Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Antifungal Drugs and Essential Oils
2.3. Antimicrobial Assays
2.3.1. European Commission-In Vitro Diagnostic Broth Dilution Test
2.3.2. Handmade Broth Dilution Test
2.3.3. Agar Disc Diffusion Assay
2.4. Checkerboard Assays and Assessment of Fractional Inhibitory Concentration Index
3. Results and Discussion
3.1. C. auris Isolates and Antifungal Susceptibility Patterns
3.2. C. auris Essential Oil Susceptibility Patterns
3.3. Checkerboard Experiments on C. auris and EOs/Antifungals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jangir, P.; Kalra, S.; Tanwar, S.; Bari, V.K. Azole Resistance in Candida auris: Mechanisms and Combinatorial Therapy. APMIS 2023, 131, 442–462. [Google Scholar] [CrossRef] [PubMed]
- Pekard-Amenitsch, S.; Schriebl, A.; Posawetz, W.; Willinger, B.; Kölli, B.; Buzina, W. Isolation of Candida auris from Ear of Otherwise Healthy Patient, Austria, 2018. Emerg. Infect. Dis. 2018, 24, 1596–1597. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. Nov., a Novel Ascomycetous Yeast Isolated from the External Ear Canal of an Inpatient in a Japanese Hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Tsay, S.; Kallen, A.; Jackson, B.R.; Chiller, T.M.; Vallabhaneni, S. Approach to the Investigation and Management of Patients With Candida auris, an Emerging Multidrug-Resistant Yeast. Clin. Infect. Dis. 2018, 66, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Noble, B.A.; Jurcic Smith, K.L.; Jones, J.D.; Galvin, B.W.; Timbrook, T.T. Candida auris Rates in Blood Culture on the Rise: Results of US Surveillance. Microbiol. Spectr. 2023, 11, e0221623. [Google Scholar] [CrossRef] [PubMed]
- Geremia, N.; Brugnaro, P.; Solinas, M.; Scarparo, C.; Panese, S. Candida auris as an Emergent Public Health Problem: A Current Update on European Outbreaks and Cases. Healthcare 2023, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Forsberg, K.; Sexton, D.J.; Chow, N.A.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Worsening Spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 2023, 176, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Bravo Ruiz, G.; Lorenz, A. What Do We Know about the Biology of the Emerging Fungal Pathogen of Humans Candida auris? Microbiol. Res. 2021, 242, 126621. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Voss, A.; Meis, J.F. Multidrug-Resistant Candida auris: “new Kid on the Block” in Hospital-Associated Infections? J. Hosp. Infect. 2016, 94, 209–212. [Google Scholar] [CrossRef]
- Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, Clinical Characteristics, Resistance, and Treatment of Infections by Candida auris. J. Intensive Care 2018, 6, 69. [Google Scholar] [CrossRef]
- Osei Sekyere, J. Candida auris: A Systematic Review and Meta-Analysis of Current Updates on an Emerging Multidrug-Resistant Pathogen. Microbiologyopen 2018, 7, e00578. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bing, J.; Zheng, Q.; Zhang, F.; Liu, J.; Yue, H.; Tao, L.; Du, H.; Wang, Y.; Wang, H.; et al. The First Isolate of Candida auris in China: Clinical and Biological Aspects. Emerg. Microbes Infect. 2018, 7, 93. [Google Scholar] [CrossRef]
- Singh, R.; Kaur, M.; Chakrabarti, A.; Shankarnarayan, S.A.; Rudramurthy, S.M. Biofilm Formation by Candida auris Isolated from Colonising Sites and Candidemia Cases. Mycoses 2019, 62, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Ribeiro, R.; Costa, R.; Henriques, M.; Rodrigues, M.E. Essential Oils as a Good Weapon against Drug-Resistant Candida auris. Antibiotics 2022, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.; Garzoli, S.; Rosato, R.; Mariotti, M.; Gervasoni, J.; Santucci, L.; Ovidi, E.; Cacaci, M.; Lombarini, G.; Torelli, R.; et al. A New Potential Resource in the Fight against Candida auris: The Cinnamomum Zeylanicum Essential Oil in Synergy with Antifungal Drug. Microbiol. Spectr. 2023, 11, e0438522. [Google Scholar] [CrossRef] [PubMed]
- Ostrowsky, B.; Greenko, J.; Adams, E.; Quinn, M.; O’Brien, B.; Chaturvedi, V.; Berkow, E.; Vallabhaneni, S.; Forsberg, K.; Chaturvedi, S.; et al. Candida auris Isolates Resistant to Three Classes of Antifungal Medications—New York, 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef]
- Rajeshkumar, R.; Sundararaman, M. Emergence of Candida spp. and Exploration of Natural Bioactive Molecules for Anticandidal Therapy—Status Quo. Mycoses 2012, 55, e60–e73. [Google Scholar] [CrossRef]
- Mandras, N.; Roana, J.; Scalas, D.; Del Re, S.; Cavallo, L.; Ghisetti, V.; Tullio, V. The Inhibition of Non-Albicans Candida Species and Uncommon Yeast Pathogens by Selected Essential Oils and Their Major Compounds. Molecules 2021, 26, 4937. [Google Scholar] [CrossRef] [PubMed]
- Allizond, V.; Cavallo, L.; Roana, J.; Mandras, N.; Cuffini, A.M.; Tullio, V.; Banche, G. In Vitro Antifungal Activity of Selected Essential Oils against Drug-Resistant Clinical Aspergillus Spp. Strains. Molecules 2023, 28, 7259. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, C.; Pinto, E.; Gonçalves, M.J.; Salgueiro, L. Antifungal Activity of Juniperus Essential Oils against Dermatophyte, Aspergillus and Candida Strains. J. Appl. Microbiol. 2006, 100, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Health Sciences: London, UK, 2013; p. 780. [Google Scholar]
- Comini, S.; Scutera, S.; Sparti, R.; Banche, G.; Coppola, B.; Bertea, C.M.; Bianco, G.; Gatti, N.; Cuffini, A.M.; Palmero, P.; et al. Combination of Poly(ε-caprolactone) Biomaterials and Essential Oils to Achieve Anti-Bacterial and Osteo-Proliferative Properties for 3D-Scaffolds in Regenerative Medicine. Pharmaceutics 2022, 14, 1873. [Google Scholar] [CrossRef] [PubMed]
- Adukwu, E.C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial Activity, Cytotoxicity and Chemical Analysis of Lemongrass Essential Oil (Cymbopogon flexuosus) and Pure Citral. Appl. Microbiol. Biotechnol. 2016, 100, 9619–9627. [Google Scholar] [CrossRef] [PubMed]
- Palmeira-de-Oliveira, A.; Salgueiro, L.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Pina-Vaz, C.; Queiroz, J.A.; Rodrigues, A.G. Anti-Candida Activity of Essential Oils. Mini Rev. Med. Chem. 2009, 9, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid.-Based Complement. Alternat Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.H.; Graham, L.; Adukwu, E.C. In Vitro Antifungal Activity of Cinnamomum zeylanicum Bark and Leaf Essential Oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol. 2020, 104, 8911. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination Treatment of Invasive Fungal Infections. Clin. Microbiol. Rev. 2005, 18, 163–194. [Google Scholar] [CrossRef]
- Stringaro, A.; Vavala, E.; Colone, M.; Pepi, F.; Mignogna, G.; Garzoli, S.; Cecchetti, S.; Ragno, R.; Angiolella, L. Effects of Mentha suaveolens Essential Oil Alone or in Combination with Other Drugs in Candida albicans. Evid.-Based Complement. Alternat Med. 2014, 2014, 125904. [Google Scholar] [CrossRef]
- Silva, F.; Ferreira, S.; Duarte, A.; Mendonça, D.I.; Domingues, F.C. Antifungal Activity of Coriandrum sativum Essential Oil, Its Mode of Action against Candida Species and Potential Synergism with Amphotericin B. Phytomedicine 2011, 19, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.A.; Gabriel, K.T.; Graham, K.D.; Butts, B.K.; Cornelison, C.T. Antifungal Activity of Select Essential Oils against Candida auris and Their Interactions with Antifungal Drugs. Pathogens 2022, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Bidaud, A.-L.; Schwarz, P.; Herbreteau, G.; Dannaoui, E. Techniques for the Assessment of In Vitro and In Vivo Antifungal Combinations. J. Fungi 2021, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, B.; Chaturvedi, S.; Chaturvedi, V. In Vitro Evaluation of Antifungal Drug Combinations against Multidrug-Resistant Candida auris Isolates from New York Outbreak. Antimicrob. Agents Chemother. 2020, 64, e02195-19. [Google Scholar] [CrossRef] [PubMed]
- Billamboz, M.; Fatima, Z.; Hameed, S.; Jawhara, S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021, 9, 634. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e00053-22. [Google Scholar] [CrossRef] [PubMed]
- Fakhim, H.; Chowdhary, A.; Prakash, A.; Vaezi, A.; Dannaoui, E.; Meis, J.F.; Badali, H. In Vitro Interactions of Echinocandins with Triazoles against Multidrug-Resistant Candida auris. Antimicrob. Agents Chemother. 2017, 61, e01056-17. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.; Patel, M.; Ahmad, A. Improved Efficacy of Antifungal Drugs in Combination with Monoterpene Phenols against Candida auris. Sci. Rep. 2020, 10, 1162. [Google Scholar] [CrossRef]
- Rosato, R.; Napoli, E.; Granata, G.; Di Vito, M.; Garzoli, S.; Geraci, C.; Rizzo, S.; Torelli, R.; Sanguinetti, M.; Bugli, F. Study of the Chemical Profile and Anti-Fungal Activity against Candida auris of Cinnamomum Cassia Essential Oil and of Its Nano-Formulations Based on Polycaprolactone. Plants 2023, 12, 358. [Google Scholar] [CrossRef]
- Di Vito, M.; Rosato, R.; Rizzo, S.; Cacaci, M.; Urbani, A.; Sanguinettii, M.; Bugli, F. Enhancing Fluconazole Reactivation against Candida auris: Efficacy of Cinnamomum Zeylanicum Essential Oil versus Cinnamaldehyde. Microbiol. Spectr. 2024, 12, e0017624. [Google Scholar] [CrossRef]
- Bravo-Chaucanés, C.P.; Vargas-Casanova, Y.; Chitiva-Chitiva, L.C.; Ceballos-Garzon, A.; Modesti-Costa, G.; Parra-Giraldo, C.M. Evaluation of Anti-Candida Potential of Piper Nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J. Fungi 2022, 8, 784. [Google Scholar] [CrossRef] [PubMed]
- Tullio, V.; Mandras, N.; Allizond, V.; Nostro, A.; Roana, J.; Merlino, C.; Banche, G.; Scalas, D.; Cuffini, A.M. Positive Interaction of Thyme (Red) Essential Oil with Human Polymorphonuclear Granulocytes in Eradicating Intracellular Candida albicans. Planta Med. 2012, 78, 1633–1635. [Google Scholar] [CrossRef]
- Cao, C.; Wei, D.; Xu, L.; Hu, J.; Qi, J.; Zhou, Y. Characterization of Tea Tree Essential Oil and Large-Ring Cyclodextrins (CD9–CD22) Inclusion Complex and Evaluation of Its Thermal Stability and Volatility. J. Sci. Food Agric. 2021, 101, 2877–2883. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Duran, J.; Torres, R.; Stashenko, E.E.; Ortiz, C. Antifungal and Antibiofilm Activity of Colombian Essential Oils against Different Candida Strains. Antibiotics 2023, 12, 668. [Google Scholar] [CrossRef]
- Zapata-Zapata, C.; Loaiza-Oliva, M.; Martínez-Pabón, M.C.; Stashenko, E.E.; Mesa-Arango, A.C. In Vitro Activity of Essential Oils Distilled from Colombian Plants against Candidaauris and Other Candida Species with Different Antifungal Susceptibility Profiles. Molecules 2022, 27, 6837. [Google Scholar] [CrossRef] [PubMed]
- Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022, 10, 1773. [Google Scholar] [CrossRef]
- Kim, H.-R.; Eom, Y.-B. Antifungal and Anti-biofilm Effects of 6-shogaol against Candida auris. J. Appl. Microbiol. 2021, 130, 1142–1153. [Google Scholar] [CrossRef]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal Activity of Eugenol Analogues. Influence of Different Substituents and Studies on Mechanism of Action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef] [PubMed]
- Chami, N.; Bennis, S.; Chami, F.; Aboussekhra, A.; Remmal, A. Study of Anticandidal Activity of Carvacrol and Eugenol in Vitro and in Vivo. Oral Microbiol. Immunol. 2005, 20, 106–111. [Google Scholar] [CrossRef]
- Shahina, Z.; Ndlovu, E.; Persaud, O.; Sultana, T.; Dahms, T.E.S. Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol. Spectr. 2022, 10, e03183-22. [Google Scholar] [CrossRef]
- Bidaud, A.L.; Djenontin, E.; Botterel, F.; Chowdhary, A.; Dannaoui, E. Colistin Interacts Synergistically with Echinocandins against Candida auris. Int. J. Antimicrob. Agents 2020, 55, 105901. [Google Scholar] [CrossRef] [PubMed]
- Halliday, C.; Kim, H.Y.; Tay, E.; Chen, S.C.A.; Alffenaar, J.-W. Exploring Synergy between Azole Antifungal Drugs and Statins for Candida auris. J. Antimicrob. Chemother. 2023, 78, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.R.; Ashcraft, D.S.; Pankey, G.A. In Vitro Interaction of Fluconazole and Trimethoprim-Sulfamethoxazole against Candida auris Using ETEST and Checkerboard Methods. J. Investig. Med. 2021, 69, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Menotti, F.; Scutera, S.; Coppola, B.; Longo, F.; Mandras, N.; Cavallo, L.; Comini, S.; Sparti, R.; Fiume, E.; Cuffini, A.M.; et al. Tuning of Silver Content on the Antibacterial and Biological Properties of Poly(ɛ-caprolactone)/Biphasic Calcium Phosphate 3D-Scaffolds for Bone Tissue Engineering. Polymers 2023, 15, 3618. [Google Scholar] [CrossRef]
- Puiu, R.A.; Bîrcă, A.C.; Grumezescu, V.; Duta, L.; Oprea, O.C.; Holban, A.M.; Hudiță, A.; Gălățeanu, B.; Balaure, P.C.; Grumezescu, A.M.; et al. Multifunctional Polymeric Biodegradable and Biocompatible Coatings Based on Silver Nanoparticles: A Comparative In Vitro Study on Their Cytotoxicity towards Cancer and Normal Cell Lines of Cytostatic Drugs versus Essential-Oil-Loaded Nanoparticles and on Their Antimicrobial and Antibiofilm Activities. Pharmaceutics 2023, 15, 1882. [Google Scholar] [CrossRef]
Strains | FLU | ITZ | VOR | POS | ANF | MYC | CAS | AMB | 5-FL |
---|---|---|---|---|---|---|---|---|---|
MOL 1 | >128 | 0.125 | 1 | 0.06 | 0.06 | 0.06 | 0.125 | 1 | ≤0.06 |
MOL 2 | >128 | 1 | 1 | 0.125 | 0.125 | 0.06 | 0.125 | 1 | 0.125 |
MOL 3 | >128 | 0.25 | 1 | 0.06 | 0.03 | 0.03 | 0.06 | 1 | ≤0.06 |
MOL 4 | >128 | 0.25 | 0.5 | 0.06 | 0.03 | 0.03 | 0.06 | 1 | ≤0.06 |
MOL 5 | >128 | 0.25 | 0.0078 | 0.0078 | 0.06 | 0.03 | 0.06 | 0.25 | 0.06 |
MOL 6 | >128 | 0.125 | 0.25 | 0.03 | 0.03 | 0.03 | 0.125 | 0.5 | ≤0.06 |
MOL 7 | >128 | 1 | 1 | 0.25 | 0.125 | 0.06 | 0.125 | 1 | ≤0.06 |
MOL 8 | >128 | 0.125 | 0.5 | 0.03 | 0.016 | 0.016 | 0.06 | 0.125 | ≤0.06 |
MOL 9 | >128 | 1 | 0.5 | 0.03 | 0.0125 | 0.03 | 0.125 | 1 | ≤0.06 |
MOL 10 | >128 | 0.25 | 0.5 | 0.06 | 0.06 | 0.06 | 0.125 | 1 | ≤0.06 |
MOL 11 | >128 | 0.125 | 0.5 | 0.06 | 0.25 | 0.125 | 0.25 | 0.5 | ≤0.06 |
MOL 12 | >128 | 1 | 1 | 0.06 | 0.06 | 0.06 | 0.125 | 0.25 | ≤0.06 |
MOL 13 | >128 | 0.06 | 0.5 | 0.03 | 0.125 | 0.06 | 0.125 | 0.25 | ≤0.06 |
MOL 14 | >128 | 0.125 | 0.5 | 0.06 | 0.125 | 0.125 | 0.125 | 0.25 | ≤0.06 |
TUCC 306 | >128 | >4 | 2 | 0.25 | 0.5 | 0.25 | >8 | 2 | ≤0.06 |
TUCC 307 | >128 | 2 | 1 | 0.06 | 0.06 | 0.06 | 0.125 | 0.5 | 0.5 |
TUCC 308 | >128 | 0.125 | 0.5 | 0.06 | 0.03 | 0.03 | 0.125 | 1 | 1 |
TUCC 309 | >128 | 0.125 | 0.5 | 0.06 | 0.06 | 0.03 | 0.125 | 1 | ≤0.06 |
TUCC 353 | >128 | 0.5 | 0.5 | 0.06 | 0.125 | 0.06 | 0.125 | 1 | ≤0.06 |
TUCC 355 | >128 | 0.06 | 0.5 | 0.03 | 0.06 | 0.06 | 0.125 | 0.25 | ≤0.06 |
TUCC 356 | >128 | 0.06 | 0.5 | 0.03 | 0.06 | 0.03 | 0.125 | 0.25 | ≤0.06 |
TUCC 358 | >128 | 0.06 | 0.5 | 0.03 | 0.06 | 0.03 | 0.125 | 0.5 | ≤0.06 |
TUCC 359 | >128 | 0.06 | 0.5 | 0.03 | 0.06 | 0.03 | 0.06 | 0.5 | ≤0.06 |
Scientific Name | Common Name | Main Components |
---|---|---|
Cinnamomum zeylanicum Blume | Cinnamon | 83.35% eugenol; 3.68% benzyl benzoate; 2.57% trans β-caryophyllene; 1.88% eugenil acetate; 1.56% cinnamaldehyde |
Citrus bergamia Risso & Poit. | Bergamot | 98% bergamot essential oil; 0.8% citral; 0.08% geraniol; 0.04% citronellal; 0.02% Carvone |
Citrus limon L. | Lemon | 69.25% limonene; 11.37% pinene; 7.86% γ-terpinen; 1.98% sabinene; 1.75% α-pinene |
Coffea arabica L. | Arabica Coffee | 99.9% Arabica coffee pure essential oil; 0.1% isoeugenol |
Commiphora myrrha Jacq. | Myrrh | 80% Myrrh essential oil; 5% (−)-germacrene D; 1% trans β-carophyllene; 1% β-ocimene; 1% farnesol |
Commiphora wildii Merxm. | Namibian Myrrh | 80% α-pinene; 10% β-pinene; 1% paracymene; 1% 4-terpinenol; 1% sabinene |
Cymbopogon nardus L. | Lemongrass | 22.64% geraniol; 7.74% limonene; 7.66% camphene; 6.81% methyl isoeugenol; 5.9% geranyl acetate |
Lavandula officinalis P. | Lavender | 27.11% linalol; 24.4% linalyl acetate; 9.78% β-ocimene; 5.36% caryophyllene; 5.11% 4-terpineol |
Malaeuca alternifolia Cheel. | Tea Tree | 35.88% terpinen-4-ol; 19.65% γ-terpinene; 8.64% α-terpinene; 4.61% p-cymene; 4.07% 1,8-cineole |
Mentha × piperita Huds var. officinalis L. | Mentha of Pancalieri | 41.7% menthol; 21.8% menthone; 5.3% 1,8-cineole; 4.8% menthil-acetate; 1.8% limonene |
Pelargonium graveolens L’Herin.ex.Ait. | Geranium | 33.22% citronellal + neral; 5.56% geraniol-formate; 5.71% isomenthone; 4.19% linalol |
Piper nigrum L. | Black Pepper | 50% trans β-carophyllene; 20% limonene; 10% α-pinene; 10% δ-3 carene; 10% β-pinene |
Syzygium aromaticum L. | Clove bud | 78.91% eugenol; 11.64% eugenyl acetate; 6.04% β-caryophyllene; 0.69% α-humulene; 0.27% α-copaene |
Thymus zygis L. | Thyme | 41.18% thymol; 18.99% p-cymene; 5.56% linalool; 5.42% β-carophyllene; 3.6% γ-terpinen |
Zingiber officinali Roscoe | Ginger | 10% β-bisabolene; 10% camphene; 10% β-phellandrene; 5% eucaliptolo; 5% α-pinene |
Isolate | GE | TH | LG | TT | CL | CI | MP | LV | PB | CF | BG | GI | LM | MY | MY-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOL 1 | 0.125 | 0.06 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 2 | 0.06 | 0.06 | 0.06 | 0.5 | 0.06 | 0.125 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 3 | 0.06 | 0.06 | 0.125 | 1 | 0.06 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 4 | 0.06 | 0.06 | 0.25 | 1 | 0.03 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 5 | 0.03 | 0.06 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 6 | 0.06 | 0.06 | 0.06 | 0.5 | 0.06 | 0.125 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 7 | 0.03 | 0.06 | 0.06 | 1 | 0.06 | 0.06 | 0.125 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 8 | 0.03 | 0.06 | 0.125 | 1 | 0.06 | 0.125 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 9 | 0.03 | 0.06 | 0.06 | 1 | 0.03 | 0.06 | 0.125 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 10 | 0.03 | 0.03 | 0.06 | 1 | 0.03 | 0.125 | 0.125 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 11 | 0.125 | 0.03 | 0.125 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 12 | 0.06 | 0.03 | 0.125 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 13 | 0.03 | 0.015 | 0.03 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 14 | 0.125 | 0.06 | 0.125 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 306 | 0.06 | 0.06 | 0.125 | 1 | 0.06 | 0.06 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 307 | 0.06 | 0.015 | 0.06 | 1 | 0.06 | 0.03 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 308 | 0.06 | 0.03 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 309 | 0.06 | 0.015 | 0.06 | 1 | 0.06 | 0.06 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 353 | 0.03 | 0.03 | 0.03 | 1 | 0.06 | 0.06 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 355 | 0.06 | 0.03 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 356 | 0.06 | 0.03 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 358 | 0.06 | 0.03 | 0.06 | 1 | 0.06 | 0.03 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 359 | 0.125 | 0.03 | 0.06 | 1 | 0.06 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
Isolate | GE | TH | LG | TT | CL | CI | MP | LV | PB | CF | BG | GI | LM | MY | MY-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOL 1 | 0.125 | 0.06 | 0.125 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 2 | 0.125 | 0.5 | 0.125 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 3 | 0.125 | 1 | 0.125 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 4 | 0.125 | 0.125 | 0.25 | 1 | 0.125 | 0.06 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 5 | 0.06 | 0.06 | 0.125 | 1 | 0.125 | 0.06 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 6 | 0.06 | 0.06 | 0.125 | 1 | 0.125 | 0.125 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 7 | 0.06 | 0.06 | 0.25 | 1 | 0.125 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 8 | 0.03 | 0.06 | 0.125 | 1 | 0.25 | 0.125 | 0.5 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 9 | 0.03 | 0.06 | 0.125 | 1 | 0.06 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 10 | 0.06 | 0.03 | 0.125 | 1 | 0.125 | 0.25 | 0.25 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 11 | 0.125 | 0.06 | 0.25 | 1 | 0.25 | 0.25 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 12 | 0.125 | 0.06 | 0.25 | 1 | 0.25 | 0.25 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 13 | 0.125 | 0.06 | 0.125 | 1 | 0.25 | 0.25 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
MOL 14 | 0.125 | 0.125 | 0.125 | 1 | 0.25 | 0.25 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 306 | 0.125 | 0.125 | 0.25 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 307 | 0.5 | 0.125 | 0.5 | 1 | 0.125 | 0.125 | >1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 308 | 0.25 | 0.125 | 0.25 | 1 | 0.25 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 309 | 0.125 | 0.06 | 0.5 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 353 | 0.125 | 0.125 | 0.25 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 355 | 0.125 | 0.06 | 0.125 | 1 | 0.06 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 356 | 0.125 | 0.06 | 0.125 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 358 | 0.5 | 0.06 | 0.06 | 1 | 0.125 | 0.06 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
TUCC 359 | 0.125 | 0.0125 | 0.5 | 1 | 0.125 | 0.125 | 1 | 1 | >1 | >1 | >1 | >1 | >1 | >1 | >1 |
Strain | FLU (1000/1 µg/mL) | MYC (5/1 µg/mL) | CAS (5/1 µg/mL) | 5-FL (5/1 µg/mL) |
---|---|---|---|---|
MOL 10 | 0 | 24.05 ± 0.01 | 14.52 ± 1.46 | 39.21 ± 1.62 |
MOL 11 | 0 | 24.11 ± 0.01 | 13.52 ± 0.01 | 39.72 ± 0.5 |
Strain | Concentration | TH | CL | LG | CI | GE | MP |
---|---|---|---|---|---|---|---|
MOL 10 | 25% | 40.94 ± 0.65 | 32.03 ± 0.49 | 23.63 ± 1.41 | 15.38 ± 1.39 | 10.55 ± 0.85 | 9.60 ± 0.49 |
75% | 59.57 ± 0.55 | 35.01 ± 0.03 | 35.58 ± 1.22 | 19.05 ± 0.90 | 19.08 ± 0.63 | 12.08 ± 0.03 | |
100% | 63.88 ± 0.66 | 36.77 ± 0.02 | 36.87 ± 0.28 | 35.84 ± 1.65 | 26.04 ± 0.59 | 14.10 ± 0.57 | |
MOL 11 | 25% | 50.77 ± 0.80 | 32.35 ± 0.40 | 27.5 ± 1.04 | 15.92 ± 1.41 | 12.49 ± 1.18 | 9.95 ± 0.26 |
75% | 56.82 ± 0.75 | 36.09 ± 0.51 | 30.47 ± 1.11 | 19.86 ± 0.71 | 16.32 ± 1.71 | 14.15 ± 0.45 | |
100% | 63.69 ± 0.77 | 39.42 ± 0.23 | 31.46 ± 1.31 | 32.82 ± 0.68 | 20.43 ± 1.11 | 19.53 ± 1.11 |
Antifungal | Essential Oil | FICI | Interpretation |
---|---|---|---|
Fluconazole | Geranium | 0.98 | Additive |
Fluconazole | Thyme | 2.5 | Indifferent |
Fluconazole | Lemongrass | 0.99 | Additive |
Fluconazole | Clove bud | 1.06 | Indifferent |
Fluconazole | Cinnamon | 0.98 | Additive |
Fluconazole | Mentha of Pancalieri | 0.75 | Additive |
Micafungin | Geranium | 0.5 | Synergic |
Micafungin | Thyme | 0.5 | Synergic |
Micafungin | Lemongrass | 0.75 | Additive |
Micafungin | Clove bud | 1.06 | Indifferent |
Micafungin | Cinnamon | 0.5 | Synergic |
Micafungin | Mentha of Pancalieri | 0.99 | Additive |
Caspofungin | Geranium | 1.06 | Indifferent |
Caspofungin | Thyme | 8.36 | Antagonistic |
Caspofungin | Lemongrass | 0.75 | Additive |
Caspofungin | Clove bud | 0.97 | Additive |
Caspofungin | Cinnamon | 1.25 | Indifferent |
Caspofungin | Mentha of Pancalieri | 0.98 | Additive |
5-Flucytosine | Geranium | 0.97 | Additive |
5-Flucytosine | Thyme | 1.5 | Indifferent |
5-Flucytosine | Lemongrass | 0.98 | Additive |
5-Flucytosine | Clove bud | 0.97 | Additive |
5-Flucytosine | Cinnamon | 1.5 | Indifferent |
5-Flucytosine | Mentha of Pancalieri | 1.5 | Indifferent |
Antifungal | Essential Oil | FICI | Interpretation |
---|---|---|---|
Fluconazole | Geranium | 0.98 | Additive |
Fluconazole | Thyme | 2 | Indifferent |
Fluconazole | Lemongrass | 2 | Indifferent |
Fluconazole | Clove bud | 0.97 | Additive |
Fluconazole | Cinnamon | 1.5 | Indifferent |
Fluconazole | Mentha of Pancalieri | 0.5 | Synergic |
Micafungin | Geranium | 2 | Indifferent |
Micafungin | Thyme | 0.98 | Additive |
Micafungin | Lemongrass | 0.5 | Synergic |
Micafungin | Clove bud | 0.5 | Synergic |
Micafungin | Cinnamon | 0.5 | Synergic |
Micafungin | Mentha of Pancalieri | 2 | Indifferent |
Caspofungin | Geranium | 0.98 | Additive |
Caspofungin | Thyme | 2 | Indifferent |
Caspofungin | Lemongrass | 0.99 | Additive |
Caspofungin | Clove bud | 0.97 | Additive |
Caspofungin | Cinnamon | 0.97 | Additive |
Caspofungin | Mentha of Pancalieri | 0.97 | Additive |
5-Flucytosine | Geranium | 0.97 | Additive |
5-Flucytosine | Thyme | 2 | Indifferent |
5-Flucytosine | Lemongrass | 1.5 | Indifferent |
5-Flucytosine | Clove bud | 0.98 | Additive |
5-Flucytosine | Cinnamon | 1.5 | Indifferent |
5-Flucytosine | Mentha of Pancalieri | 0.5 | Synergic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, L.; Menotti, F.; Roana, J.; Costa, C.; Longo, F.; Pagano, C.; Curtoni, A.; Bondi, A.; Banche, G.; Allizond, V.; et al. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics 2024, 16, 957. https://doi.org/10.3390/pharmaceutics16070957
Cavallo L, Menotti F, Roana J, Costa C, Longo F, Pagano C, Curtoni A, Bondi A, Banche G, Allizond V, et al. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics. 2024; 16(7):957. https://doi.org/10.3390/pharmaceutics16070957
Chicago/Turabian StyleCavallo, Lorenza, Francesca Menotti, Janira Roana, Cristina Costa, Fabio Longo, Claudia Pagano, Antonio Curtoni, Alessandro Bondi, Giuliana Banche, Valeria Allizond, and et al. 2024. "Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris" Pharmaceutics 16, no. 7: 957. https://doi.org/10.3390/pharmaceutics16070957
APA StyleCavallo, L., Menotti, F., Roana, J., Costa, C., Longo, F., Pagano, C., Curtoni, A., Bondi, A., Banche, G., Allizond, V., & Mandras, N. (2024). Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics, 16(7), 957. https://doi.org/10.3390/pharmaceutics16070957