Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nanoparticle Formulation
2.2.2. Particle Size Measurements
2.2.3. Cell Culture
2.2.4. Cytotoxicity Evaluation
2.2.5. Hemolysis Test
2.2.6. FITC Plasmid Staining
2.2.7. Cellular Organelle-Associated FITC Fluorescence
2.2.8. ND1 Protein Quantification
2.2.9. Zebrafish Breeding
2.2.10. pDNA Fluorescence Labeling for In Vivo Assays
2.2.11. Confocal Microscopy
2.2.12. Toxicity Test on Zebrafish Embryos
2.2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of PEGylation on Nanocomplexes Formulation
3.2. Effect of PEGylation on Nanocomplexes Stability
3.3. Peptide-Based Nanocomplexes Are Stable in Saline Solution
3.4. In Vitro Biocompatibility of Peptide-Based Nanocomplexes
3.5. PEG/MTS–CPP/pND1 Nanocomplexes Do Not Cause Hemolysis
3.6. Mitochondria Targeting Capacity of PEG/MTS–CPP/pND1 Complexes
3.7. Peptide-Based Complexes Increase ND1 Levels In Vitro
3.8. Peptide Nanocomplexes Efficiently Internalize in Zebrafish Embryos
3.9. Toxicity Evaluation In Vivo Zebrafish Embryo Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2022, 23, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef] [PubMed]
- Kadenbach, B. Complex IV—The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2021, 58, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Salvatori, R.; Aftab, W.; Kohler, A.; Carlstrom, A.; Forne, I.; Imhof, A.; Ott, M. Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Mol. Cell 2020, 79, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Fontecilla-Camps, J.C. Primordial bioenergy sources: The two facets of adenosine triphosphate. J. Inorg. Biochem. 2021, 216, 111347. [Google Scholar] [CrossRef] [PubMed]
- Schlieben, L.D.; Prokisch, H. The Dimensions of Primary Mitochondrial Disorders. Front. Cell Dev. Biol. 2020, 8, 600079. [Google Scholar] [CrossRef] [PubMed]
- Kaniak-Golik, A.; Skoneczna, A. Mitochondria-nucleus network for genome stability. Free Radic. Biol. Med. 2015, 82, 73–104. [Google Scholar] [CrossRef] [PubMed]
- Zardoya, R. Recent advances in understanding mitochondrial genome diversity. F1000Research 2020, 9, 270–289. [Google Scholar] [CrossRef] [PubMed]
- Stoccoro, A.; Coppedè, F. Mitochondrial DNA Methylation and Human Diseases. Int. J. Mol. Sci. 2021, 22, 4594–4621. [Google Scholar] [CrossRef]
- Nissanka, N.; Moraes, C.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020, 21, 49612–49624. [Google Scholar] [CrossRef]
- Lawless, C.; Greaves, L.; Reeve, A.K.; Turnbull, D.M.; Vincent, A.E. The rise and rise of mitochondrial DNA mutations. Open Biol. 2020, 10, 200061. [Google Scholar] [CrossRef] [PubMed]
- La Morgia, C.; Maresca, A.; Caporali, L.; Valentino, M.L.; Carelli, V. Mitochondrial diseases in adults. J. Intern. Med. 2020, 287, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Gusic, M.; Prokisch, H. Genetic basis of mitochondrial diseases. FEBS Lett. 2021, 595, 1132–1158. [Google Scholar] [CrossRef] [PubMed]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Harilal, S.; Parambi, D.G.T.; Kanthlal, S.K.; Rahman, M.A.; Alexiou, A.; Batiha, G.E.-S.; Mathew, B. The Role of Mitochondrial Genes in Neurodegenerative Disorders. Curr. Neuropharmacol. 2022, 20, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Khan, A.; Zheng, H.; Yuan, C.; Jiang, H. Advances in drug therapy for mitochondrial diseases. Ann. Transl. Med. 2020, 8, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Tinker, R.J.; Lim, A.Z.; Stefanetti, R.J.; McFarland, R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol. Diagn. Ther. 2021, 25, 181–206. [Google Scholar] [CrossRef] [PubMed]
- Aravintha Siva, M.; Mahalakshmi, R.; Bhakta-Guha, D.; Guha, G. Gene therapy for the mitochondrial genome: Purging mutations, pacifying ailments. Mitochondrion 2019, 46, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Boisguérin, P.; Sousa, Â.; Costa, D. Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023, 15, 572–597. [Google Scholar] [CrossRef] [PubMed]
- Falabella, M.; Minczuk, M.; Hanna, M.G.; Viscomi, C.; Pitceathly, R.D.S. Gene therapy for primary mitochondrial diseases: Experimental advances and clinical challenges. Nat. Rev. Neurol. 2022, 18, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, N.; Numata, K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater. Sci. Eng. 2022, 8, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Buchke, S.; Sharma, M.; Bora, A.; Relekar, M.; Bhanu, P.; Kumar, J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life 2022, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.H.; Park, J.; Koo, H. Recent advances in selective and targeted drug/gene delivery systems using cell-penetrating peptides. Arch. Pharmacal Res. 2023, 46, 18–34. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Lu, G.; Wang, H.; Lu, Y.; Fan, L. Mitochondria-targeted cancer therapy based on functional peptides. Chin. Chem. Lett. 2023, 34, 107817–107824. [Google Scholar] [CrossRef]
- Taylor, R.E.; Zahid, M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020, 12, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Konate, K.; Dussot, M.; Aldrian, G.; Vaissiere, A.; Viguier, V.; Neira, I.F.; Couillaud, F.; Vives, E.; Boisguerin, P.; Deshayes, S. Peptide-Based Nanoparticles to Rapidly and Efficiently “Wrap ’n Roll” siRNA into Cells. Bioconjug. Chem. 2019, 30, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Fujita, S.; Miyamoto, T.; Tsuchiya, K.; Numata, K. Plant Mitochondrial-Targeted Gene Delivery by Peptide/DNA Micelles Quantitatively Surface-Modified with Mitochondrial Targeting and Membrane-Penetrating Peptides. Biomacromolecules 2023, 24, 3657–3665. [Google Scholar] [CrossRef]
- Yilmaz, N.; Kodama, Y.; Numata, K. Lipid Membrane Interaction of Peptide/DNA Complexes Designed for Gene Delivery. Langmuir 2021, 37, 1882–1893. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Vives, E.; Boisguerin, P.; Sousa, A.; Costa, D. Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers 2021, 13, 1836–1855. [Google Scholar] [CrossRef] [PubMed]
- McGrath, P.; Li, C.-Q. Zebrafish: A predictive model for assessing drug-induced toxicity. Drug Discov. Today 2008, 13, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Kannan, R.R. Zebrafish: An emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018, 4, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 2019, 9, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liang, J.; Brun, N.R.; Zhao, Y.; Werdich, A.A. Rapid Zebrafish Behavioral Profiling Assay Accelerates the Identification of Environmental Neurodevelopmental Toxicants. Environ. Sci. Technol. 2021, 55, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Haque, E.; Ward, A. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials 2018, 8, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Turgutalp, B.; Kizil, C. Zebrafish as an Experimental and Preclinical Model for Alzheimer’s Disease. ACS Chem. Neurosci. 2022, 13, 2939–2941. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zuo, Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. Environ. Sci. Pollut. Res. 2020, 27, 43599–43614. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Paul, M.; Biswas, S.; Vives, E.; Boisguerin, P.; Sousa, A.; Costa, D. Peptides vs. Polymers: Searching for the Most Efficient Delivery System for Mitochondrial Gene Therapy. Pharmaceutics 2022, 14, 757–780. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079–114101. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control Release 2022, 351, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Dewangan, H.K. PEGYLATION: An important approach for novel drug delivery system. J. Biomater. Sci. Polym. Ed. 2021, 32, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Elsadek, N.E.; Abu Lila, A.S.; Ishida, T. Immunological responses to PEGylated proteins. In Polymer-Protein Conjugates; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–123. [Google Scholar] [CrossRef]
- Faria, R.; Albuquerque, T.; Neves, A.R.; Bhatt, H.; Biswas, S.; Cardoso, A.M.; Pedroso de Lima, M.C.; Jurado, A.S.; Costa, D. Physicochemical characterization and targeting performance of triphenylphosphonium nano-polyplexes. J. Mol. Liq. 2020, 316, 113873–113884. [Google Scholar] [CrossRef]
- Costa, D.; Costa, C.; Caldeira, M.; Cortes, L.; Queiroz, J.A.; Cruz, C. Targeting of Cellular Organelles by Fluorescent Plasmid DNA Nanoparticles. Biomacromolecules 2017, 18, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.D.; Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002, 248, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front. Pharmacol. 2020, 11, 697–720. [Google Scholar] [CrossRef] [PubMed]
- Subia, B.; Reinisalo, M.; Dey, N.; Tavakoli, S.; Subrizi, A.; Ganguli, M.; Ruponen, M. Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. Eur. J. Pharm. Biopharm. 2019, 140, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Boisguerin, P.; Deshayes, S.; Gait, M.J.; O’Donovan, L.; Godfrey, C.; Betts, C.A.; Wood, M.J.; Lebleu, B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv. Drug Deliv. Rev. 2015, 87, 52–67. [Google Scholar] [CrossRef] [PubMed]
- d’Avanzo, N.; Celia, C.; Barone, A.; Carafa, M.; Di Marzio, L.; Santos, H.A.; Fresta, M. Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. Adv. Ther. 2020, 3, 1900170–1900188. [Google Scholar] [CrossRef]
- Lopez-Garcia, J.; Lehocky, M.; Humpolicek, P.; Saha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef]
- Hao, M.; Liu, R. Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117104–117115. [Google Scholar] [CrossRef] [PubMed]
- Saebo, I.P.; Bjoras, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914–2934. [Google Scholar] [CrossRef] [PubMed]
- Niza, E.; Nieto-Jimenez, C.; Noblejas-Lopez, M.D.M.; Bravo, I.; Castro-Osma, J.A.; Cruz-Martinez, F.; Buchaca, M.M.S.; Posadas, I.; Canales-Vazquez, J.; Lara-Sanchez, A.; et al. Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials 2019, 9, 1208–1222. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Ghosh, N.S.; Singh, R. Zebrafish as An Emerging Model: An Important Testing Platform for Biomedical Science. J. Pharm. Negat. Results 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Parkkila, S.; Parikka, M.; Hammaren, M.M.; Aspatwar, A. Rapid Evaluation of Toxicity of Chemical Compounds Using Zebrafish Embryos. J. Vis. Exp. 2019, 150, e59315. [Google Scholar] [CrossRef]
- Wiley, D.S.; Redfield, S.E.; Zon, L.I. Chemical screening in zebrafish for novel biological and therapeutic discovery. In The Zebrafish: Disease Models and Chemical Screens; Methods in Cell Biology Book Series; Academic Press: Cambridge, MA, USA, 2017; pp. 651–679. [Google Scholar] [CrossRef]
- Tenchov, R.; Sasso, J.M.; Zhou, Q.A. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug. Chem. 2023, 34, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Aldrian, G.; Vaissiere, A.; Konate, K.; Seisel, Q.; Vives, E.; Fernandez, F.; Viguier, V.; Genevois, C.; Couillaud, F.; Demene, H.; et al. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J. Control Release 2017, 256, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Veiman, K.L.; Kunnapuu, K.; Lehto, T.; Kiisholts, K.; Parn, K.; Langel, U.; Kurrikoff, K. PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J. Control Release 2015, 209, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Freimann, K.; Arukuusk, P.; Kurrikoff, K.; Vasconcelos, L.D.F.; Veiman, K.L.; Uusna, J.; Margus, H.; Garcia-Sosa, A.T.; Pooga, M.; Langel, U. Optimization of in vivo DNA delivery with NickFect peptide vectors. J. Control Release 2016, 241, 135–143. [Google Scholar] [CrossRef] [PubMed]
WRAP1 Systems | ||
Systems | Average Size (nm) | PdI |
WRAP1/pND1 [29] | 161 ± 9 | 0.300 ± 0.023 |
5% PEG–WRAP1/pND1 | 197 ± 26 | 0.446 ± 0.089 |
10% PEG–WRAP1/pND1 | 124 ± 7 | 0.083 ± 0.129 |
20% PEG–WRAP1/pND1 | 160 ± 11 | 0.346 ± 0.061 |
WRAP5 Systems | ||
Systems | Average Size (nm) | PdI |
WRAP5/pND1 [29] | 186 ± 10 | 0.320 ± 0.030 |
5% PEG–WRAP5/pND1 | 114 ± 9 | 0.245 ± 0.064 |
10% PEG–WRAP5/pND1 | 101 ± 15 | 0.263 ± 0.036 |
20% PEG–WRAP5/pND1 | 99 ± 5 | 0.222 ± 0.061 |
MTS–WRAP1 Systems | ||
Systems | Average Size (nm) | PdI |
MTS–WRAP1/pND1 [29] | 197 ± 8 | 0.200 ± 0.020 |
5% PEG–MTS–WRAP1/pND1 | 58 ± 7 | 0.190 ± 0.016 |
10% PEG–MTS–WRAP1/pND1 | 57 ± 3 | 0.144 ± 0.013 |
20% PEG–MTS–WRAP1/pND1 | 65 ± 8 | 0.158 ± 0.020 |
MTS–WRAP5 Systems | ||
Systems | Average Size (nm) | PdI |
MTS–WRAP5/pND1 [29] | 175 ± 11 | 0.320 ± 0.030 |
5% PEG–MTS–WRAP5/pND1 | 173 ± 14 | 0.377 ± 0.049 |
10% PEG–MTS–WRAP5/pND1 | 167 ± 19 | 0.321 ± 0.034 |
20% PEG–MTS–WRAP5/pND1 | 93 ± 15 | 0.167 ± 0.086 |
WRAP1 Systems | ||||
Systems | After 24 h | After 7 Days | ||
Mean Size (nm) | PdI | Mean Size (nm) | PdI | |
5% PEG–WRAP1/pND1 | 203 ± 9 | 0.402 ± 0.029 | 695 ± 53 | 0.592 ± 0.194 |
10% PEG–WRAP1/pND1 | 260 ± 15 | 0.346 ± 0.040 | 3161 ± 197 | 1.000 ± 0.000 |
20% PEG–WRAP1/pND1 | 448 ± 27 | 0.457 ± 0.115 | 978 ± 30 | 0.956 ± 0.028 |
WRAP5 Systems | ||||
Systems | After 24 h | After 7 Days | ||
Mean Size (nm) | PdI | Mean Size (nm) | PdI | |
5% PEG–WRAP5/pND1 | 233 ± 14 | 0.336 ± 0.093 | 320 ± 18 | 0.233 ± 0.055 |
10% PEG–WRAP5/pND1 | 96 ± 4 | 0.288 ± 0.045 | 1640 ± 143 | 1.000 ± 0.092 |
20% PEG–WRAP5/pND1 | 114 ± 10 | 0.252 ± 0.082 | 309 ± 22 | 0.409 ± 0.058 |
MTS-WRAP1 Systems | ||||
Systems | After 24 h | After 7 Days | ||
Mean SIZE (nm) | PdI | Mean Size (nm) | PdI | |
5% PEG–MTS–WRAP1/pND1 | 67 ± 5 | 0.211 ± 0.063 | 62 ± 17 | 0.215 ± 0.039 |
10% PEG–MTS–WRAP1/pND1 | 60 ± 9 | 0.161 ± 0.028 | 60 ± 11 | 0.174 ± 0.085 |
20% PEG–MTS–WRAP1/pND1 | 65 ± 11 | 0.136 ± 0.041 | 64 ± 14 | 0.134 ± 0.044 |
MTS-WRAP5 Systems | ||||
Systems | After 24 h | AFTER 7 Days | ||
Mean Size (nm) | PdI | Mean Size (nm) | PdI | |
5% PEG–MTS–WRAP5/pND1 | 82 ± 6 | 0.473 ± 0.158 | 85 ± 27 | 0.515 ± 0.100 |
10% PEG–MTS–WRAP5/pND1 | 253 ± 21 | 0.338 ± 0.099 | 291 ± 21 | 0.722 ± 0.167 |
20% PEG–MTS–WRAP5/pND1 | 73 ± 2 | 0.155 ± 0.071 | 197 ± 18 | 0.329 ± 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, R.; Vivès, E.; Boisguérin, P.; Descamps, S.; Sousa, Â.; Costa, D. Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics 2024, 16, 961. https://doi.org/10.3390/pharmaceutics16070961
Faria R, Vivès E, Boisguérin P, Descamps S, Sousa Â, Costa D. Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics. 2024; 16(7):961. https://doi.org/10.3390/pharmaceutics16070961
Chicago/Turabian StyleFaria, Rúben, Eric Vivès, Prisca Boisguérin, Simon Descamps, Ângela Sousa, and Diana Costa. 2024. "Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays" Pharmaceutics 16, no. 7: 961. https://doi.org/10.3390/pharmaceutics16070961
APA StyleFaria, R., Vivès, E., Boisguérin, P., Descamps, S., Sousa, Â., & Costa, D. (2024). Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics, 16(7), 961. https://doi.org/10.3390/pharmaceutics16070961