Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins
Abstract
:1. Introduction
2. Production, Isolation, Modification, and Storage of Exosomes
2.1. Production
2.2. Isolation and Purification
2.3. Modification
2.4. Storage
3. Factors Influencing the Efficacy of Exosome-Based Applications in Tissue Regeneration
3.1. Donor Cell Condition
3.2. Dosage
3.3. Administration Route
3.4. Delivery Vehicles
4. Exosomes from Different Cellular Sources
4.1. MSC-Derived Exosome
4.1.1. BMSC-Derived Exosome
4.1.2. ADSC-Derived Exosome
4.1.3. Human UCMSC-Derived Exosome
4.1.4. Human PMSC-Derived Exosome
Human AMMSC-Derived Exosome
Other Human PMSC-Derived Exosome
4.1.5. DPSC-Derived Exosome
4.2. Immune Cell-Derived Exosome
4.2.1. Macrophage-Derived Exosome
4.2.2. T Cell-Derived Exosome
4.3. NSC-Derived Exosome
4.4. Exosome Derived from Other Cellular Origins
4.4.1. Fibroblast-Derived Exosome
4.4.2. Human Umbilical Vein Endothelial Cell-Derived Exosome
4.4.3. Schwann Cell-Derived Exosome
5. Future Insights
Author Contributions
Funding
Conflicts of Interest
References
- Kourembanas, S. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy. Annu. Rev. Physiol. 2015, 77, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- O’brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Han, C.; Yang, J.; Sun, J.; Qin, G. Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol. Ther. 2022, 233, 108025. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, W.C.; Lai, R.C.; Lim, S.K.; Hui, J.H.P.; Toh, W.S. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cartil. 2016, 24, 2135–2140. [Google Scholar] [CrossRef]
- Chen, T.S.; Arslan, F.; Yin, Y.; Tan, S.S.; Lai, R.C.; Choo, A.B.H.; Padmanabhan, J.; Lee, C.N.; De Kleijn, D.P.V.; Lim, S.K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011, 9, 47. [Google Scholar] [CrossRef]
- Luo, S.; Chen, J.; Xu, F.; Chen, H.; Li, Y.; Li, W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics 2023, 15, 2070. [Google Scholar] [CrossRef]
- Cai, H.; Huang, L.-Y.; Hong, R.; Song, J.-X.; Guo, X.-J.; Zhou, W.; Hu, Z.-L.; Wang, W.; Wang, Y.-L.; Shen, J.-G.; et al. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway. Front. Pharmacol. 2022, 13, 908830. [Google Scholar] [CrossRef]
- Bei, H.P.; Hung, P.M.; Yeung, H.L.; Wang, S.; Zhao, X. Bone-a-Petite: Engineering Exosomes towards Bone, Osteochondral, and Cartilage Repair. Small 2021, 17, 2101741. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Zhang, T.; Xu, Z.; Huang, X.; Wang, R.; Du, L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 2021, 9, 811971. [Google Scholar] [CrossRef] [PubMed]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef]
- La Shu, S.; Allen, C.L.; Benjamin-Davalos, S.; Koroleva, M.; MacFarland, D.; Minderman, H.; Ernstoff, M.S. A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) Method for Exosome Isolation from Melanoma Cell Lines. Methods Mol. Biol. 2021, 2265, 289–304. [Google Scholar] [CrossRef]
- Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Ejima, H. Surface Engineering of Extracellular Vesicles through Chemical and Biological Strategies. Chem. Mater. 2019, 31, 2191–2201. [Google Scholar] [CrossRef]
- Johnson, V.; Vasu, S.; Kumar, U.S.; Kumar, M. Surface-Engineered Extracellular Vesicles in Cancer Immunotherapy. Cancers 2023, 15, 2838. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, X.; Wang, Q.; Fang, P.-H.; Liu, L.; Du, X.; Li, W.; He, D.; Zhang, T.; Bai, Y.; et al. Engineered Mesenchymal Stromal Cell Exosomes-Loaded Microneedles Improve Corneal Healing after Chemical Injury. ACS Nano 2024, 18, 20065–20082. [Google Scholar] [CrossRef]
- Zeng, H.; Guo, S.; Ren, X.; Wu, Z.; Liu, S.; Yao, X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells 2023, 12, 1416. [Google Scholar] [CrossRef]
- Han, Y.; Jones, T.W.; Dutta, S.; Zhu, Y.; Wang, X.; Narayanan, S.P.; Fagan, S.C.; Zhang, D. Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes 2021, 9, 356. [Google Scholar] [CrossRef]
- Bahadorani, M.; Nasiri, M.; Dellinger, K.; Aravamudhan, S.; Zadegan, R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int. J. Nanomed. 2024, 19, 7137–7164. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Forterre, A.V.; Zhao, J.; Frimannsson, D.O.; Delcayre, A.; Antes, T.J.; Efron, B.; Jeffrey, S.S.; Pegram, M.D.; Matin, A.C. Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation. Mol. Cancer Ther. 2018, 17, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Deng, W.; Ii, D.J.K. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015, 140, 6631–6642. [Google Scholar] [CrossRef] [PubMed]
- Nireesha, G.; Divya, L.; Sowmya, C.; Venkateshan, N.N.B.M.; Lavakumar, V. Lyophilization/freeze drying—An review. Int. J. Nov. Trends Pharm. Sci. 2013, 3, 87–98. [Google Scholar]
- Bahr, M.M.; Amer, M.S.; Abo-El-Sooud, K.; Abdallah, A.N.; El-Tookhy, O.S. Preservation techniques of stem cells extracellular vesicles: A gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. Int. J. Vet. Sci. Med. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Ruprecht, N.A.; Kohlus, R. Thermal damages in spray drying: Particle size-dependent protein denaturation using phycocyanin as model substrate. Dry. Technol. 2023, 41, 2357–2370. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Z.; Feng, F.; Peng, Y.; Cui, Y.; Xu, Y. Age-different BMSCs-derived exosomes accelerate tendon-bone interface healing in rotator cuff tears model. Gene 2024, 895, 148002. [Google Scholar] [CrossRef]
- Clark, D.J.; Fondrie, W.E.; Yang, A.; Mao, L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J. Proteom. 2016, 133, 161–169. [Google Scholar] [CrossRef]
- Visconte, C.; Taiana, M.M.; Colombini, A.; De Luca, P.; Ragni, E.; de Girolamo, L. Donor Sites and Harvesting Techniques Affect miRNA Cargos of Extracellular Vesicles Released by Human Adipose-Derived Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2024, 25, 6450. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Rong, Y.; Qian, D.; Chen, J.; Zhou, Z.; Luo, Y.; Jiang, D.; Cheng, L.; Zhao, S.; et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020, 103, 196–212. [Google Scholar] [CrossRef]
- Zou, W.; Lai, M.; Zhang, Y.; Zheng, L.; Xing, Z.; Li, T.; Zou, Z.; Song, Q.; Zhao, X.; Xia, L.; et al. Exosome Release Is Regulated by mTORC1. Adv. Sci. 2019, 6, 1801313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Chopp, M.; Zhang, Z.G.; Mahmood, A.; Xiong, Y. Mesenchymal Stem Cell-Derived Exosomes Improve Functional Recovery in Rats After Traumatic Brain Injury: A Dose-Response and Therapeutic Window Study. Neurorehabilit. Neural Repair 2020, 34, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Willis, G.R.; Kourembanas, S.; Mitsialis, S.A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front. Cardiovasc. Med. 2017, 4, 63. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, Y.; He, R.; Huang, K.; Liu, L.; Jiang, C.; Liu, Z.; Wang, Y.; Yan, X.; Cao, F.; et al. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury. Stem Cell Res. Ther. 2020, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Kemaloğlu, C.A.; Dursun, E.N.; Yay, A.H.; Gökdemir, N.S.M.; Mat, Ö.C.; Gönen, Z.B.D. The Optimal Effective Dose of Adipose-Derived Stem Cell Exosomes in Wound Healing. Ann. Plast. Surg. 2024, 93, 253–260. [Google Scholar] [CrossRef]
- Xie, X.; Song, Q.; Dai, C.; Cui, S.; Tang, R.; Li, S.; Chang, J.; Li, P.; Wang, J.; Li, J.; et al. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: A phase I/II clinical trial. Gen. Psychiatry 2023, 36, e101143. [Google Scholar] [CrossRef]
- Lu, Y.; Huangfu, S.; Ma, C.; Ding, Y.; Zhang, Y.; Zhou, C.; Liao, L.; Li, M.; You, J.; Chen, Y.; et al. Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats. Stem Cell Res. Ther. 2024, 15, 414. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, D.; Liu, J.; Dai, F.; Zhao, A.; Yang, P. Dose-responsive effects of endothelial cell-sourced exosomes on vascular cell proliferation and phenotype transition. Biochim. Biophys. Acta (BBA) Gen. Subj. 2024, 1869, 130745. [Google Scholar] [CrossRef]
- Kang, Y.X.; Han, S.F.; Chai, W.; Zhang, Y.; Zhang, J.; Yu, H.Q.; Qian, P.P.; Wang, Z.; Liu, L.Y. Comparative study of the effect of different doses of human umbilical cord mesenchymal stem cells exosomes on intestinal barrier injury in severely burned rats. Zhonghua Yi Xue Za Zhi 2024, 104, 4153–4161. [Google Scholar] [CrossRef]
- Zhang, B.; Lai, R.C.; Sim, W.K.; Tan, T.T.; Lim, S.K. An Assessment of Administration Route on MSC-sEV Therapeutic Efficacy. Biomolecules 2024, 14, 622. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Xia, Z.; Tang, B.; Li, Y. Mesenchymal stem cells-derived exosomes alleviate temporomandibular joint disc degeneration in temporomandibular joint disorder. Biochem. Biophys. Res. Commun. 2024, 726, 150278. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Qin, C.; Pan, S.; Shi, C.; Wu, G.; Feng, Y.; Zhang, J.; Yu, Z.; Liang, B.; Gui, J. Injectable hyperbranched PEG crosslinked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater. Today Bio 2023, 23, 100813. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Kheyrolahzadeh, K.; Tohidkia, M.R.; Tarighatnia, A.; Shahabi, P.; Nader, N.D.; Aghanejad, A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci. 2023, 328, 121917. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, X.; Jiang, H.; Ji, M.; Wu, Y.; Chen, J. Cancer cell-derived exosome based dual-targeted drug delivery system for non-small cell lung cancer therapy. Colloids Surf. B Biointerfaces 2024, 244, 114141. [Google Scholar] [CrossRef]
- Khayambashi, P.; Iyer, J.; Pillai, S.; Upadhyay, A.; Zhang, Y.; Tran, S.D. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 684. [Google Scholar] [CrossRef]
- Wang, S.; Xing, X.; Peng, W.; Huang, C.; Du, Y.; Yang, H.; Zhou, J. Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for dental pulp regeneration. J. Mater. Chem. B 2023, 11, 1580–1590. [Google Scholar] [CrossRef]
- Tanziela, T.; Shaikh, S.; Jiang, H.; Lu, Z.; Wang, X. Efficient encapsulation of biocompatible nanoparticles in exosomes for cancer theranostics. Nano Today 2020, 35, 100964. [Google Scholar] [CrossRef]
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Di Giuseppe, M.; Njah, J.; Sala, E.; Shiva, S.; St Croix, C.M.; Stolz, D.B.; Watkins, S.C.; Di, Y.P.; Leikauf, G.D.; et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 2015, 6, 8472. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.H.; Nguyen, T.D.; Nguyen, H.-P.; Nguyen, X.-H.; Dang, V.D.; Dam, P.T.M.; Bui, H.T.H.; Trinh, M.Q.; Vu, D.M.; Hoang, N.T.M.; et al. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front. Mol. Biosci. 2020, 7, 119. [Google Scholar] [CrossRef]
- Pomatto, M.; Gai, C.; Negro, F.; Cedrino, M.; Grange, C.; Ceccotti, E.; Togliatto, G.; Collino, F.; Tapparo, M.; Figliolini, F.; et al. Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. Int. J. Mol. Sci. 2021, 22, 3851. [Google Scholar] [CrossRef]
- Soni, N.; Gupta, S.; Rawat, S.; Krishnakumar, V.; Mohanty, S.; Banerjee, A. MicroRNA-Enriched Exosomes from Different Sources of Mesenchymal Stem Cells Can Differentially Modulate Functions of Immune Cells and Neurogenesis. Biomedicines 2021, 10, 69. [Google Scholar] [CrossRef]
- Huang, S.; Li, Y.; Wu, P.; Xiao, Y.; Duan, N.; Quan, J.; Du, W. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. J. Cell. Mol. Med. 2020, 24, 11512–11523. [Google Scholar] [CrossRef]
- Behera, J.; Kumar, A.; Voor, M.J.; Tyagi, N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics 2021, 11, 7715–7734. [Google Scholar] [CrossRef]
- Bian, S.; Zhang, L.; Duan, L.; Wang, X.; Min, Y.; Yu, H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. 2014, 92, 387–397. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Zhang, Y.; Chen, S.; Ding, J.; Chen, Z.; Wu, K.; Wu, X.; Zhou, T.; Zeng, M.; et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydr. Polym. 2023, 306, 120578. [Google Scholar] [CrossRef] [PubMed]
- Berebichez-Fridman, R.; Gómez-García, R.; Granados-Montiel, J.; Berebichez-Fastlicht, E.; Olivos-Meza, A.; Granados, J.; Velasquillo, C.; Ibarra, C. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications. Stem Cells Int. 2017, 2017, 2638305. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef] [PubMed]
- Beane, O.S.; Fonseca, V.C.; Cooper, L.L.; Koren, G.; Darling, E.M. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS ONE 2014, 9, e115963. [Google Scholar] [CrossRef] [PubMed]
- Gopi, I.K.; Rattan, S.I.S. Biphasic Dose–Response and Hormetic Effects of Stress Hormone Hydrocortisone on Telomerase-Immortalized Human Bone Marrow Stem Cells In Vitro. Dose Response 2019, 17, 1559325819889819. [Google Scholar] [CrossRef]
- Voloshin, N.; Tyurin-Kuzmin, P.; Karagyaur, M.; Akopyan, Z.; Kulebyakin, K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 12716. [Google Scholar] [CrossRef]
- Peng, L.; Jia, Z.; Yin, X.; Zhang, X.; Liu, Y.; Chen, P.; Ma, K.; Zhou, C. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008, 17, 761–774. [Google Scholar] [CrossRef]
- Ding, D.C.; Shyu, W.C.; Lin, S.Z. Mesenchymal stem cells. Cell Transplant. 2011, 20, 5–14. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Zhou, S.; Tan, P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front. Endocrinol. 2024, 15, 1374715. [Google Scholar] [CrossRef]
- Li, C.; Wei, S.; Xu, Q.; Sun, Y.; Ning, X.; Wang, Z. Application of ADSCs and their Exosomes in Scar Prevention. Stem Cell Rev. Rep. 2022, 18, 952–967. [Google Scholar] [CrossRef]
- Qin, X.; He, J.; Wang, X.; Wang, J.; Yang, R.; Chen, X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: A review of recent research advances. Front. Immunol. 2023, 14, 1256687. [Google Scholar] [CrossRef] [PubMed]
- Tangchitphisut, P.; Srikaew, N.; Numhom, S.; Tangprasittipap, A.; Woratanarat, P.; Wongsak, S.; Kijkunasathian, C.; Hongeng, S.; Murray, I.R.; Tawonsawatruk, T. Infrapatellar Fat Pad: An Alternative Source of Adipose-Derived Mesenchymal Stem Cells. Arthritis 2016, 2016, 4019873. [Google Scholar] [CrossRef] [PubMed]
- Schipper, B.M.; Marra, K.G.; Zhang, W.B.; Donnenberg, A.D.; Rubin, J.P. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann. Plast. Surg. 2008, 60, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Castaño, C.; Kalko, S.; Novials, A.; Párrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 12158–12163. [Google Scholar] [CrossRef]
- Woo, C.H.; Kim, H.K.; Yang, S.; Park, J.H.; Jo, D.; Cho, Y.W.; Jung, G.Y.; Jung, Y.J.; Lee, K.S.; Yun, Y.E.; et al. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J. Extracell. Vesicles 2020, 9, 1735249. [Google Scholar] [CrossRef]
- Cui, X.; He, Z.; Liang, Z.; Chen, Z.; Wang, H.; Zhang, J. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J. Cardiovasc. Pharmacol. 2017, 70, 225–231. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, X.; Zhang, X.; Cao, C.; Yu, M.; Wan, M. Adipose Mesenchymal Stromal Cell-Derived Exosomes Carrying MiR-122-5p Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicles by Targeting the TGF-β1/SMAD3 Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 5703. [Google Scholar] [CrossRef]
- Pendleton, C.; Li, Q.; Chesler, D.A.; Yuan, K.; Guerrero-Cazares, H.; Quinones-Hinojosa, A. Mesenchymal stem cells derived from adipose tissue vs bone marrow: In vitro comparison of their tropism towards gliomas. PLoS ONE 2013, 8, e58198. [Google Scholar] [CrossRef]
- Iacomi, D.-M.; Rosca, A.-M.; Tutuianu, R.; Neagu, T.P.; Pruna, V.; Simionescu, M.; Titorencu, I. Generation of an Immortalized Human Adipose-Derived Mesenchymal Stromal Cell Line Suitable for Wound Healing Therapy. Int. J. Mol. Sci. 2022, 23, 8925. [Google Scholar] [CrossRef]
- Wang, Z.-G.; He, Z.-Y.; Liang, S.; Yang, Q.; Cheng, P.; Chen, A.-M. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 511. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, X.; Fang, A.; Yan, J.; Ocansey, D.K.W.; Zhang, X.; Mao, F. HucMSC-Ex carrying miR-203a-3p.2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis. Int. Immunopharmacol. 2022, 110, 108925. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, J.; Ocansey, D.K.W.; Lu, B.; Wan, A.; Chen, X.; Zhang, X.; Qiu, W.; Mao, F. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int. Immunopharmacol. 2022, 110, 109066. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Shao, H.; Wang, H.; Zhang, Z.; Su, C.; Dong, L.; Yu, B.; Chen, X.; Li, X.; Zhang, X. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci. Rep. 2017, 7, 4323. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghpasand, M.; Tavanaei, R.; Hosseinpoor, M.; Yazdani, K.O.; Soleimani, A.; Zoshk, M.Y.; Soleimani, M.; Chamanara, M.; Ghorbani, M.; Deylami, M.; et al. Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: A first-in-human, single-arm, open-label, phase I clinical trial. Stem Cell Res. Ther. 2024, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Si, Y.; Wang, Y.; Chen, J.; Huo, X.; Xu, P.; Jiang, B.; Li, Z.; Shang, K.; Luo, Q.; et al. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4+ T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int. Immunopharmacol. 2024, 135, 112315. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, L.; Nardelli, C.; D’Alessio, F.; D’Argenio, V.; Nunziato, M.; Mauriello, L.; Procaccini, C.; Maruotti, G.M.; Martinelli, P.; Matarese, G.; et al. Altered Bioenergetic Profile in Umbilical Cord and Amniotic Mesenchymal Stem Cells from Newborns of Obese Women. Stem Cells Dev. 2018, 27, 199–206. [Google Scholar] [CrossRef]
- Kim, J.; Piao, Y.; Pak, Y.K.; Chung, D.; Han, Y.M.; Hong, J.S.; Jun, E.J.; Shim, J.-Y.; Choi, J.; Kim, C.J. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev. 2015, 24, 575–586. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, M.; Wang, S.; Wang, K.; Chen, L.; Zhu, X.; Zhang, Y.; Wang, Y.; Li, Y.; Li, S.; et al. Establishing an hTERT-driven immortalized umbilical cord-derived mesenchymal stem cell line and its therapeutic application in mice with liver failure. J. Tissue Eng. 2023, 14, 20417314231200328. [Google Scholar] [CrossRef]
- Zhou, H.-L.; Zhang, X.-J.; Zhang, M.-Y.; Yan, Z.-J.; Xu, Z.-M.; Xu, R.-X. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury. Neurochem. Res. 2016, 41, 2708–2718. [Google Scholar] [CrossRef]
- Parolini, O.; Alviano, F.; Bagnara, G.P.; Bilic, G.; Bühring, H.-J.; Evangelista, M.; Hennerbichler, S.; Liu, B.; Magatti, M.; Mao, N.; et al. Concise review: Isolation and characterization of cells from human term placenta: Outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008, 26, 300–311. [Google Scholar] [CrossRef]
- Banas, R.A.; Trumpower, C.; Bentlejewski, C.; Marshall, V.; Sing, G.; Zeevi, A. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum. Immunol. 2008, 69, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Ohara, M.; Ohnishi, S.; Hosono, H.; Yamamoto, K.; Yuyama, K.; Nakamura, H.; Fu, Q.; Maehara, O.; Suda, G.; Sakamoto, N. Extracellular Vesicles from Amnion-Derived Mesenchymal Stem Cells Ameliorate Hepatic Inflammation and Fibrosis in Rats. Stem Cells Int. 2018, 2018, 3212643. [Google Scholar] [CrossRef] [PubMed]
- Topoluk, N.; Steckbeck, K.; Siatkowski, S.; Burnikel, B.; Tokish, J.; Mercuri, J. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model. J. Tissue Eng. Regen. Med. 2018, 12, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Noh, C.H.; Park, S.; Seong, H.-R.; Lee, A.-Y.; Tsolmon, K.-E.; Geum, D.; Hong, S.-C.; Kim, T.M.; Choi, E.-K.; Kim, Y.-B. An Exosome-Rich Conditioned Medium from Human Amniotic Membrane Stem Cells Facilitates Wound Healing via Increased Reepithelization, Collagen Synthesis, and Angiogenesis. Cells 2023, 12, 2698. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, L.-N.; Wang, L.-N.; Chen, K.-Y.; Qian, S.-D.; Li, X.-H.; Zang, J.; Wang, D.-M.; Yu, X.-F.; Gao, J. Human amniotic mesenchymal stromal cell-derived exosomes promote neuronal function by inhibiting excessive apoptosis in a hypoxia/ischemia-induced cerebral palsy model: A preclinical study. Biomed. Pharmacother. 2024, 173, 116321. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Zhao, P.; Le, D.; Cai, S.; Mao, G. Intravenous administration exosomes derived from human amniotic mesenchymal stem cells improves neurological recovery after acute traumatic spinal cord injury in rats. Iran. J. Basic Med. Sci. 2024, 27, 1284–1292. [Google Scholar] [CrossRef]
- Xiao, S.; Xiao, C.; Miao, Y.; Wang, J.; Chen, R.; Fan, Z.; Hu, Z. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res. Ther. 2021, 12, 255. [Google Scholar] [CrossRef]
- Janockova, J.; Matejova, J.; Moravek, M.; Homolova, L.; Slovinska, L.; Nagyova, A.; Rak, D.; Sedlak, M.; Harvanova, D.; Spakova, T.; et al. Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy. Int. J. Mol. Sci. 2021, 22, 13581. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Xi, H.; Li, W.; Liu, Y.; Feng, S.; Chu, Y.; Wang, Y. Chorionic villus-derived mesenchymal stem cells induce E3 ligase TRIM72 expression and regulate cell behaviors through ubiquitination of p53 in trophoblasts. FASEB J. 2021, 35, e22005. [Google Scholar] [CrossRef]
- Salomon, C.; Ryan, J.; Sobrevia, L.; Kobayashi, M.; Ashman, K.; Mitchell, M.; Rice, G.E. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE 2013, 8, e68451. [Google Scholar] [CrossRef]
- Bian, X.; Li, B.; Yang, J.; Ma, K.; Sun, M.; Zhang, C.; Fu, X. Regenerative and protective effects of dMSC-sEVs on high-glucose-induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway. Stem Cell Res. Ther. 2020, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Egusa, H.; Sonoyama, W.; Nishimura, M.; Atsuta, I.; Akiyama, K. Stem cells in dentistry—Part I: Stem cell sources. J. Prosthodont. Res. 2012, 56, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Walboomers, X.F.; Shi, S.; Fan, M.; Jansen, J.A. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 2006, 12, 2813–2823. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Liu, B.; Nie, Q.; Li, L.; Duan, X.; Wu, L.; Chen, G. Deciphering the Heterogeneity Landscape of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Precise Selection in Translational Medicine. Adv. Healthc. Mater. 2023, 12, e2202453. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Sanz-Ros, J.; Romero-García, N.; Huete-Acevedo, J.; Dromant, M.; Borrás, C. Small extracellular vesicles from senescent stem cells trigger adaptive mechanisms in young stem cells by increasing antioxidant enzyme expression. Redox Biol. 2023, 62, 102668. [Google Scholar] [CrossRef]
- Huang, C.-C.; Narayanan, R.; Alapati, S.; Ravindran, S. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials 2016, 111, 103–115. [Google Scholar] [CrossRef]
- Swanson, W.B.; Gong, T.; Zhang, Z.; Eberle, M.; Niemann, D.; Dong, R.; Rambhia, K.J.; Ma, P.X. Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J. Control Release 2020, 324, 679–694. [Google Scholar] [CrossRef]
- Ji, L.; Bao, L.; Gu, Z.; Zhou, Q.; Liang, Y.; Zheng, Y.; Xu, Y.; Zhang, X.; Feng, X. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunol. Res. 2019, 67, 432–442. [Google Scholar] [CrossRef]
- Venugopal, C.; Shobha, K.; Rai, K.S.; Pinnelli, V.B.; Kutty, B.M.; Dhanushkodi, A. Neuroprotection by Human Dental Pulp Mesenchymal Stem Cells: From Billions to Nano. Curr. Gene Ther. 2018, 18, 307–323. [Google Scholar] [CrossRef]
- Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater. 2020, 5, 1113–1126. [Google Scholar] [CrossRef]
- Zheng, J.; Kong, Y.; Hu, X.; Li, Z.; Li, Y.; Zhong, Y.; Wei, X.; Ling, J. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis. Stem Cell Res. Ther. 2020, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liang, X.; Chen, J.; Liu, H.; He, Z.; Qin, Y.; Liu, A.; Zhang, R. Transfer of miR-877-3p via extracellular vesicles derived from dental pulp stem cells attenuates neuronal apoptosis and facilitates early neurological functional recovery after cerebral ischemia–reperfusion injury through the Bclaf1/P53 signaling pathway. Pharmacol. Res. 2024, 206, 107266. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Miao, Y.; Tong, X.; Chen, J.; Liu, H.; He, Z.; Liu, A.; Hu, Z. Dental pulp mesenchymal stem cell-derived exosomes inhibit neuroinflammation and microglial pyroptosis in subarachnoid hemorrhage via the miRNA-197-3p/FOXO3 axis. J. Nanobiotechnol. 2024, 22, 426. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Liu, Y.; Liu, Z.; Wei, W.; Dong, Y.; Yang, C.; Chen, M. Dental Pulp Stem Cell-Derived Exosomes Promote Sciatic Nerve Regeneration via Optimizing Schwann Cell Function. Cell. Reprogram. 2024, 26, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Choi, J.; Shi, S.; He, P.; Zhang, Q.; Le, A. DPSC-Derived Extracellular Vesicles Promote Rat Jawbone Regeneration. J. Dent. Res. 2023, 102, 313–321. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, J.; Lin, D.; Xu, R.; Chen, Y.; Hu, X. Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. Int. J. Mol. Med. 2022, 50, 143. [Google Scholar] [CrossRef]
- Stanko, P.; Altanerova, U.; Jakubechova, J.; Repiska, V.; Altaner, C. Dental Mesenchymal Stem/Stromal Cells and Their Exosomes. Stem Cells Int. 2018, 2018, 8973613. [Google Scholar] [CrossRef]
- Ikbale, E.-A.; Goorha, S.; Reiter, L.T.; Miranda-Carboni, G.A. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells. Data Brief 2016, 6, 696–699. [Google Scholar] [CrossRef]
- Victor, A.K.; Reiter, L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet. 2017, 26, R166–R171. [Google Scholar] [CrossRef]
- Heydari, Z.; Peshkova, M.; Gonen, Z.B.; Coretchi, I.; Eken, A.; Yay, A.H.; Dogan, M.E.; Gokce, N.; Akalin, H.; Kosheleva, N.; et al. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J. Mol. Med. 2023, 101, 51–63. [Google Scholar] [CrossRef]
- Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birmingham, A.; Seo, J.B.; Ofrecio, J.M.; Wollam, J.; Hernandez-Carretero, A.; Fu, W.; et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell 2017, 171, 372–384.e12. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Zhang, H.; Wang, S.; Cui, J.; Hu, Y.; Liu, J.; Li, M.; Zhang, K.; Zhou, F.; et al. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact. Mater. 2023, 28, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Wang, S.Y.; Kwak, G.; Yang, Y.; Kwon, I.C.; Kim, S.H. Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Adv. Sci. 2019, 6, 1900513. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Shu, L.; Wang, C.; Xie, X.; Liu, X. M2 macrophage-derived exosomes promote tendon-to-bone healing by alleviating cellular senescence in aged rats. Arthrosc. J. Arthrosc. Relat. Surg. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-H.; He, H.; Chen, Y.-N.; Liu, Z.; Romani, M.D.; Xu, Z.-Y.; Xu, Y.; Lin, F.-Y. Exosomes derived from M2 Macrophages Improve Angiogenesis and Functional Recovery after Spinal Cord Injury through HIF-1α/VEGF Axis. Brain Sci. 2022, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Pei, Z.; Wu, C.; Liu, J.; Huang, J.; Xia, R.; Xiang, D. M2 Macrophage-Derived Exosomal circ_0088494 Inhibits Ferroptosis via Promoting H3K4me1 Modification of STEAP3 in Cutaneous Squamous Cell Carcinoma. Mol. Carcinog. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-K.; Han, C.-S.; Zhu, Z.-L.; Chen, P.; Wang, Y.-M.; Lin, S.; Chen, L.-J.; Zhuang, Z.-M.; Zhou, Y.-H.; Yang, R.-L. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis. Bioact. Mater. 2024, 31, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Zhang, Y.; Lv, Z.; Luan, Y.; Li, J.; Meng, C.; Liu, K.; Luo, X.; Chen, L.; Liu, F. Macrophage exosomes modified by miR-365-2-5p promoted osteoblast osteogenic differentiation by targeting OLFML1. Regen. Biomater. 2024, 11, rbae018. [Google Scholar] [CrossRef]
- Ma, Y.-S.; Wu, T.-M.; Ling, C.-C.; Yu, F.; Zhang, J.; Cao, P.-S.; Gu, L.-P.; Wang, H.-M.; Xu, H.; Li, L.; et al. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol. Ther. Oncolytics 2021, 20, 484–498. [Google Scholar] [CrossRef]
- Bahmani, L.; Ullah, M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022, 11, 1989. [Google Scholar] [CrossRef]
- Tung, S.L.; Fanelli, G.; Matthews, R.I.; Bazoer, J.; Letizia, M.; Vizcay-Barrena, G.; Faruqu, F.N.; Philippeos, C.; Hannen, R.; Al-Jamal, K.T.; et al. Regulatory T Cell Extracellular Vesicles Modify T-Effector Cell Cytokine Production and Protect Against Human Skin Allograft Damage. Front. Cell Dev. Biol. 2020, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Aiello, S.; Rocchetta, F.; Longaretti, L.; Faravelli, S.; Todeschini, M.; Cassis, L.; Pezzuto, F.; Tomasoni, S.; Azzollini, N.; Mister, M.; et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci. Rep. 2017, 7, 11518. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, H.; Zhang, W.; Ding, F.; Fan, Z.; Zeng, Z. Exosomes Derived From T Regulatory Cells Suppress CD8+ Cytotoxic T Lymphocyte Proliferation and Prolong Liver Allograft Survival. Med. Sci. Monit. 2019, 25, 4877–4884. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yuan, F.; Shao, W.; Yao, L.; Jin, S.; Han, F. Protective role of exosomes derived from regulatory T cells against inflammation and apoptosis of BV-2 microglia under oxygen-glucose deprivation/reperfusion challenge. Genet. Mol. Biol. 2022, 45, e20220119. [Google Scholar] [CrossRef]
- Yang, F.; Cai, D.; Kong, R.; Bi, Y.; Zhang, Y.; Lei, Y.; Peng, Y.; Li, X.; Xiao, Y.; Zhou, Z.; et al. Exosomes derived from cord blood Treg cells promote diabetic wound healing by targeting monocytes. Biochem. Pharmacol. 2024, 226, 116413. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Cao, C.; Ma, L. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization. IUBMB Life 2020, 72, 2409–2419. [Google Scholar] [CrossRef]
- Webb, R.L.; Kaiser, E.E.; Scoville, S.L.; Thompson, T.A.; Fatima, S.; Pandya, C.; Sriram, K.; Swetenburg, R.L.; Vaibhav, K.; Arbab, A.S.; et al. Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. Transl. Stroke Res. 2018, 9, 530–539. [Google Scholar] [CrossRef]
- Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 2013, 33, 1711–1715. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, W.; Wang, J.; Fan, J.; Luo, Y.; Li, L.; Kong, F.; Chen, J.; Tang, P.; Cai, W. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 2019, 10, 340. [Google Scholar] [CrossRef]
- Liu, Y.; Huber, C.C.; Wang, H. Disrupted blood-brain barrier in 5xFAD mouse model of Alzheimer’s disease can be mimicked and repaired in vitro with neural stem cell-derived exosomes. Biochem. Biophys. Res. Commun. 2020, 525, 192–196. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Xiong, Y.; Wang, L.; Zhang, H.; He, F.; Zhao, J.; Liu, S.; Gao, L.; Guo, Y.; et al. Enhancing Cutaneous Wound Healing Based on Human Induced Neural Stem Cell-derived Exosomes. Int. J. Nanomed. 2022, 17, 5991–6006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kim, M.S.; Jia, B.; Yan, J.; Zuniga-Hertz, J.P.; Han, C.; Cai, D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017, 548, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wang, J.; Wang, P.; Liu, X.; Liu, P.; Cheng, X.; Cao, L.; Wu, H.; Chen, J.; Zhou, L. Neural stem cell-derived exosomes and regeneration: Cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res. Ther. 2023, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Clément, V.; Roy, V.; Paré, B.; Goulet, C.R.; Deschênes, L.T.; Berthod, F.; Bolduc, S.; Gros-Louis, F. Tridimensional cell culture of dermal fibroblasts promotes exosome-mediated secretion of extracellular matrix proteins. Sci. Rep. 2022, 12, 19786. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, J.H.-C. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability 2011, 20, 108–120. [Google Scholar] [CrossRef]
- Gangadaran, P.; Oh, E.J.; Rajendran, R.L.; Kim, H.M.; Oh, J.M.; Kwak, S.; Hong, C.M.; Choi, K.Y.; Chung, H.Y.; Ahn, B.-C. Identification of Angiogenic Cargoes in Human Fibroblasts-Derived Extracellular Vesicles and Induction of Wound Healing. Pharmaceuticals 2022, 15, 702. [Google Scholar] [CrossRef]
- Zhou, X.; Lv, Y.; Xie, H.; Li, Y.; Liu, C.; Zheng, M.; Wu, R.; Zhou, S.; Gu, X.; Li, J.; et al. RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration. Neural Regen. Res. 2024, 19, 1812–1821. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Y.; Xu, Z.; Liu, J.; Liu, X.; Ma, J.; Sun, C.; Yang, Y. Exosomal miR-673-5p from fibroblasts promotes Schwann cell-mediated peripheral neuron myelination by targeting the TSC2/mTORC1/SREBP2 axis. J. Biol. Chem. 2022, 298, 101718. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Liu, S.; Yang, P.; Liang, Y.; Ma, J.; Mao, S.; Sun, C.; Yang, Y. Fibroblast exosomal TFAP2C induced by chitosan oligosaccharides promotes peripheral axon regeneration via the miR-132-5p/CAMKK1 axis. Bioact. Mater. 2023, 26, 249–263. [Google Scholar] [CrossRef]
- Park, A.Y.; Lee, J.; Jang, Y.; Kim, Y.-J.; Kim, S.-Y.; Kim, B.J.; Yoo, K.H. Exosomes derived from human dermal fibroblasts protect against UVB-induced skin photoaging. Int. J. Mol. Med. 2023, 52, 120. [Google Scholar] [CrossRef]
- Hu, S.; Li, Z.; Cores, J.; Huang, K.; Su, T.; Dinh, P.-U.; Cheng, K. Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging. ACS Nano 2019, 13, 11273–11282. [Google Scholar] [CrossRef] [PubMed]
- Na Jang, Y.; Lee, J.M.; Park, A.Y.; Kim, Y.J.; Kim, S.Y.; Seok, J.; Yoo, K.H.; Kim, B.J. Exosomes derived from human dermal fibroblasts (HDFn-Ex) alleviate DNCB-induced atopic dermatitis (AD) via PPARα. Exp. Dermatol. 2024, 33, e14970. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Chen, J.; Guo, J.; Li, G.; Kang, Y.; Wang, C.; Jiang, T.; Zhang, M.; Jiang, G.; Yuan, M.; et al. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing. Mater. Today Bio 2023, 23, 100863. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Wang, X.; Wang, W.; Feng, Q.; Lao, G.; Liang, Y.; Wang, C.; Zhou, J.; Chen, Y.; Liu, J.; et al. Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy. Clin. Sci. 2019, 133, CS20190008. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, J.; Pei, X. Apoptotic Extracellular Vesicles Derived from Human Umbilical Vein Endothelial Cells Promote Skin Repair by Enhancing Angiogenesis: From Death to Regeneration. Int. J. Nanomed. 2024, 19, 415–428. [Google Scholar] [CrossRef]
- Qi, L.; Lu, Y.; Wang, Z.; Zhang, G. microRNA-106b derived from endothelial cell–secreted extracellular vesicles prevents skin wound healing by inhibiting JMJD3 and RIPK3. J. Cell. Mol. Med. 2021, 25, 4551–4561. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Feng, X.; Sun, D.; Sun, J.; Mou, S.; Zhao, K.; An, R. Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res. Ther. 2022, 13, 325. [Google Scholar] [CrossRef]
- Maiullari, F.; Chirivì, M.; Costantini, M.; Ferretti, A.M.; Recchia, S.; Maiullari, S.; Milan, M.; Presutti, D.; Pace, V.; Raspa, M.; et al. In vivo organized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication 2021, 13, 035014. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, H.; Xiong, Y.; Liu, J. Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress. Brain Res. 2020, 1726, 146515. [Google Scholar] [CrossRef]
- Xiao, B.; Chai, Y.; Lv, S.; Ye, M.; Wu, M.; Xie, L.; Fan, Y.; Zhu, X.; Gao, Z. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int. J. Mol. Med. 2017, 40, 1201–1209. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Guo, L.; Yuan, S.; Sun, J.; Zhao, K.; Wang, J.; An, R. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis. J. Nanobiotechnol. 2023, 21, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mu, J.; Zhang, Y.; Zhang, C.; Ma, T.; Chen, L.; Huang, T.; Wu, J.; Cao, J.; Feng, S.; et al. Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair. ACS Nano 2022, 16, 10811–10823. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Verrilli, M.A.; Picou, F.; Court, F.A. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 2013, 61, 1795–1806. [Google Scholar] [CrossRef]
- López-Leal, R.; Díaz-Viraqué, F.; Catalán, R.J.; Saquel, C.; Enright, A.; Iraola, G.; Court, F.A. Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J. Cell Sci. 2020, 133, jcs239004. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, L.; Cong, M.; Shen, M.; He, Q.; Ding, F.; Shi, H. Extracellular vesicles from skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons via Akt/mTOR/p70S6K pathway. Ann. Transl. Med. 2020, 8, 1640. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Li, J.; Wang, L.; Liu, C.; Zheng, M.; Zhou, Q.; Du, M.; Ye, X.; Feng, M.; Ye, Y.; et al. MircoRNA-25-3p in skin precursor cell-induced Schwann cell-derived extracellular vesicles promotes axon regeneration by targeting Tgif1. Exp. Neurol. 2024, 376, 114750. [Google Scholar] [CrossRef]
- Wang, W.; Shen, D.; Zhang, L.; Ji, Y.; Xu, L.; Chen, Z.; Shen, Y.; Gong, L.; Zhang, Q.; Shen, M.; et al. SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants 2021, 11, 66. [Google Scholar] [CrossRef]
- Pan, D.; Zhu, S.; Zhang, W.; Wei, Z.; Yang, F.; Guo, Z.; Ning, G.; Feng, S. Autophagy induced by Schwann cell-derived exosomes promotes recovery after spinal cord injury in rats. Biotechnol. Lett. 2022, 44, 129–142. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, Z.; Fang, J.; Wang, J.; Tao, K.; Liu, J.; Liu, S. Exosomes derived from schwann cells alleviate mitochondrial dysfunction and necroptosis after spinal cord injury via AMPK signaling pathway-mediated mitophagy. Free Radic. Biol. Med. 2023, 208, 319–333. [Google Scholar] [CrossRef]
- Hao, Z.; Ren, L.; Zhang, Z.; Yang, Z.; Wu, S.; Liu, G.; Cheng, B.; Wu, J.; Xia, J. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact. Mater. 2023, 23, 206–222. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Pan, K.; Li, H.; Yu, M.; Guo, W.; Chen, G.; Tian, W. Schwann cells secrete extracellular vesicles to promote and maintain the proliferation and multipotency of hDPCs. Cell Prolif. 2017, 50, e12353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hu, M.; He, S.; Li, B.; Liu, C.; Min, J.; Hong, L. Effects of RSC96 Schwann Cell-Derived Exosomes on Proliferation, Senescence, and Apoptosis of Dorsal Root Ganglion Cells In Vitro. Med. Sci. Monit. 2018, 24, 7841–7849. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Qu, W.; Han, F.; Liu, D.; Zhang, W. Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia. Int. J. Mol. Med. 2012, 30, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Jessen, K.R.; Mirsky, R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front. Cell. Neurosci. 2019, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Mentkowski, K.I.; Tarvirdizadeh, T.; Manzanero, C.A.; Eagler, L.A.; Lang, J.K. Surface engineering enhances the therapeutic potential of systemically delivered extracellular vesicles following acute myocardial infarction. FASEB J. 2024, 38, e70070. [Google Scholar] [CrossRef]
- Ying, S.-Q.; Cao, Y.; Zhou, Z.-K.; Luo, X.-Y.; Zhang, X.-H.; Shi, K.; Qiu, J.-Y.; Xing, S.-J.; Li, Y.-Y.; Zhang, K.; et al. Hepatocyte-derived tissue extracellular vesicles safeguard liver regeneration and support regenerative therapy. J. Nanobiotechnol. 2024, 22, 521. [Google Scholar] [CrossRef]
- Larson, A.; Natera-Rodriguez, D.E.; Crane, A.; Larocca, D.; Low, W.C.; Grande, A.W.; Lee, J. Emerging Roles of Exosomes in Stroke Therapy. Int. J. Mol. Sci. 2024, 25, 6507. [Google Scholar] [CrossRef]
- Rehman, F.U.; Liu, Y.; Zheng, M.; Shi, B. Exosomes based strategies for brain drug delivery. Biomaterials 2023, 293, 121949. [Google Scholar] [CrossRef]
- Einabadi, M.; Ai, J.; Kargar, M.; Kafilzadeh, F.; Nooshabadi, V.T.; Jamali, H. Mesenchymal cell-derived exosomes as novel useful candidates for drug delivery. Arch. Neurosci. 2020, 7, e98722. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, W.; Sun, H. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into Schwann cells. J. Nanobiotechnol. 2024, 22, 220. [Google Scholar] [CrossRef]
- Tan, X.; Xiao, H.; Yan, A.; Li, M.; Wang, L. Effect of Exosomes From Bone Marrow–Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthop. J. Sports Med. 2024, 12, 23259671231210304. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lu, H.; Mu, Q.; Yi, P.; Lin, L.; Li, P.; Yu, D.; Zhao, W. Effects of sEV derived from SHED and DPSC on the proliferation, migration and osteogenesis of PDLSC. Regen. Ther. 2023, 24, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhu, L.; Zhang, Y.; Zheng, L.; Hu, S.; Zhou, W.; Zhang, T.; Xu, W.; Chen, Y.; Zhou, H.; et al. Differential Lung Protective Capacity of Exosomes Derived from Human Adipose Tissue, Bone Marrow, and Umbilical Cord Mesenchymal Stem Cells in Sepsis-Induced Acute Lung Injury. Oxid. Med. Cell. Longev. 2022, 2022, 7837837. [Google Scholar] [CrossRef] [PubMed]
- Walravens, A.-S.; Smolgovsky, S.; Li, L.; Kelly, L.; Antes, T.; Peck, K.; Quon, T.; Ibrahim, A.; Marbán, E.; Berman, B.; et al. Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA. Sci. Rep. 2021, 11, 8666. [Google Scholar] [CrossRef] [PubMed]
- Niada, S.; Giannasi, C.; Magagnotti, C.; Andolfo, A.; Brini, A.T. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J. Proteom. 2021, 232, 104069. [Google Scholar] [CrossRef]
- Wang, A.; Liu, J.; Zhuang, X.; Yu, S.; Zhu, S.; Liu, Y.; Chen, X. Identification and Comparison of piRNA Expression Profiles of Exosomes Derived from Human Stem Cells from the Apical Papilla and Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev. 2020, 29, 511–520. [Google Scholar] [CrossRef]
- Merckx, G.; Hosseinkhani, B.; Kuypers, S.; Deville, S.; Irobi, J.; Nelissen, I.; Michiels, L.; Lambrichts, I.; Bronckaers, A. Angiogenic Effects of Human Dental Pulp and Bone Marrow-Derived Mesenchymal Stromal Cells and their Extracellular Vesicles. Cells 2020, 9, 312. [Google Scholar] [CrossRef]
- Villatoro, A.; Alcoholado, C.; Martín-Astorga, M.; Fernández, V.; Cifuentes, M.; Becerra, J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet. Immunol. Immunopathol. 2019, 208, 6–15. [Google Scholar] [CrossRef]
Exosomal Species Origin | Cellular Source | Application/Effect | The Most Effective Dosage/Concentration | Administration Route | Refs. |
---|---|---|---|---|---|
Rats | BMSC | sciatic nerve crush injury | 0.9 × 1010 particles/mL | in vitro administration | [35] |
Human | ADSC | wound healing | 200 μg/mL | local administration | [36] |
Human | Alzheimer’s disease | 4 × 108 particles in saline (1 mL) two times per week | intranasally administration | [37] | |
Human | UCMSC | complex perianal fistulas | 10 ug/100 uL per rat | local administration | [38] |
Human | HUVEC | vascular repair | 0.35–1.75 μg/mL | in vitro administration | [39] |
repair of intestinal structure and function in rats with severe burn injuries | 200 μg/0.5 mL per rat | intraperitoneal injection | [40] |
Exosome Sources | Application Areas | Specific Effects | Refs. | |
---|---|---|---|---|
BMSC | Bone and cartilage regeneration; wound healing; osteonecrosis of the Femeral Head; immunomodulation; myocardial infarction; nervous system injury | (+) | Osteogenesis; angiogenesis; keratinocyte and DF proliferation; astrocyte differentiation; BMSC proliferation and differentiation; NSC differentiation | [55,56,57,58,59,60,61] |
(−) | Inflammation; T cell proliferation; glial scar | |||
ADSC | Wound healing; scar prevention; osteoarthritis; immunomodulation; myocardial ischemia; hair loss; skin photoaging | (+) | Angiogenesis; adipogenesis; keratinocyte and DF proliferation; collagen synthesis; growth of hair follicles; dermal papilla cell proliferation | [55,57,70,71,72,73,74,75,76,77] |
(−) | Inflammation; fibrotic; cartilage degeneration; skin photoaging; T cell proliferation | |||
Human UCMSC | Wound healing; cutaneous regeneration; colitis; autoimmune uveoretinitis; GVHD | (+) | Keratinocyte and DF proliferation; intestinal lymphatic drainage improvement | [55,57,80,81,82,83,85] |
(−) | Inflammation; T cell proliferation; macrophage pyroptosis; lymphangiogenesis; endoplasmic reticulum stress in CD4+ T cells | |||
Human AMMSC | Liver fibrosis; nonalcoholic steatohepatitis; wound healing; hypoxia/ischemia-induced cerebral palsy; acute TSCI | (+) | Reepithelization; collagen synthesis; angiogenesis; axonal regeneration | [92,93,94,95,96,97] |
(−) | Inflammation; activation of Kupffer cell and hepatic stellate cell; excessive apoptosis; astrogliosis; blood-spinal cord barrier leakage; spinal cord edema | |||
Human CMMSC | Osteoarthritis | Could be uptaken by different types of cells isolated from tissues associated with osteoarthritis | [98] | |
Human CVMSC | Hypoxic placenta | (+) | Trophoblast migration and proliferation; placental vascular adaptation to low oxygen tension | [99,100] |
Human DCMSC | Wound healing | (+) | Fibroblast proliferation, migration, and differentiation; fibroblast senescent state improvement; collagen deposition | [101] |
(−) | Oxidative stress | |||
DPSC | Wound healing; dental pulp-like tissue regeneration; molar defect; periodontitis; cerebral I/R injury; subarachnoid hemorrhage; sciatic nerve injury; mandibular bone defect | (+) | Odontogenic differentiation of DPSC; dentinogenesis; neuroprotection; SC proliferation; migration and secreting neurotrophic factors; osteogenesis | [106,107,108,109,110,111,112,113,114,115,116,117] |
(−) | Imbalance of Th17/Treg; inflammation; alveolar bone loss; neuronal apoptosis; microglial pyroptosis; brain edema | |||
M2 | Fracture healing; wound healing; chronic rotator cuff tear; contusion SCI; calvarial bone defect | (+) | Macrophage polarization (M1 to M2); osteogenesis; angiogenesis; reepithelialization; collagen deposition; neurogenesis; tube formation, migration and proliferation of brain endothelial cell | [122,123,124,125,127,128,130] |
(−) | Inflammation; cellular senescence of BMSC | |||
Treg | Skin xenograft transplantation; kidney allotransplantation; orthotopic liver transplantation; oxygen-glucose deprivation/reperfusion; wound healing; acute myocardial infarction | (+) | Naive T cell converting into Treg; migration of human DF and HUVEC; macrophage polarization (M1 to M2) | [120,131,132,133,134,135,136] |
(−) | Inflammation; effector T cell proliferation; BV-2 microglia apoptosis; myocardial cell apoptosis | |||
NSC | Thromboembolic stroke; SCI; Alzheimer’s disease; wound healing | (+) | Neurogenesis; angiogenesis; neurite remodeling; autophagy activation of spinal cord neuron; human DF migration; tube formation of HUVEC | [137,138,139,140,141,142,143] |
(−) | Brain atrophy; neuronal apoptosis; lipopolysaccharide-induced nitric oxide production by macrophage; activation of microglia; inflammation; BBB leakage; aging | |||
Fibroblast | Wound healing; nerve defect; skin photoaging; atopic dermatitis | (+) | ECM formation; angiogenesis; collagen deposition and maturity; axon regeneration and functional recovery; Schwann cell-mediated peripheral neuron myelination; | [144,146,147,148,149,150,151,152] |
(−) | Scar formation; oxidative stress; inflammation; collagen degradation | |||
HUVEC | Wound healing; hypoxia/reoxygenation; flap transplantation; transient cerebral I/R; cranial defect; SCI | (+) | HUVEC and human cutaneous keratinocyte migration; angiogenesis; skin proliferation; reepithelialization; granulation tissue formation; vascularization; endothelial progenitor cell proliferation, tube formation, and invasion; nerve cell migration and invasion; osteogenesis; macrophage polarization (M1 to M2); osteogenic differentiation and migration of BMSC | [153,155,156,157,158,159,160,161,162] |
(−) | Inflammation; scar proliferation; endoplasmic reticulum stress; neural cell apoptosis | |||
SC | Nerve crush; nerve axotomy; OGD-injured motoneuron; optic nerve crush; denervated muscle atrophy: SCI; cranial defect; CMS-induced DRG injury; | (+) | Axonal regeneration; motoneuron repair; angiogenesis; injured neuron autophogy; mitophagy; BMSC osteogenesis; proliferation and multipotency of human dental pulp cell; proliferation of injured DRG cell | [147,163,164,165,166,167,168,169,170,171,172] |
(−) | Oxidative stress; inflammation; mitochondrial damage; senescence of injured DRG cell |
Species Origin | Exosomes | In Vitro Model and Findings | In Vivo Model and Findings | Refs. | ||
---|---|---|---|---|---|---|
Ability/Effect | Comparing Findings | Ability/Effect | Comparing Findings | |||
Rats | SC-Exos vs. FC-Exos vs. NSC-Exos | The ability to induce BMSCs into SCs | SC-Exos ≥ NSC-Exos > FC-Exos > Control | NA | NA | [180] |
Mice | BMSC-Exos vs. ADSC-Exos | Promotion of proliferation, migration, osteogenic differentiation, and chondrogenic differentiation ability of BMSCs | BMSC-Exos ≈ ADSC-Exos | The ability to accelerate bone-tendon injury healing in murine rotator cuff injury model | BMSC-Exos ≈ ADSC-Exos | [181] |
Human | Small extracellular vesicles derived from stem cell from human exfoliated deciduous teeth (SHED-sEVs) vs. Small extracellular vesicles derived from DPSC (DPSC-sEVs) | Promotion of the proliferation, migration, and osteogenesis of periodontal ligament stem cells (PDLSCs) | SHED-sEVs > DPSC-sEVs | NA | NA | [182] |
Human | BMSC-EVs vs. ADSC-EVs vs. UCMSC-EVs vs. Extracellular vesicles derived from dermal stem cell (DSC-EVs) vs. DPSC-EVs | Productivity | UCMSC-EVs > others | Biodistribution in full-sickness skin defect mouse models | Enrichment in the spleen, lungs, kidneys, and lymphonodus: UCMSC-EVs > others, in bone marrows: BMSC-EVs > others. | [104] |
Cell affinity | Immune cells and recipient cells in tissue regeneration: UCMSC-EVs > others, neuroblastoma cells: DPSC-EVs > others. | Wound-healing potential in full-sickness skin defect mouse models | BMSC-EVs ≈ CMSC-EVs ≈ DSC-EVs > ADSC-EVs ≈ DPSC-EVs | |||
Drug loading/delivery capacity | UCMSC-EVs/DPSC-EVs > others | |||||
Human | BMSC-Exos vs. ADSC-Exos vs. UCMSC-Exos | Suppressing glycolysis and pro-inflammatory cytokine release in LPS-treated macrophages | ADSC-Exos > others | Alleviating sepsis-induced ALI and systemic inflammation and improving survival of ALI mice | ADSC-Exos > others | [183] |
Human | CDC-EVs vs. BMSC-EVs vs. ADSC-EVs | Upregulating the Arg1/Nos2 ratio of peritoneal Mϕ of thioglycolate-stimulated mice | CDC-EVs > MSC-EVs | Reduction in scar size and increase in infarct wall thickness in a mouse model of MI | CDC-EVs > MSC-EVs | [184] |
Human | BMSC-Exos vs. ADSC-Exos vs. WJMSC-Exos | Enhancing neuronal differentiation, postponing neutrophil apoptosis, and PBMC proliferation. | BMSC-Exos > others | NA | NA | [57] |
Promoting angiogenesis | WJMSC-Exos > others | |||||
Human | BMSC-EVs vs. ADSC-EVs | Promoting endothelial cell proliferation The effects on the most relevant cell types involved in skin wound healing | BMSC-EVs > ADSC-EVs | Accelerating wound closure in a mouse model of diabetic ulcers | ADSC-EVs > BMSC-EVs | [56] |
Promoting fibroblast, keratinocyte, and endothelial cell viability | BMSC-EVs > ADSC-EVs | |||||
Promoting migration of endothelial cells | ADSC-EVs > BMSC-EVs | |||||
Inducing vessel formation | ADSC-EVs > BMSC-EVs | |||||
Human | ADSC-EVs vs. Extracellular vesicles derived from DF (DF-EVs) | Top 3 enriched biological pathways | ADSC-EVs: Positive regulation of macrophage cytokine production, type B pancreatic cell proliferation, and positive regulation of I-κB kinase/NF-κB signaling | NA | NA | [185] |
DF-EVs: non-canonical Wnt signaling pathway, Wnt signaling pathway, planar cell polarity pathway, and receptor-mediated endocytosis | ||||||
Human | BMSC-Exos vs. ADSC-Exos vs. UCMSC-Exos | Potential applications of exosomes in different fields via proteomics | BMSC-Exos: superior regeneration ability | NA | NA | [80] |
ADSC-Exos: immune regulation | ||||||
UCMSC-Exos: tissue damage repair | ||||||
Human | BMSC-Exos vs. Exosomes derived from stem cells from the apical papilla (SCAP-Exos) | Different expression profiles of PIWI-interacting RNAs (piRNAs) and the related functions | The higher expression of piRNAs in BMSC-Exos: the regulation of apoptosis and osteogenic differentiation | NA | NA | [186] |
The higher expression of piRNAs in SCAP-Exos: metabolism, cell proliferation and differentiation, and other signaling pathways closely related to the development of teeth and the formation of bone tissue | ||||||
Human | BMSC-EVs vs. DPSC-EVs | Chemotactic capacity on endothelial cells | BMSC-EVs > ADSC-EVs, this difference was neutralized when the results were normalized for the higher particle secretion of BMSCs. | NA | NA | [187] |
Human | BMSC-Exos vs. ADSC-Exos vs. UCMSC-Exos | Inducing primary DF proliferation | BMSC-Exos > others | NA | NA | [55] |
Stimulating keratinocyte migration | UCMSC-Exos > others | |||||
Canine species | BMSC-EVs vs. ADSC-EVs | Productivity | BMSC-Exos > ADSC-Exos | NA | NA | [188] |
Differential function of exosomal proteins | BMSC-Exos: cell differentiation, cell organization and biogenesis, cellular component and movement, metabolic process, regulation of biological process, response to stimulus and transport | |||||
Human | BMSC-Exos vs. ADSC-Exos | Suppressing the differentiation of CD4 + T cells into Th17 and the secretions of pro-inflammatory factors IL-17 and TNF-α | DPSC-Exos > BMSC-Exos | NA | NA | [108] |
Promoting the polarization of CD4 + T cells into Treg and increasing the release of anti-inflammatory factors IL-10 and TGF-β | DPSC-Exos > BMSC-Exos | |||||
Inducing apoptosis of CD4 + T cells | DPSC-Exos > BMSC-Exos | |||||
Human | NSC-EVs vs. MSC-EVs | NA | NA | Improving cellular, tissue, and functional outcomes in middle-aged mouse TE stroke models | NSC-EVs > MSC-EVs | [137] |
Human | BMSC-Exos vs. DPSC-Exos | Neuroprotective properties | BMSC-Exos ≈ DPSC-Exos | NA | NA | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Qi, W.; Wang, Z.; Niu, F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics 2025, 17, 147. https://doi.org/10.3390/pharmaceutics17020147
Chen Y, Qi W, Wang Z, Niu F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics. 2025; 17(2):147. https://doi.org/10.3390/pharmaceutics17020147
Chicago/Turabian StyleChen, Yiru, Weikun Qi, Zhenghao Wang, and Feng Niu. 2025. "Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins" Pharmaceutics 17, no. 2: 147. https://doi.org/10.3390/pharmaceutics17020147
APA StyleChen, Y., Qi, W., Wang, Z., & Niu, F. (2025). Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics, 17(2), 147. https://doi.org/10.3390/pharmaceutics17020147