Londhe, K.; Elkasri, N.; Hawkins, R.; Yuan, Z.; Su-Greene, K.; Yin, Y.; Cruz, M.; et al. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 2024, 8, 415–426. [Google Scholar] [CrossRef]
- Haney, M.J.; Klyachko, N.L.; Harrison, E.B.; Zhao, Y.; Kabanov, A.V.; Batrakova, E.V. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv. Healthc. Mater. 2019, 8, 1801271. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale 2019, 11, 7481–7496. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhao, Y.; Banks, W.A.; Bullock, K.M.; Haney, M.; Batrakova, E.; Kabanov, A.V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017, 142, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Haney, M.J.; Fallon, J.K.; Rodriguez, M.; Swain, C.J.; Arzt, C.J.; Smith, P.C.; Loop, M.S.; Harrison, E.B.; El-Hage, N.; et al. Using Extracellular Vesicles Released by GDNF-Transfected Macrophages for Therapy of Parkinson Disease. Cells 2022, 11, 1933. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Cao, Y.; Yuan, W.; Guo, J.; Sun, G. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 2022, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Han, Y.; An, Y.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, Y.; Guo, K.; Zhang, K.; Liu, Q.; Wang, P.; Wang, X. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS Appl. Mater. Interfaces 2019, 11, 14576–14587. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.-H.; Guo, H.-D.; Li, H.; Zhai, Y.; Gong, Z.-B.; Wu, J.; Liu, J.-S.; Dong, Y.-R.; Hou, S.-X.; Liu, J.-R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun. Ageing 2019, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.N.; Corbin, D.; Simpkins, J.W. Brain-Wide Transgene Expression in Mice by Systemic Injection of Genetically Engineered Exosomes: CAP-Exosomes. Pharmaceuticals 2024, 17, 270. [Google Scholar] [CrossRef] [PubMed]
- Izadpanah, M.; Dargahi, L.; Ai, J.; Asgari Taei, A.; Ebrahimi Barough, S.; Mowla, S.J.; TavoosiDana, G.; Farahmandfar, M. Extracellular Vesicles as a Neprilysin Delivery System Memory Improvement in Alzheimer’s Disease. Iran. J. Pharm. Res. 2020, 19, 45–60. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, X.; Liu, M.; He, M.; Long, W.; Xu, Z.; Zhang, K.; Liu, T.; So, K.-F.; Fu, Q.-L.; et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J. Control. Release 2023, 357, 1–19. [Google Scholar] [CrossRef]
- Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hong, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res. 2019, 11, 780. [Google Scholar] [PubMed]
- Kim, H.Y.; Kim, T.J.; Kang, L.; Kim, Y.-J.; Kang, M.K.; Kim, J.; Ryu, J.H.; Hyeon, T.; Yoon, B.-W.; Ko, S.-B.; et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials 2020, 243, 119942. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, S.; Zhang, J.; Yu, T.; Fu, Z.; Zheng, Y.; Xu, X.; Liu, C.; Fan, M.; Zhang, Z. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol. Dis. 2021, 148, 105218. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, Y.; Kong, C.; Su, X.; Zhang, X.; Bai, W.; He, X. MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis After Traumatic Brain Injury by Inhibiting TLR4 Pathway. Neurochem. Res. 2019, 44, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, X.; Guo, X.; Yu, R.; Qian, M.; Wang, S.; Gao, X.; Qiu, W.; Guo, Q.; Xu, J. MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging 2021, 13, 5055. [Google Scholar] [CrossRef]
- Shen, H.; Yao, X.; Li, H.; Li, X.; Zhang, T.; Sun, Q.; Ji, C.; Chen, G. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J. Mol. Neurosci. 2018, 64, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018, 150, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Wu, J.; Fan, Q.; Zhou, J.; Wu, J.; Liu, S.; Zang, J.; Ye, J.; Xiao, M. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnol. 2019, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, X.; Chen, X.; Wang, L.; Yang, G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther.-Nucleic Acids 2017, 7, 278–287. [Google Scholar] [CrossRef]
- Peng, H.; Li, Y.; Ji, W.; Zhao, R.; Lu, Z.; Shen, J.; Wu, Y.; Wang, J.; Hao, Q.; Wang, J.; et al. Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson’s Disease. ACS Nano 2022, 16, 869–884. [Google Scholar] [CrossRef]
- Ruan, H.; Li, Y.; Wang, C.; Jiang, Y.; Han, Y.; Li, Y.; Zheng, D.; Ye, J.; Chen, G.; Yang, G.-y.; et al. Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm. Sin. B 2023, 13, 2202–2218. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Niu, F.; Dagur, R.S.; He, M.; Tian, C.; Hu, G. Intranasal delivery of lincRNA-Cox2 siRNA loaded extracellular vesicles decreases lipopolysaccharide-induced microglial proliferation in mice. J. Neuroimmune Pharmacol. 2020, 15, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Guo, M.; Hu, T.; Li, W.; Huang, S.; Yin, Z.; Li, Y.; Chen, F.; Zhu, L.; Kang, C. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI. Mol. Ther. 2020, 28, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Haroon, K.; Zheng, H.; Wu, S.; Liu, Z.; Tang, Y.; Yang, G.-Y.; Liu, Y.; Zhang, Z. Engineered exosomes mediated targeted delivery of neuroprotective peptide NR2B9c for the treatment of traumatic brain injury. Int. J. Pharm. 2024, 649, 123656. [Google Scholar] [CrossRef] [PubMed]
- Haroon, K.; Ruan, H.; Zheng, H.; Wu, S.; Liu, Z.; Shi, X.; Tang, Y.; Yang, G.-Y.; Zhang, Z. Bio-clickable, small extracellular vesicles-COCKTAIL therapy for ischemic stroke. J. Control. Release 2023, 363, 585–596. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, Y.; Zhao, C.; Liu, H.; Shao, Y.; Zhu, C.; An, L.; Chen, X.; Chen, Z. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J. Control. Release 2024, 368, 170–183. [Google Scholar] [CrossRef]
- Tian, T.; Cao, L.; He, C.; Ye, Q.; Liang, R.; You, W.; Zhang, H.; Wu, J.; Ye, J.; Tannous, B.A.; et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021, 11, 6507–6521. [Google Scholar] [CrossRef]
- Tian, T.; Liang, R.; Erel-Akbaba, G.; Saad, L.; Obeid, P.J.; Gao, J.; Chiocca, E.A.; Weissleder, R.; Tannous, B.A. Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles. ACS Nano 2022, 16, 1940–1953. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Liao, B.-Y.; Xiao, D.; Wu, W.-C.; Xiao, Y.; Alexander, T.; Song, S.-J.; Zhao, Z.-H.; Zhang, Y.; Wang, Z.-H. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis. Biomater. Sci. 2022, 10, 714–727. [Google Scholar] [CrossRef]
- Wang, K.; Kumar, U.S.; Sadeghipour, N.; Massoud, T.F.; Paulmurugan, R. A Microfluidics-Based Scalable Approach to Generate Extracellular Vesicles with Enhanced Therapeutic MicroRNA Loading for Intranasal Delivery to Mouse Glioblastomas. ACS Nano 2021, 15, 18327–18346. [Google Scholar] [CrossRef]
- Wang, J.; Tang, W.; Yang, M.; Yin, Y.; Li, H.; Hu, F.; Tang, L.; Ma, X.; Zhang, Y.; Wang, Y. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021, 273, 120784. [Google Scholar] [CrossRef]
- Oliveira Silva, R.; Counil, H.; Rabanel, J.-M.; Haddad, M.; Zaouter, C.; Ben Khedher, M.R.; Patten, S.A.; Ramassamy, C. Donepezil-Loaded Nanocarriers for the Treatment of Alzheimer’s Disease: Superior Efficacy of Extracellular Vesicles Over Polymeric Nanoparticles. Int. J. Nanomed. 2024, 19, 1077–1096. [Google Scholar] [CrossRef] [PubMed]
- Mattera, V.; Occhiuzzi, F.; Correale, J.; Pasquini, J.M. Remyelinating effect driven by transferrin-loaded extracellular vesicles. Glia 2024, 72, 338–361. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Guo, L.; Jiang, Y.; Shi, Y.; Sui, H.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv. 2020, 27, 745–755. [Google Scholar] [CrossRef]
- Guo, L.; Huang, Z.; Huang, L.; Liang, J.; Wang, P.; Zhao, L.; Shi, Y. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. J. Nanobiotechnol. 2021, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; et al. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy. Nano Lett. 2021, 21, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Teng, Y.; Samykutty, A.; Mu, J.; Deng, Z.; Zhang, L.; Cao, P.; Rong, Y.; Yan, J.; Miller, D. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol. Ther. 2016, 24, 96–105. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Z.; Huang, X.; Xue, J.; Zhang, S.; Guo, X.; Zhou, S. Bacteria-Derived Outer-Membrane Vesicles Hitchhike Neutrophils to Enhance Ischemic Stroke Therapy. Adv. Mater. 2023, 35, 2301779. [Google Scholar] [CrossRef]
- Mi, Z.; Yao, Q.; Qi, Y.; Zheng, J.; Liu, J.; Liu, Z.; Tan, H.; Ma, X.; Zhou, W.; Rong, P. Salmonella-mediated blood–brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharm. Sin. B 2023, 13, 819–833. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater. Sci. Eng. C 2020, 106, 110298. [Google Scholar] [CrossRef]
- Wang, S.; Yang, L.; He, W.; Zheng, M.; Zou, Y. Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment. Small Methods 2024, 2400096. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yin, Y.; Liu, H.; Zhu, M.; Cao, Y.; Feng, J.; Fu, C.; Li, Z.; Shu, W.; Gao, J.; et al. Blood–Brain Barrier-Penetrating and Lesion-Targeting Nanoplatforms Inspired by the Pathophysiological Features for Synergistic Ischemic Stroke Therapy. Adv. Mater. 2024, 36, 2312897. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zang, G.; Liu, B.; Qin, X.; Zhang, Y.; Chen, Y.; Zhang, H.; Wu, W.; Wang, G. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Theranostics 2021, 11, 8043–8056. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, W.; Dai, W.; Lu, F.; Cheng, Y.; Jiang, T.; Ren, Z.; Xie, Y.; Xu, J.; Zhao, Q.; et al. A Nanodrug Coated with Membrane from Brain Microvascular Endothelial Cells Protects against Experimental Cerebral Malaria. Nano Lett. 2022, 22, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ji, J.; Zhang, L.; Luo, C.; Chen, T.; Zhang, Y.; Ma, C.; Ke, Y.; Wang, J. Nanoparticles Coated with Brain Microvascular Endothelial Cell Membranes can Target and Cross the Blood–Brain Barrier to Deliver Drugs to Brain Tumors. Small 2024, 2306714. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kuang, L.; Yin, Y.; Tang, L.; Zhang, Y.; Fan, Q.; Wang, B.; Dong, Z.; Wang, W.; Yin, T.; et al. Tumor–Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma. ACS Nano 2023, 17, 2341–2355. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, L.; Ye, P.; Xie, M. Macrophage Membrane-Modified MoS2 Quantum Dots as a Nanodrug for Combined Multi-Targeting of Alzheimer’s Disease. Adv. Healthc. Mater. 2024, 13, 2303211. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Hu, J.; Jiao, W.; Tang, Z.; Song, X.; Wu, Y.; Dai, J.; Gao, P.; Du, L.; et al. Cannabidiol–loaded biomimetic macrophage membrane vesicles against post–traumatic stress disorder assisted by ultrasound. Int. J. Pharm. 2023, 637, 122872. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Du, J.; Xue, Y.; Chen, X.; Zhang, J.; Yang, X.; Chang, D.; Xie, J.; Ju, S. Recruiting T-Cells toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Co-Delivery of Cytokines and Immune Checkpoint Antibodies with Macrophage-Membrane-Camouflaged Nanovesicles. Adv. Mater. 2023, 35, 2209785. [Google Scholar] [CrossRef]
- Lai, J.; Deng, G.; Sun, Z.; Peng, X.; Li, J.; Gong, P.; Zhang, P.; Cai, L. Scaffolds biomimicking macrophages for a glioblastoma NIR-Ib imaging guided photothermal therapeutic strategy by crossing Blood-Brain Barrier. Biomaterials 2019, 211, 48–56. [Google Scholar] [CrossRef]
- Cheng, M.; Ye, C.; Tian, C.; Zhao, D.; Li, H.; Sun, Z.; Miao, Y.; Zhang, Q.; Wang, J.; Dou, Y. Engineered macrophage-biomimetic versatile nanoantidotes for inflammation-targeted therapy against Alzheimer’s disease by neurotoxin neutralization and immune recognition suppression. Bioact. Mater. 2023, 26, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, L.; Ji, Q.; Liang, Q.; Zhu, Y.; Fu, W.; Chen, T.; Duan, H.; He, W.; Xu, Z.; et al. Macrophage Membrane-Coated Nanoparticles Sensitize Glioblastoma to Radiation by Suppressing Proneural–Mesenchymal Transformation in Glioma Stem Cells. Adv. Funct. Mater. 2023, 33, 2213292. [Google Scholar] [CrossRef]
- Xiao, T.; He, M.; Xu, F.; Fan, Y.; Jia, B.; Shen, M.; Wang, H.; Shi, X. Macrophage Membrane-Camouflaged Responsive Polymer Nanogels Enable Magnetic Resonance Imaging-Guided Chemotherapy/Chemodynamic Therapy of Orthotopic Glioma. ACS Nano 2021, 15, 20377–20390. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Xiang, Y.; Liu, S.; Zhang, Y.; Wan, J.; Ci, Z.; Cui, M.; Shen, L.; Li, N.; Guan, Y. Macrophage membrane modified baicalin liposomes improve brain targeting for alleviating cerebral ischemia reperfusion injury. Nanomed. Nanotechnol. Biol. Med. 2022, 43, 102547. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Liu, H.; Zhang, H.; Han, Y.; Yuan, J.; Wang, T.; Gao, Y.; Li, Z. Ameliorating Mitochondrial Dysfunction of Neurons by Biomimetic Targeting Nanoparticles Mediated Mitochondrial Biogenesis to Boost the Therapy of Parkinson’s Disease. Adv. Sci. 2023, 10, 2300758. [Google Scholar] [CrossRef]
- Han, Y.; Gao, C.; Wang, H.; Sun, J.; Liang, M.; Feng, Y.; Liu, Q.; Fu, S.; Cui, L.; Gao, C.; et al. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioact. Mater. 2021, 6, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Fan, Q.; Hu, F.; Ma, X.; Yin, Y.; Wang, B.; Kuang, L.; Hu, X.; Xu, B.; Wang, Y. Engineered Macrophage-Membrane-Coated Nanoparticles with Enhanced PD-1 Expression Induce Immunomodulation for a Synergistic and Targeted Antiglioblastoma Activity. Nano Lett. 2022, 22, 6606–6614. [Google Scholar] [CrossRef]
- Qiao, S.; Cheng, Y.; Liu, M.; Ji, Q.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Chemoattractants driven and microglia based biomimetic nanoparticle treating TMZ-resistant glioblastoma multiforme. J. Control. Release 2021, 336, 54–70. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, H.; Ding, L.; Huang, J.; Zhang, M.; Liu, Y.; Ma, R.; Zheng, S.; Gong, J.; Piña-Crespo, J.C.; et al. Microglial targeted therapy relieves cognitive impairment caused by Cntnap4 deficiency. Exploration 2023, 3, 20220160. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jiang, X.; Li, Y.; Zhou, Y.; Zhang, T.; Zhi, P.; Gao, J. Engineering Stem Cell Derived Biomimetic Vesicles for Versatility and Effective Targeted Delivery. Adv. Funct. Mater. 2020, 30, 2006169. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, S.; Cui, Y.; Liang, X.; Shan, J.; Gu, W.; Qiu, J.; Li, Y.; Wang, G. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke. J. Nanobiotechnol. 2021, 19, 331. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Niu, J.; Guo, E.; Zhao, C.; Zhang, J.; Liu, X.; Wang, L.; Rao, L.; Chen, X.; et al. Neutrophil Membrane-Camouflaged Polyprodrug Nanomedicine for Inflammation Suppression in Ischemic Stroke Therapy. Adv. Mater. 2024, 36, 2311803. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Dou, C.; Xia, Y.; Li, B.; Zhao, M.; Yu, P.; Zheng, Y.; El-Toni, A.M.; Atta, N.F.; Galal, A. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 2021, 15, 2263–2280. [Google Scholar] [CrossRef]
- Tang, C.; Wang, Q.; Li, K.; Li, X.; Wang, C.; Xue, L.; Ju, C.; Zhang, C. A neutrophil-mimetic magnetic nanoprobe for molecular magnetic resonance imaging of stroke-induced neuroinflammation. Biomater. Sci. 2021, 9, 5247–5258. [Google Scholar] [CrossRef]
- Tang, Z.; Meng, S.; Song, Z.; Yang, X.; Li, X.; Guo, H.; Du, M.; Chen, J.; Zhu, Y.Z.; Wang, X. Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity. Mater. Today Bio 2023, 20, 100674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ling, C.-L.; Pang, L.; Wang, Q.; Liu, J.-X.; Wang, B.-S.; Liang, J.-M.; Guo, Y.-Z.; Qin, J.; Wang, J.-X. Direct Macromolecular Drug Delivery to Cerebral Ischemia Area using Neutrophil-Mediated Nanoparticles. Theranostics 2017, 7, 3260–3275. [Google Scholar] [CrossRef]
- Dong, Z.; Tang, L.; Zhang, Y.; Ma, X.; Yin, Y.; Kuang, L.; Fan, Q.; Wang, B.; Hu, X.; Yin, T.; et al. A Homing Peptide Modified Neutrophil Membrane Biomimetic Nanoparticles in Response to ROS/inflammatory Microenvironment for Precise Targeting Treatment of Ischemic Stroke. Adv. Funct. Mater. 2024, 34, 2309167. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Jiang, X.; Xu, J.; Zhang, M.; Liu, F.; Lin, Y.; Tao, J.; He, J.; Zhou, X.; et al. A Nanotherapy of Octanoic Acid Ameliorates Cardiac Arrest/Cardiopulmonary Resuscitation-Induced Brain Injury via RVG29- and Neutrophil Membrane-Mediated Injury Relay Targeting. ACS Nano 2023, 17, 3528–3548. [Google Scholar] [CrossRef]
- Jia, X.; Wang, L.; Feng, X.; Liu, W.; Wang, X.; Li, F.; Liu, X.; Yu, J.; Yu, B.; Yu, X. Cell Membrane-Coated Oncolytic Adenovirus for Targeted Treatment of Glioblastoma. Nano Lett. 2023, 23, 11120–11128. [Google Scholar] [CrossRef]
- Sun, Y.; Kong, J.; Ge, X.; Mao, M.; Yu, H.; Wang, Y. An Antisense Oligonucleotide-Loaded Blood–Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson’s Disease. ACS Nano 2023, 17, 4414–4432. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Wang, X.; Zhou, Y.; Qi, J.; Gu, L.; Zhao, Q.; Yu, R.; Zhou, X. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy. Small 2023, 19, 2301439. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting Microglia for Therapy of Parkinson’s Disease by Using Biomimetic Ultrasmall Nanoparticles. J. Am. Chem. Soc. 2020, 142, 21730–21742. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, J.; Chen, J.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and in Situ Generation of Nitric Oxide in Early Ischemic Stroke. ACS Nano 2020, 14, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, Q.; Li, W.; Zhang, J.; Yang, C.; Chen, D. Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. Appl. Mater. Today 2022, 27, 101412. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Jiang, Y.; Qi, L.; Zhuge, D.; Xu, T.; Guo, Y.; Deng, M.; Zhang, W.; Tian, D.; et al. Targeted delivery of fat extract by platelet membrane-cloaked nanocarriers for the treatment of ischemic stroke. J. Nanobiotechnol. 2022, 20, 249. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Yin, H.; Cao, X.; Hu, Q.; Lv, W.; Xu, Q.; Gu, Z.; Xin, H. Sequentially Site-Specific Delivery of Thrombolytics and Neuroprotectant for Enhanced Treatment of Ischemic Stroke. ACS Nano 2019, 13, 8577–8588. [Google Scholar] [CrossRef]
- Guo, J.-W.; Guan, P.-P.; Ding, W.-Y.; Wang, S.-L.; Huang, X.-S.; Wang, Z.-Y.; Wang, P. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer’s disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017, 145, 106–127. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hu, B.; Xiang, B.; Fang, H.; Zhang, B.; Wang, Y.; Zhuo, Y.; Deng, D.; Wang, X. Biomimetic Biomembrane Encapsulation and Targeted Delivery of a Nitric Oxide Release Platform for Therapy of Parkinson’s Disease. ACS Biomater. Sci. Eng. 2023, 9, 2545–2557. [Google Scholar] [CrossRef]
- Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release 2017, 264, 102–111. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, Q.; Chai, Z.; Wu, S.; Xu, W.; Wang, J.; Zhou, J.; Luo, Z.; Liu, Y.; Xie, C.; et al. All-stage targeted red blood cell membrane-coated docetaxel nanocrystals for glioma treatment. J. Control. Release 2024, 369, 325–334. [Google Scholar] [CrossRef]
- Chai, Z.; Ran, D.; Lu, L.; Zhan, C.; Ruan, H.; Hu, X.; Xie, C.; Jiang, K.; Li, J.; Zhou, J. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. Acs Nano 2019, 13, 5591–5601. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Y.; Yang, Z.; Zhang, D.; Lu, Y.; Zheng, M.; Xue, X.; Geng, J.; Chung, R.; Shi, B. Effective and Targeted Human Orthotopic Glioblastoma Xenograft Therapy via a Multifunctional Biomimetic Nanomedicine. Adv. Mater. 2018, 30, 1803717. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, Y.; Feng, C.; Lee, A.; Yin, J.; Chung, R.; Park, J.B.; Rizos, H.; Tao, W.; Zheng, M.; et al. Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Lett. 2020, 20, 1637–1646. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, S.; Liu, Y.; Zheng, M.; Yang, X.; Zou, Y.; Shi, B.; Luo, L. Near infrared-activatable biomimetic nanogels enabling deep tumor drug penetration inhibit orthotopic glioblastoma. Nat. Commun. 2022, 13, 6835. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zhang, D.; Sun, Y.; Li, F.; Zheng, M.; Lovejoy, D.B.; Zou, Y.; Shi, B. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration 2022, 2, 20210274. [Google Scholar] [CrossRef]
- He, W.; Li, X.; Morsch, M.; Ismail, M.; Liu, Y.; Rehman, F.U.; Zhang, D.; Wang, Y.; Zheng, M.; Chung, R.; et al. Brain-Targeted Codelivery of Bcl-2/Bcl-xl and Mcl-1 Inhibitors by Biomimetic Nanoparticles for Orthotopic Glioblastoma Therapy. ACS Nano 2022, 16, 6293–6308. [Google Scholar] [CrossRef]
- Han, Y.; Chu, X.; Cui, L.; Fu, S.; Gao, C.; Li, Y.; Sun, B. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. 2020, 27, 502–518. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Sun, J.; Han, Y.; Gong, W.; Li, Y.; Feng, Y.; Wang, H.; Yang, M.; Li, Z.; et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020, 108, 285–299. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J.; Liu, Y.; Liu, W.; Yu, G.; Huang, Y.; Yang, Y.; Chen, X.; Chen, T. Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson’s disease. ACS Cent. Sci. 2022, 8, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Xu, J.; Wang, X.; Li, X.; Xu, Q.; Xin, H. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018, 12, 5417–5426. [Google Scholar] [CrossRef]
- Sun, J.; Liu, J.; Gao, C.; Zheng, J.; Zhang, J.; Ding, Y.; Gong, W.; Yang, M.; Li, Z.; Wang, Y.; et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022, 140, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, B.; Wu, Y.; Song, X.; Zhang, S.; Liu, Z. Camouflaging Nanoparticles with Brain Metastatic Tumor Cell Membranes: A New Strategy to Traverse Blood–Brain Barrier for Imaging and Therapy of Brain Tumors. Adv. Funct. Mater. 2020, 30, 1909369. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, M.; Hu, D.; Pan, Y.; Hu, F.; Liu, X.; Thakor, N.; Ng, W.H.; Liu, X.; Sheng, Z. Biomimetic nanocomposites cloaked with bioorthogonally labeled glioblastoma cell membrane for targeted multimodal imaging of brain tumors. Adv. Funct. Mater. 2020, 30, 2004346. [Google Scholar] [CrossRef]
- He, W.; Mei, Q.; Li, J.; Zhai, Y.; Chen, Y.; Wang, R.; Lu, E.; Zhang, X.-Y.; Zhang, Z.; Sha, X. Preferential Targeting Cerebral Ischemic Lesions with Cancer Cell-Inspired Nanovehicle for Ischemic Stroke Treatment. Nano Lett. 2021, 21, 3033–3043. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Treuren, T.V.; Ranjan, A.P.; Chaudhary, P.; Vishwanatha, J.K. In vivo imaging and biodistribution of near infrared dye loaded brain-metastatic-breast-cancer-cell-membrane coated polymeric nanoparticles. Nanotechnology 2019, 30, 265101. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Xu, S.; Liu, Y.; Yin, J.; Lovejoy, D.B.; Zheng, M.; Liang, X.J.; Park, J.B.; Efremov, Y.M. Brain co-delivery of temozolomide and cisplatin for combinatorial glioblastoma chemotherapy. Adv. Mater. 2022, 34, 2203958. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, S.; Fang, Q.; He, H.; Ren, J.; Sun, D.; Lai, J.; Ma, A.; Chen, Z.; Liu, L.; et al. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS Nano 2023, 17, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lee, Y.; Lee, M. Biomimetic cell membrane-coated DNA nanoparticles for gene delivery to glioblastoma. J. Control. Release 2021, 338, 22–32. [Google Scholar] [CrossRef]
- De Pasquale, D.; Marino, A.; Tapeinos, C.; Pucci, C.; Rocchiccioli, S.; Michelucci, E.; Finamore, F.; McDonnell, L.; Scarpellini, A.; Lauciello, S.; et al. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater. Des. 2020, 192, 108742. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, C.; Deng, H.; You, Q.; Zhao, C.; Li, Y.; Gao, Q.; Akakuru, O.U.; Li, J.; Zhang, J.; et al. Localized NIR-II laser mediated chemodynamic therapy of glioblastoma. Nano Today 2022, 43, 101435. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, W.; Cui, Y.; Chen, M.; Chu, X.; Yang, Y.; Wang, Y.; Gao, C. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma. Molecules 2021, 26, 5103. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, Y.; Hao, W.; Chen, M.; Liu, Q.; Wang, Y.; Yang, M.; Li, Z.; Gong, W.; Song, S.; et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact. Mater. 2021, 6, 4402–4414. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, X.-L.; Zhao, M.-J.; Zhang, Y.-D.; Xiao, Y.; Liu, Y.-Y.; Qian, C.-F.; Xie, Y.-D.; Liu, Y.; Zou, Y.-J.; et al. Biomimetic hypoxia-triggered RNAi nanomedicine for synergistically mediating chemo/radiotherapy of glioblastoma. J. Nanobiotechnol. 2023, 21, 210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guan, S.; Wei, T.; Wang, T.; Zhang, J.; You, Y.; Wang, Z.; Dai, Z. Homotypic Membrane-Enhanced Blood–Brain Barrier Crossing and Glioblastoma Targeting for Precise Surgical Resection and Photothermal Therapy. J. Am. Chem. Soc. 2023, 145, 5930–5940. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhao, L.; Fang, W.; Guo, S.; Xu, A.; Zhan, Z.; Cai, Y.; Xue, S.; Chai, P.; Jiang, Q.; et al. Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy. Nano Res. 2023, 16, 11164–11175. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, X.; Hu, D.; Wang, P.; Liu, Q.; Zhang, X.; Jiang, J.; Liu, X.; Sheng, Z.; Liu, B.; et al. Phototheranostics: Active Targeting of Orthotopic Glioma Using Biomimetic Proteolipid Nanoparticles. ACS Nano 2019, 13, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.; Zhang, L.; Cheng, H.; Chang, Y.; Zhao, Y.; Wang, X.; Liu, Z. Biomimetic Nanocomposites Camouflaged with Hybrid Cell Membranes for Accurate Therapy of Early-Stage Glioma. Angew. Chem. Int. Ed. 2023, 62, e202304419. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Cui, Y.; Fan, Y.; Chen, M.; Yang, G.; Wang, Y.; Yang, M.; Li, Z.; Gong, W.; Yang, Y.; et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J. Nanobiotechnol. 2021, 19, 378. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Mu, N.; Ding, Y.; Huang, R.; Wu, W.; Li, L.; Chen, T. Tumor microenvironment targeting for glioblastoma multiforme treatment via hybrid cell membrane coating supramolecular micelles. J. Control. Release 2024, 366, 194–203. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, Y.; Wang, Y.; Zhang, D.; Yang, H.; Wang, X.; Zheng, M.; Shi, B. Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment. Nat. Commun. 2023, 14, 4557. [Google Scholar] [CrossRef]
- Yin, Y.; Tang, W.; Ma, X.; Tang, L.; Zhang, Y.; Yang, M.; Hu, F.; Li, G.; Wang, Y. Biomimetic neutrophil and macrophage dual membrane-coated nanoplatform with orchestrated tumor-microenvironment responsive capability promotes therapeutic efficacy against glioma. Chem. Eng. J. 2022, 433, 133848. [Google Scholar] [CrossRef]
- Wu, L.; Li, Q.; Deng, J.; Shen, J.; Xu, W.; Yang, W.; Chen, B.; Du, Y.; Zhang, W.; Ge, F. Platelet-tumor cell hybrid membrane-camouflaged nanoparticles for enhancing therapy efficacy in glioma. Int. J. Nanomed. 2021, 16, 8433–8446. [Google Scholar] [CrossRef]
- Liu, X.; Geng, X.; Shi, Y.; Liang, J.; Zhao, L. Biomimetic oxygen-boosted hybrid membrane nanovesicles as the treatment strategy for ischemic stroke with the concept of the neurovascular unit. Biomater. Adv. 2023, 148, 213379. [Google Scholar] [CrossRef]
Composition | Drug | Surface Functionalization | Size (nm) | ZP (mV) | Disease | Administration Route | Reference |
---|---|---|---|---|---|---|---|
HSPC + DOPE + Chol + Didodecyldimethylammonium bromide | Doxorubicin | - | 86 ± 2 | −16.8 ± 1.4 | Glioma | Intravenous + focused US | [115] |
Egg lecithin + Chol + DSPE-PEG2000 | Doxorubicin and carboplatin | - | 212 ± 10 | −13.0 ± 0.6 | GBM | Intravenous | [116] |
LipoxalTM | Oxaliplatin | - | - | - | GBM | CED | [117] |
DPPC + Chol + poloxamer L64 | Oligonucleotide | - | 100–200 | - | Spinocerebellar ataxias | Intravenous | [118] |
Ionizable lipid + DSPC + Chol + PEG2000-DMG | siRNA | - | - | - | Polyglutamine diseases (HD) | ICV | [119] |
DPPC + Chol + PEG2000 | Pramipexole | - | 122 ± 0.13 | −10.60 ± 0.12 | PD | Intraperitoneal | [120] |
Soybean PC + Chol + DSPE-PEG2000 | Nicotinamide riboside | - | 152 | −22 | Ischemic stroke | Intravenous | [121] |
POPS + phosphatidylserine | Mesoporous silica NPs and phospholipase A2 | - | <200 | <−30 | Detoxification | Intravenous | [122] |
POPC + Chol + DSPE-PEG2000 + dimyristoyl-phosphatidic acid | Pep63 | Tf | 132 ± 22 | −16.5 ± 0.9 | AD | Intravenous | [123] |
Soy PC + Chol + DSPE-PEG2000 | Dopamine HCl | 182 ± 8 | +7.5 ± 1.2 | PD | In vitro model (transwell) | [124] | |
DSPC + Chol + POPG + DSPE-PEG2000 | Temozolomide and bromodomain inhibitor JQ1 | 137 | −12 | GBM | Intravenous | [125] | |
EPC + Chol + DSPE-PEG2000-MAL | Osthole | 104 ± 4 | −7.0 ± 0.6 | AD | Intravenous | [126] | |
Soy lecithin + Chol + DSPE-PEG2000 | Elemene and cabazitaxel | Tf and cell membrane proteins | 135 ± 4 | +33.6 ± 0.7 | Glioma | Intravenous | [127] |
DOTAP + DOPE | Temozolomide | Anti-TfR single-chain Ab fragment | 41 ± 9 | +30 ± 5 | GBM | Intravenous | [128] |
SOD1 siRNA | ~100 | - | Neuroinflammation and apoptosis | Intravenous | [129] | ||
Chol + sphingomyelin + DSPE-PEG2000-MAL | Doxorubicin | Anti-Tf mAb (MYBE/4C1) | 142 ± 4 | −18 ± 4 | Crossing the BBB | In vitro model (transwell) | [130] |
POPC + DOTAP + DSPE-PEG2000 | Dopamine | Anti-Tf OX-26 mAb | ~85 | - | PD | Internal carotid artery perfusion | [131] |
DSPC + Chol + DSPE-PEG2000 | Oxaliplatin | 139.3 ± 1.5 | −21.9 ± 1.0 | Brain delivery | Intravenous | [132] | |
PC + Chol + DSPE-PEG2000-MAL (+ DPPG) | Cis-diamminedinitratotplatinum(II) | Anti-VEGFR and Anti-VEGFR 2 mAb | 126 ± 10 (136 ± 11) in PBS 143 ± 12 (−26 ± 4) in H2O | −1.6 ± 0.3 (−7.6 ± 1.1) in PBS 158 ± 13 (−39 ± 5) in H2O | GBM | Intravenous | [133] |
DC + Chol + DOPE + DSPE-PEG2000 | Paclitaxel and survivin siRNA | Anti-CD133 aptamer and angiopep-2 | 119 ± 6 in H2O | 11.5 ± 0.6 in H2O | GBM | Intravenous | [134] |
DPPC + Chol + DSPE-PEG2000 | Magnetic NPs and camptosar | Cetuximab | 194 ± 2 | +2.3 ± 0.1 | Glioma | Intravenous and alternating magnetic fields | [135] |
DOPC + Chol + DSPE-PEG2000 | miRNA-92b inhibitor | ApoE | 41 ± 6 | −3 ± 3 | GBM | Intravenous | [136] |
DMPC + Chol | Porphyrin | ApoE3 | 29 ± 9 | - | GBM | Intravenous | [137] |
EPC + DOTAP + Chol + DSPE-PEG2000 | Doxorubicin | CPP R8 | 95 ± 5 | +12 ± 4 | Glioma | Intravenous | [138] |
Soy PC + Chol + DSPE-PEG2000 | Paclitaxel | R8-dGR peptide | 100–120 | - | Glioma | Intravenous | [139] |
DSPC + DPPC + Chol + Cardiolipin + phosphatidic acid + DSPE-PEG2000 | Nerve growth factor, rosmarinic acid, curcumin, and quercetin | CPP TAT peptide | 159 | −28 | AD | Intravenous | [140] |
DOTAP + DOPE + DSPE–PEG2000 | ApoE2 encoding plasmid DNA | CPP RVG and mannose | 168 ± 3 | +20 ± 4 | AD | Intravenous | [141] |
CPP, penetratin, and mannose | 172 ± 3 | +19.0 ± 0.9 | |||||
Lipoid S100 + Chol + mPEG2000-DSPE | N-3,4-bis(pivaloyloxy)-dopamine | RVG29 | 135 ± 3 | −14 ± 0.4 | PD | Intravenous | [142] |
DSPC + DPPC + Chol + Cardiolipin + dihexadecyl phosphate + DSPE-PEG2000 | Ceftriaxone, FK506, and nilotinib | GSH | 160 | −39 | PD | In vitro model (transwell) | [143] |
DSPC + Chol + DSPE-PEG2000 | Gefitinib | GSH and Tween 80 | 86 ± 4 | −3.8 ± 0.9 | Glioma | In vitro model (transwell) | [144] |
α-helical CPP | 147 ± 4 | −1.7 ± 0.2 | |||||
Soybean PC + Chol + DSPE-PEG2000 | Paclitaxel | CPP dNP2 and folic acid | 104 | −6 | Glioma | Intravenous | [145] |
DSPC + Chol + POPG + DSPE-PEG2000 | Temozolomide and bromodomain inhibitor JQ1 | Folate | 165 | −14 | GBM | Intravenous | [125] |
Soy PC + Chol | Paclitaxel | Vitamin C and glucose | 109 ± 3 | −4.5 ± 0.5 | Glioma | Intravenous | [146] |
Resveratrol | Vitamin E, TPGS | 65 ± 6 | −1.1 ± 1.1 | Glioma | Intravenous | [147] | |
DPPC + Chol | Docetaxel and quantum dots | RGD, and vitamin E TPGS | 182 ± 8 | +1.1 ± 0.3 | Glioma | Intravenous | [148] |
Docetaxel AuNPs with glutathione | Vitamin E and TPGS and TfR | 268 ± 10 | −6 ± 5 | Crossing the BBB | Intravenous | [149] | |
DSPC + Chol + DMPC + phosphatidylserine | astragaloside IV and nestifin-1 | Wheat germ, agglutinin, and leptin | Many | - | PD | In vitro model (transwell) | [150] |
EPC + Chol + DSPE-PEG2000 | Curcumin and quinacrine | Mannose | 119.7 ± 0.2 | −2.7 ± 0.7 | GBM | IC | [151] |
C12-alkyl-mannopyranoside + Chol | Dynantin | 232 ± 4 | - | Depression | Intranasal | [152] | |
EPC + Ginsenoside Rh2 + Chol + DSPE-PEG | Paclitaxel | Menthol | 102 ± 7 | 11.7 ± 0.1 | GBM | Intravenous | [153] |
EPC + Chol + DSPE-PEG2000 | Daunorubicin | PEI and 4-Aminophenyl β-D-glucopyranoside | 106 ± 3 | −8.7 ± 0.4 | Glioma | Intravenous | [154] |
EPC encapsulating PLGA NPs | Rivastigmine | Dextran and cholic acid | 112 ± 11 | - | AD | Intravenous | [155] |
Composition | Drug | Surface Functionalization | Size (nm) | ZP (mV) | Disease | Administration Route | Reference |
---|---|---|---|---|---|---|---|
Compritol 888 ATO + stearic acid + span 60 | Levofloxacin and doxycycline | - | ∼50 | - | Bacterial infection | Intranasal | [159] |
Witepsol E 85 | RVG-9R and BACE1 siRNA | Chitosan | 358 ± 26 | +10.5 ± 0.8 | AD | Intranasal | [160] |
Cetyl palmitate + Tween80 | Quercetin | Tf | 234 ± 18 | −32 ± 8 | AD | In vitro model (transwell) | [161] |
Sodium behenate + sodium stearate + PVA120000 + PEG | Methotrexate | 500 ± 45 | - | GBM | Intravenous | [162] | |
Glyceryl monostearate + stearic acid + soy lecithin | Docetaxel | Lf | 121 ± 6 | −21.5 ± 1.2 | Glioma | Intravenous | [163] |
Behenic acid + tripalmitin + cacao butter + DSPE-PEG(2000) | Tamoxifen and carmustine | Many | Many | GBM | In vitro model (transwell) | [164] | |
Sodium behenate + sodium stearate + PVA120000 + PEG | Methotrexate | Insulin | 445 ± 41 | - | GBM | Intravenous | [162] |
Dynasan 116 + Tween80 | Donepezil | ApoE | 147.5 ± 0.8 | −9.6 ± 0.5 | AD | In vitro model (transwell) | [165] |
Lecithin soya + stearic acid+ Tween80 | Docetaxel | Angiopep-2 | 111 ± 3 | −16.4 ± 1.2 | GBM | Intravenous | [166] |
Cetyl palmitate + Tween80 | Resveratrol and grape skin/seeds | Anti-Tf OX-26 mAb | 254 ± 17 | −4.0 ± 0.1 | AD | In vitro model (transwell) | [167] |
Chol + sphingomyelin + phosphatidylserine + sphingosine + phosphatidylethanolamine | Methylprednisolone | Anti-contactin-2 mAb | 158 ± 19 | −8.7 ± 0.5 | Multiple sclerosis | Intravenous | [168] |
Anti-neurofascin mAb | 162 ± 13 | −8.7 ± 0.4 |
Origin | Mechanism of Action | Disease | Administration Route | References |
---|---|---|---|---|
Astrocytes | Ameliorated neuronal damage through regulating autophagy | Ischemic stroke | Intravenous | [209] |
Embryonic stem cells | Promote neurological recovery | Ischemic stroke | Intravenous | [210] |
MSCs | β-amyloid degradation, immunoregulation, and neurotrophic action | AD | IC | [211] |
Protect neurons against amyloid-β peptide-induced oxidative stress and synapse damage | In vitro model (transwell) | [212,213] | ||
Immunomodulatory and neuroprotective effects | Intranasal | [214,215,216] | ||
Neuroprotective and reduce neuroglia activation | Amyotrophic lateral sclerosis | Intranasal | [217] | |
Behavioral improvement | Autism | Intranasal | [218,219,220] | |
Diminished loss of glutamatergic and GABAergic neurons, reduced inflammation, neuroprotective, and anti-inflammatory effects | Epilepsy | Intranasal | [221] | |
Reduced neuronal apoptosis and improved neurological function | Hemorrhage | Intravenous | [222] | |
Reduce the infarct zone, favor neurological and functional recovery, and promote neurovascular remodeling | Ischemic stroke | Intravenous | [223,224] | |
Promote neurogenesis and angiogenesis | Intranasal | [225,226] | ||
Enhanced angiogenesis | PD | Intraperitoneal | [227] | |
Reduced microglia-mediated neuroinflammation | Perinatal brain injury | Intranasal | [228] | |
Reduce glutamate levels and preserve the number of parvalbumin-positive GABAergic interneurons | Schizophrenia | Intranasal | [229] | |
Increase newborn ECs, reduce neuroinflammation, promote angiogenesis and neurogenesis, decrease neuron cell death, and inhibit ferroptosis | Traumatic brain injury | Intravenous | [230,231,232,233] | |
Microglia cells | Attenuate brain injury and promote neural survival | Ischemic stroke | Intravenous | [234] |
Neural stem cells | Neuroprotective, reduce edema, protect astrocytes, and reduce infarct volume | Ischemic stroke | Intravenous | [235,236,237] |
Neurological recovery and neuroregeneration in mice | Internal carotid artery perfusion | [238] | ||
Reduced lesion volume and microgliosis, improved spontaneous movements, and increased neuronal survival | ICV | [239] | ||
Neuroprotection | AD | Intravenous | [240] | |
T cells | Reduces pro-inflammatory transcripts and neuroinflammatory responses, slowing disease progression | Amyotrophic lateral sclerosis | Intranasal | [241] |
Ginseng | Inhibit glioma progression and regulate tumor-associated macrophages | Glioma | Intravenous | [242] |
Escherichia coli | Antitumor effect | Neuroblastoma | Intravenous | [243] |
Lactobacillus plantarum | Reduced apoptosis in ischemic neurons | Ischemic stroke | ICV | [244] |
Increased BDNF expression in the hippocampus produces antidepressant effects | Depression | Intraperitoneally | [245] |
Origin | Drug | Surface Functionalization | Disease | Administration Route | Reference |
---|---|---|---|---|---|
Astrocytes | Homer1 | - | Hemorrhage | IC | [246] |
Ultrasmall superparamagnetic NPs | - | Brain delivery | Intranasal | [247] | |
miR-143-3p | - | Intracerebral hemorrhage | Intravenous | [248] | |
Blood | Dopamine | Tf | PD | Intravenous | [249] |
Brain endothelial cells | VEGF siRNA | - | Brain cancer | Intravenous | [250] |
TPP-Ce6 | Saturated TfR | GBM | Intravenous and light | [251] | |
Dendritic cells | VEGF-A siRNA and doxorubicin | - | Glioma | Intranasal | [252] |
Curcumin and siSNCA in polymeric NPs | RVG peptide | PD | Intravenous | [253] | |
Short hairpin RNA microcircles | Intravenous | [254] | |||
Embryonic stem cells | Curcumin | - | Ischemic stroke | Intranasal | [255] |
Paclitaxel | c(RGDyK) peptide | GBM | Intravenous | [256] | |
Endothelial progenitor cells | miR-126 | - | Ischemic stroke | Intravenous | [257] |
Fibroblasts | Achaete-scute homolog 1, myelin transcription factor 1 like, and POU-III transcription factor Brain-2 | Metabotropic glutamate receptor 8 | Brain delivery | Intranasal | [258] |
Methotrexate | KLA-LDL peptide | GBM | Intravenous | [259] | |
HEK-293T cells | miR-21-sponge | - | GBM | Intratumor | [260] |
Doxorubicin | Angiopep-2 and TAT peptides | Glioma | Intravenous | [261] | |
Verrucarin A | EGFR mAb | GBM | Intravenous | [262] | |
AMO-21 | Lamp2b-T7 | GBM | Intravenous | [263] | |
CircDYM | Lamp2b-RVG | Depressive disorders | Intravenous | [264] | |
Aptamer F5R2 | RVG peptide | PD | Intravenous | [265] | |
circSCMH1 | Ischemic stroke | Intravenous | [266] | ||
Nerve growth factor | Intravenous | [267] | |||
mRNA SNAP25 and Gap43 | AD | Intravenous | [268] | ||
Single guide RNA and dCas9-DNMT3A | PD | Intravenous and US | [269] | ||
Hippocampal cells | Adenosine | - | Ischemic stroke | Intravenous | [270] |
Leukocytes | Retrovirus-like mRNA-packaging capsids | - | Brain delivery | Intravenous | [271] |
Macrophages | TPP1 | - | Batten disease | Intraperitoneal | [272] |
Curcumin | AD | Intravenous | [273] | ||
BDNF | - | Inflammation | Intravenous | [274] | |
GDNF | - | PD | Intranasal | [275] | |
Recombination signal-binding protein-Jκ | - | Glioma | Hypodermically injected | [276] | |
SPIONs and curcumin | Neuropilin-1-targeted peptide | Intravenous | [277] | ||
Macrophages and blood serum | Doxorubicin | - | Glioma | Intravenous and US | [278] |
MSCs | - | RVG | AD | Intravenous | [279] |
- | AAV capsid-specific peptides- Lamp2b | Brin delivery | Intravenous | [280] | |
Neprilysin | - | AD | Intranasal | [281] | |
BDNF | - | Ischemic stroke | Intranasal | [282] | |
miR-126 | - | Intravenous | [283] | ||
Magnetic iron oxide NPs | - | Intravenous | [284] | ||
Antisense oligonucleotide 4 | - | PD | ICV | [285] | |
miR-124 | - | Traumatic brain injury | Intravenous | [286] | |
miR-29a-3p | - | Glioma | Intravenous | [287] | |
miR-133 | - | IC hemorrhage | Intravenous | [288] | |
Curcumin | c(RGDyK) peptide | Ischemic stroke | Intravenous | [289] | |
miR-210 | Lamp2b-RVG | Intravenous | [290] | ||
miR-124 | Intravenous | [291] | |||
Curcumin and SPIONs | Penetratin and RVG29 | PD | Intranasal | [292] | |
Microglia cells | - | DA7R and SDF-1 | Ischemic stroke | Intravenous | [293] |
lincRNA-Cox2 | - | Lipopolysaccharide-induced microglia proliferation | Intranasal | [294] | |
miR-124-3p | - | Traumatic brain injury | Intravenous | [295] | |
NR2B9c | RVG29 | Intravenous | [296] | ||
Ischemic stroke | Intravenous | [297] | |||
Doxorubicin | Amphiphilic peptide | GBM | Intravenous | [298] | |
Neural progenitor cells | - | RGD-4C peptide | Ischemic stroke | Intravenous | [299] |
PD-L1 siRNA | c(RGDyK) peptide | GBM | Intravenous and radiation | [300] | |
Neural stem cells | Bryostatin-1 | Ligand of PDGFRα | MS | Intravenous | [301] |
Anti-miRNA-21 and miRNA-100 | CXCR4 | GBM | Intranasal | [302] | |
Neutrophils | Doxorubicin | - | Glioma | Intravenous | [303] |
Plasma | Donepezil | AD | Intravenous | [304] | |
Tf | - | MS | Intranasal | [305] | |
Quercetin | - | AD | Intravenous | [306] | |
mAB Gap43 | Ischemic stroke | Intravenous | [307] | ||
Grapefruit | Doxorubicin | Heparin and cRGD | Glioma | Intravenous | [308] |
miR-17 | Folic acid | GBM | Intranasal | [309] | |
Escherichia coli | Pioglitazone | - | Ischemic stroke | Intravenous | [310] |
Salmonella | Doxorubicin | - | Glioma | Intravenous | [311] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susa, F.; Arpicco, S.; Pirri, C.F.; Limongi, T. An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024, 16, 849. https://doi.org/10.3390/pharmaceutics16070849
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics. 2024; 16(7):849. https://doi.org/10.3390/pharmaceutics16070849
Chicago/Turabian StyleSusa, Francesca, Silvia Arpicco, Candido Fabrizio Pirri, and Tania Limongi. 2024. "An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery" Pharmaceutics 16, no. 7: 849. https://doi.org/10.3390/pharmaceutics16070849
APA StyleSusa, F., Arpicco, S., Pirri, C. F., & Limongi, T. (2024). An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics, 16(7), 849. https://doi.org/10.3390/pharmaceutics16070849