The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil–Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. Obtaining Concentrated Extracts from the Dried Leaves of A. muricata
2.3.1. Phytochemical Prospecting: Determination of Total Flavonoid Content
2.3.2. Cytotoxicity Assay in Human Hepatoma Cell Line (HepG2)
2.3.3. Evaluation of Antioxidant Activity Using the DPPH Radical Scavenging Test
2.4. Synthesis of Ureasil–Polyether Hybrid Matrices
2.5. Physicochemical Characterization of Hybrid Matrices
2.5.1. Thermogravimetric Analysis (TGA)
2.5.2. Atomic Force Microscopy (AFM)
2.5.3. Macroscopic Swelling Test
2.6. In Vitro A. muricata Release Assay
2.7. In Vivo Assays
2.7.1. Animals
2.7.2. Toxicological and Pharmacological Evaluation of A. muricata Extract
Acute Toxicity Assay on Mice
Determination of the Therapeutic Dose Equivalent for Humans
2.7.3. Evaluation of the Pharmacological Potential of U-PEO Matrices Containing A. muricata Concentrated Extract
2.8. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Dried Leaf Powder and Total Flavonoid Content of A. muricata Concentrated Extract
3.2. Antioxidant Activity and Cytotoxicity of the Leaf Extract of Annona muricata
3.3. Synthesis of Ureasil–Polyether Hybrid Matrix
3.4. Physicochemical Characterization of Hybrid Matrices
3.4.1. Thermogravimetry (TGA)
3.4.2. Atomic Force Microscopy (AFM)
3.4.3. Macroscopic Swelling
3.5. In Vitro A. muricata Release Assay
3.6. In Vivo Assays
3.6.1. Acute Toxicity and Determination of the Therapeutic Dose of A. muricata
3.6.2. Evaluation of the Pharmacological Potential of U-PEO Matrices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxidative Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Wang, R.-X.; Zhou, M.; Ma, H.-L.; Qiao, Y.-B.; Li, Q.-S. The Role of Chronic Inflammation in Various Diseases and Anti-Inflammatory Therapies Containing Natural Products. ChemMedChem 2021, 16, 1576–1592. [Google Scholar] [CrossRef]
- Rosen, J.; Niazi, F.; Dysart, S. Cost-Effectiveness of Treating Early to Moderate Stage Knee Osteoarthritis with Intra-Articular Hyaluronic Acid Compared to Conservative Interventions. Adv. Ther. 2020, 37, 344–352. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Wang, Z.; Pang, H. Role of Metformin in Inflammation. Mol. Biol. Rep. 2023, 50, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Cercato, L.M.; Araújo, J.M.D.; Oliveira, A.S.; Melo, A.J.O.; Lima, B.S.; Dos Santos, E.W.P.; Dos S Neto, A.G.; de Albuquerque-Júnior, R.L.C.; Duarte, M.C.; Araujo, A.A.S.; et al. Reduced Cutaneous Inflammation Associated with Antioxidant Action after Topical Application of the Aqueous Extract of Annona muricata Leaves. Inflammopharmacology 2021, 29, 307–315. [Google Scholar] [CrossRef]
- Kim, G.-T.; Tran, N.K.S.; Choi, E.-H.; Song, Y.-J.; Song, J.-H.; Shim, S.-M.; Park, T.-S. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages. Evid. Based Complement. Altern. Med. 2016, 2016, 2905127. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, M.; Cao, J.; Fang, T.; Zhang, J.; Zhen, Y.; Wu, F.; Yu, X.; Liu, Y.; Li, J.; et al. Applications and Recent Advances in Transdermal Drug Delivery Systems for the Treatment of Rheumatoid Arthritis. Acta Pharm. Sin. B 2023, 13, 4417–4441. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Chao, S.; Lu, W.; Zhang, P. Transdermal Delivery of Inflammatory Factors Regulated Drugs for Rheumatoid Arthritis. Drug Deliv. 2022, 29, 1934–1950. [Google Scholar] [CrossRef]
- da Fonsêca, N.F.; de Oliveira Alves-Júnior, J.; de Oliveira, G.D.; Costa, K.M.N.; de Melo, D.F.; Rolim Neto, P.J.; Rodrigues, M.G.F.; Oshiro-Junior, J.A. Modified Release of D-Glucose Incorporated into Laponite/Ureasil–Poly(Ethylene Oxide) Hybrid Nanocomposite. J. Solgel Sci. Technol. 2024, 110, 705–719. [Google Scholar] [CrossRef]
- Nicolau Costa, K.M.; Sato, M.R.; Barbosa, T.L.A.; Rodrigues, M.G.F.; Medeiros, A.C.D.; Damasceno, B.P.G.d.L.; Oshiro-Júnior, J.A. Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021, 13, 675. [Google Scholar] [CrossRef]
- Barros, R.M.; Da Silva, C.G.; Nicolau Costa, K.M.; Da Silva-Junior, A.A.; Scardueli, C.R.; Marcantonio, R.A.C.; Chiavacci, L.A.; Oshiro-Junior, J.A. Dexamethasone-Loaded Ureasil Hydrophobic Membrane for Bone Guided Regeneration. Pharmaceutics 2022, 14, 1027. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, B.M.S.; y Araújo, S.E.D.d.M.; Alves-Júnior, J.d.O.; Damasceno, B.P.G.d.L.; Oshiro-Junior, J.A. The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida Albicans. Pharmaceutics 2024, 16, 312. [Google Scholar] [CrossRef]
- D’Angelo, A.; Fiorentino, M.; Viola, V.; Vertuccio, L.; Catauro, M. Effect of Nitric Acid on the Synthesis and Biological Activity of Silica–Quercetin Hybrid Materials via the Sol-Gel Route. Appl. Sci. 2024, 14, 5268. [Google Scholar] [CrossRef]
- de Vigilância Sanitária, A.N. Farmacopeia Brasileira, 6th ed.; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2019.
- Leite, F.d.G.; Oshiro Júnior, J.A.; Chiavacci, L.A.; Chiari-Andréo, B.G. Assessment of an Anti-Ageing Structured Cosmetic Formulation Containing Goji Berry. Braz. J. Pharm. Sci. 2019, 55, e17412. [Google Scholar] [CrossRef]
- Oshiro, J.A.; Scardueli, C.R.; de Oliveira, G.J.P.L.; Marcantonio, R.A.C.; Chiavacci, L.A. Development of Ureasil–Polyether Membranes for Guided Bone Regeneration. Biomed. Phys. Eng. Express 2017, 3, 015019. [Google Scholar] [CrossRef]
- Oshiro, J.A.; Lusuardi, A.; Beamud, E.M.; Chiavacci, L.A.; Cuberes, M.T. Nanostructural Arrangements and Surface Morphology on Ureasil-Polyether Films Loaded with Dexamethasone Acetate. Nanomaterials 2021, 11, 1362. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- National Research Council (U.S.); Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (U.S.). Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Anter, H.M.; Abu Hashim, I.I.; Awadin, W.; Meshali, M.M. Novel Anti-Inflammatory Film as a Delivery System for the External Medication with Bioactive Phytochemical “Apocynin”. Drug Des. Devel. Ther. 2018, 12, 2981–3001. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Balekundri, A.; Mannur, V. Quality Control of the Traditional Herbs and Herbal Products: A Review. Future J. Pharm. Sci. 2020, 6, 67. [Google Scholar] [CrossRef]
- Sagili, S.U.K.R.; Addo, P.W.; MacPherson, S.; Shearer, M.; Taylor, N.; Paris, M.; Lefsrud, M.; Orsat, V. Effects of Particle Size, Solvent Type, and Extraction Temperature on the Extraction of Crude Cannabis Oil, Cannabinoids, and Terpenes. ACS Food Sci. Technol. 2023, 3, 1203–1215. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Ora, A.; Häkkinen, S.T.; Ritala, A.; Räisänen, R.; Kallioinen-Mänttäri, M.; Melin, K. Innovative Extraction Technologies of Bioactive Compounds from Plant By-Products for Textile Colorants and Antimicrobial Agents. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Frediansyah, A.; Martyasari, N.W.R.; Ilhami, B.K.; Abidin, A.S.; Padmi, H.; Fahrurrozi; Juanssilfero, A.B.; Widyastuti, S.; Sunarwidhi, A.L. Effect of Particle Size on Phytochemical Composition and Antioxidant Properties of Sargassum Cristaefolium Ethanol Extract. Sci. Rep. 2021, 11, 17876. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Agu, K.C.; Okolie, P.N. Proximate Composition, Phytochemical Analysis, and in Vitro Antioxidant Potentials of Extracts of Annona muricata (Soursop). Food Sci. Nutr. 2017, 5, 1029–1036. [Google Scholar] [CrossRef]
- Hasmila, I.; Natsir, H.; Soekamto, N.H. Phytochemical Analysis and Antioxidant Activity of Soursop Leaf Extract (Annona muricata Linn.). J. Phys. Conf. Ser. 2019, 1341, 032027. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Bautista-Flores, A.; Alvarado Mayor, P.N.; Lovera Arellano, A.A. Cytotoxic Effect of Hydroalcoholic Extract of Annona muricata against a Human Cell Line of Gastric Adenocarcinoma. Vitae 2022, 29. [Google Scholar] [CrossRef]
- Md Roduan, M.R.; Hamid, R.A.; Cheah, Y.K.; Mohtarrudin, N. Cytotoxicity, Antitumor-Promoting and Antioxidant Activities of Annona muricata in Vitro. J. Herb. Med. 2019, 15, 100219. [Google Scholar] [CrossRef]
- Carlos, L.D.; de Zea Bermudez, V.; Sá Ferreira, R.A.; Marques, L.; Assunção, M. Sol−Gel Derived Urea Cross-Linked Organically Modified Silicates. 2. Blue-Light Emission. Chem. Mater. 1999, 11, 581–588. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.L.; Rahier, H.; Van Assche, G. Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability. In Emerging Applications of Nano-Particles and Architecture Nanostructures; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–278. [Google Scholar]
- de Andrade, F.H.D.; de Araújo Batista, R.S.; Melo, T.B.L.; Fernandes, F.H.A.; Macedo, R.O.; de Souza, F.S.; Wanderley, A.G. Characterization and Compatibility of Dry Extract from Annona muricata L. and Pharmaceutical Excipients. J. Therm. Anal. Calorim. 2021, 143, 237–246. [Google Scholar] [CrossRef]
- da Silva Leite, R.; de Souza, V.G.; de Souza Salvador, I.; de Oliveira, A.H.; de Lima Neto, A.; Basílio, I.J.L.D.; Aragão, C.F.S.; Macedo, R.O.; de Souza, F.S. Evaluation of Compatibility between Dried Extracts of Myracrodruon Urundeuva Allemão and Pharmaceutical Excipients by TG and DTA. J. Therm. Anal. Calorim. 2018, 133, 633–639. [Google Scholar] [CrossRef]
- Wang, K.; Taylor, K.G.; Ma, L. Advancing the Application of Atomic Force Microscopy (AFM) to the Characterization and Quantification of Geological Material Properties. Int. J. Coal Geol. 2021, 247, 103852. [Google Scholar] [CrossRef]
- Choi, H.; Liang, H. Wettability and Spontaneous Penetration of a Water Drop into Hydrophobic Pores. J. Colloid Interface Sci. 2016, 477, 176–180. [Google Scholar] [CrossRef]
- Mikolaszek, B.; Kazlauske, J.; Larsson, A.; Sznitowska, M. Controlled Drug Release by the Pore Structure in Polydimethylsiloxane Transdermal Patches. Polymers 2020, 12, 1520. [Google Scholar] [CrossRef]
- Kalosakas, G.; Martini, D. Drug Release from Slabs and the Effects of Surface Roughness. Int. J. Pharm. 2015, 496, 291–298. [Google Scholar] [CrossRef]
- Ahmed, A.; Niazi, M.B.K.; Jahan, Z.; Samin, G.; Pervaiz, E.; Hussain, A.; Mehran, M.T. Enhancing the Thermal, Mechanical and Swelling Properties of PVA/Starch Nanocomposite Membranes Incorporating g-C3N4. J. Polym. Environ. 2020, 28, 100–115. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, e2303326. [Google Scholar] [CrossRef]
- Molina, E.F.; Parreira, R.L.T.; De Faria, E.H.; de Carvalho, H.W.P.; Caramori, G.F.; Coimbra, D.F.; Nassar, E.J.; Ciuffi, K.J. Ureasil-Poly(Ethylene Oxide) Hybrid Matrix for Selective Adsorption and Separation of Dyes from Water. Langmuir 2014, 30, 3857–3868. [Google Scholar] [CrossRef]
- Jesus, C.R.N.; Molina, E.F.; Pulcinelli, S.H.; Santilli, C.V. Highly Controlled Diffusion Drug Release from Ureasil-Poly(Ethylene Oxide)-Na+-Montmorillonite Hybrid Hydrogel Nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 19059–19068. [Google Scholar] [CrossRef] [PubMed]
- Chiavacci, L.A.; Lallo da Silva, B.; Corrêa, Á.G.S.; Pulcinelli, S.H. Control of the Structure and of the Release Profile of Biological Active Molecules from Materials Prepared via Sol-Gel. J. Solgel Sci. Technol. 2022, 101, 71–86. [Google Scholar] [CrossRef]
- Meza-Gutiérrez, N.N.; Magallón-Servín, P.; Balois-Morales, R.; Pérez-Ramírez, I.F.; López-Guzmán, G.G.; Berumen-Varela, G.; Bautista-Rosales, P.U. Growth Promoting Activity of Annona muricata L. Leaf Extracts on Lactobacillus Casei. Plants 2022, 11, 581. [Google Scholar] [CrossRef]
- Moraes, I.V.M.d.; Rabelo, R.S.; Pereira, J.A.d.L.; Hubinger, M.D.; Schmidt, F.L. Concentration of Hydroalcoholic Extracts of Graviola (Annona muricata L.) Pruning Waste by Ultra and Nanofiltration: Recovery of Bioactive Compounds and Prediction of Energy Consumption. J. Clean. Prod. 2018, 174, 1412–1421. [Google Scholar] [CrossRef]
- Wang, S.; Liu, R.; Fu, Y.; Kao, W.J. Release Mechanisms and Applications of Drug Delivery Systems for Extended-Release. Expert Opin. Drug Deliv. 2020, 17, 1289–1304. [Google Scholar] [CrossRef]
- Laracuente, M.-L.; Yu, M.H.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: An insight. Chem. Phys. Lipids 2016, 201, 28–40. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Bruschi, M.L. Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86. [Google Scholar]
- Hixson, A.W.; Crowell, J.H. Dependence of Reaction Velocity upon Surface and Agitation. Ind. Eng. Chem. 1931, 23, 923–931. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the Use of the Weibull Function for the Discernment of Drug Release Mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Kisani, A.I.; Saganuwan, S.A. Investigation of Anaesthetic Potentials of Various Extracts of Annona Muricata (Sour Sop) in Wister Albino Rat and Dog. J. King Saud Univ. Sci. 2022, 34, 102225. [Google Scholar] [CrossRef]
- Silva, A.K.A.; Souza, C.R.d.M.; Silva, H.M.D.; Jales, J.T.; Gomez, L.A.d.S.; da Silveira, E.J.D.; Rocha, H.A.O.; Souto, J.T. Anti-Inflammatory Activity of Fucan from Spatoglossum Schröederi in a Murine Model of Generalized Inflammation Induced by Zymosan. Mar. Drugs 2023, 21, 557. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the Anti-Inflammatory and Antioxidant Activities of Luteolin, Kaempferol, Apigenin and Quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Manrique-de-la-Cuba, M.F.; Gamero-Begazo, P.; Valencia, D.E.; Barazorda-Ccahuana, H.L.; Gómez, B. Theoretical Study of the Antioxidant Capacity of the Flavonoids Present in the Annona muricata (Soursop) Leaves. J. Mol. Model. 2019, 25, 200. [Google Scholar] [CrossRef] [PubMed]
- Le, V.; Dolganyuk, V.; Sukhikh, A.; Babich, O.; Ivanova, S.; Prosekov, A.; Dyshlyuk, L. Phytochemical Analysis of Symphytum Officinale Root Culture Extract. Appl. Sci. 2021, 11, 4478. [Google Scholar] [CrossRef]
- Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory; Anti-Inflammatory/Antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. Food Rev. Int. 2021, 37, 759–811. [Google Scholar] [CrossRef]
- Nagarkar, R.; Singh, M.; Nguyen, H.X.; Jonnalagadda, S. A Review of Recent Advances in Microneedle Technology for Transdermal Drug Delivery. J. Drug Deliv. Sci. Technol. 2020, 59, 101923. [Google Scholar] [CrossRef]
Experiment | Method | Solvent | Dried Leaf Powder * | Total Flavonoids Expressed in Quercetin Equivalent |
---|---|---|---|---|
No. | Ethanol/Water v/v | % w/v | mg/g Extract ± SD ** | |
01 | Ultrasound | 30:70 | 6 | 6.55 ± 1.49 |
02 | Ultrasound | 50:50 | 2 | 9.20 ± 1.36 |
03 | Ultrasound | 50:50 | 10 | 3.92 ± 0.38 |
04 | Ultrasound | 70:30 | 6 | 8.35 ± 0.49 |
05 | Turbolysis | 30:70 | 6 | 3.39 ± 0.44 |
06 | Turbolysis | 50:50 | 2 | 8.31 ± 0.11 |
07 | Turbolysis | 50:50 | 10 | 2.19 ± 0.70 |
08 | Turbolysis | 70:30 | 6 | 4.10 ± 0.26 |
09 | Maceration | 30:70 | 2 | 6.85 ± 0.43 |
10 | Maceration | 70:30 | 2 | 15.86 ± 1.80 |
11 | Maceration | 30:70 | 10 | 3.33 ± 0.42 |
12 | Maceration | 70:30 | 10 | 6.83 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, C.B.B.; Alves Júnior, J.d.O.; Sato, M.R.; Costa, K.M.N.; Lima, J.R.; Damasceno, B.P.G.d.L.; Lima Junior, F.J.B.d.; Andréo, B.G.C.; Santos, V.L.d.; Oshiro-Junior, J.A. The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil–Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract. Pharmaceutics 2024, 16, 1097. https://doi.org/10.3390/pharmaceutics16081097
Araújo CBB, Alves Júnior JdO, Sato MR, Costa KMN, Lima JR, Damasceno BPGdL, Lima Junior FJBd, Andréo BGC, Santos VLd, Oshiro-Junior JA. The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil–Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract. Pharmaceutics. 2024; 16(8):1097. https://doi.org/10.3390/pharmaceutics16081097
Chicago/Turabian StyleAraújo, Camila Beatriz Barros, José de Oliveira Alves Júnior, Mariana Rillo Sato, Kammila Martins Nicolau Costa, Jéssica Roberta Lima, Bolívar Ponciano Goulart de Lima Damasceno, Francisco José Batista de Lima Junior, Bruna Galdorfini Chiari Andréo, Vanda Lucia dos Santos, and João Augusto Oshiro-Junior. 2024. "The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil–Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract" Pharmaceutics 16, no. 8: 1097. https://doi.org/10.3390/pharmaceutics16081097
APA StyleAraújo, C. B. B., Alves Júnior, J. d. O., Sato, M. R., Costa, K. M. N., Lima, J. R., Damasceno, B. P. G. d. L., Lima Junior, F. J. B. d., Andréo, B. G. C., Santos, V. L. d., & Oshiro-Junior, J. A. (2024). The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil–Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract. Pharmaceutics, 16(8), 1097. https://doi.org/10.3390/pharmaceutics16081097