Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review
Abstract
:1. Introduction
2. Bioavailability from the Oral Cavity
2.1. Oral Cavity and the Oral Mucous Membrane
2.2. Absorption from the Oral Cavity
2.3. Bioavailability Enhancement Through the Oral Mucosa
3. Oral Mucosal Drug Delivery Dosage Forms and Formulation Technologies
3.1. Liquid
3.2. Semi-Solid
3.3. Solid
3.4. Spray
3.5. Films and Patches
4. Conclusions
Funding
Conflicts of Interest
References
- Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. [Google Scholar] [CrossRef] [PubMed]
- Alghanem, S.; Dziurkowska, E.; Ordyniec-Kwaśnica, I.; Sznitowska, M. Intraoral Medical Devices for Sustained Drug Delivery. Clin. Oral Investig. 2023, 27, 7157–7169. [Google Scholar] [CrossRef]
- Bhati, R.; Nagrajan, R. A Detail Review on Oral Mucosa of Drug Delivery System. Int. J. Pharm. Sci. Res. 2012, 3, 659. [Google Scholar]
- Madhav, N.V.S.; Shakya, A.K.; Shakya, P.; Singh, K. Orotransmucosal Drug Delivery Systems: A Review. J. Control Release 2009, 140, 2–11. [Google Scholar] [CrossRef]
- Rathbone, M.J.; Tucker, I.G. Mechanisms, Barriers and Pathways of Oral Mucosal Drug Permeation. Adv. Drug Deliv. Rev. 1993, 12, 41–60. [Google Scholar] [CrossRef]
- Calpena Campmany, A.C.; Clares Naveros, B.; Fernández, F. Technological, Biopharmaceutical and Pharmacokinetic Advances: New Formulations of Application on the Skin and Oral Mucosa. In Recent Advances in Pharmaceutical Sciences; Transworld Research Network: Trivandrum, India, 2011. [Google Scholar]
- Hooda, R.; Tripathi, M.; Kapoor, P.K. A Review on Oral Mucosal Drug Delivery System. Pharma Innov. 2012, 1, 14–21. [Google Scholar]
- Pather, I.; Rathbone, M.; Senel, S. Current Status and the Future of Buccal Drug Delivery Systems. Expert Opin. Drug Deliv. 2008, 5, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Ponchel, G. Formulation of Oral Mucosal Drug Delivery Systems for the Systemic Delivery of Bioactive Materials. Adv. Drug Deliv. Rev. 1994, 13, 75–87. [Google Scholar] [CrossRef]
- Segale, L.; Maggi, L.; Machiste, E.; Conti, S.; Conte, U.; Grenier, A.; Besse, C. Formulation Design and Development to Produce Orodispersible Tablets by Direct Compression. J. Drug Deliv. Sci. Technol. 2007, 17, 199–203. [Google Scholar] [CrossRef]
- Silvers, A.R.; Som, P.M. Salivary Glands. Radiol. Clin. N. Am. 1998, 36, 941–966. [Google Scholar] [CrossRef]
- Witt, M. Chapter 10—Anatomy and Development of the Human Taste System. In Handbook of Clinical Neurology; Smel and Taste; Doty, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 164, pp. 147–171. [Google Scholar]
- Wang, S.-S.; Tang, Y.-L.; Pang, X.; Zheng, M.; Tang, Y.-J.; Liang, X.-H. The Maintenance of an Oral Epithelial Barrier. Life Sci. 2019, 227, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kido, M.A.; Yoshimoto, R.U.; Aijima, R.; Cao, A.-L.; Gao, W.-Q. The Oral Mucosal Membrane and Transient Receptor Potential Channels. J. Oral Sci. 2017, 59, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Domenech, E.; Kelly, J. Swallowing disorders. Med. Clin. N. Am. 1999, 83, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Ketel, E.C.; de Wijk, R.A.; de Graaf, C.; Stieger, M. Relating Oral Physiology and Anatomy of Consumers Varying in Age, Gender and Ethnicity to Food Oral Processing Behavior. Physiol. Behav. 2020, 215, 112766. [Google Scholar] [CrossRef] [PubMed]
- Sasegbon, A.; Hamdy, S. The Anatomy and Physiology of Normal and Abnormal Swallowing in Oropharyngeal Dysphagia. Neurogastroenterol. Motil. 2017, 29, e13100. [Google Scholar] [CrossRef] [PubMed]
- Laffleur, F.; Bernkop-Schnürch, A. Strategies for Improving Mucosal Drug Delivery. Nanomedicine 2013, 8, 2061–2075. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Streisand, J.B. Oral Mucosal Drug Delivery: Clinical Pharmacokinetics and Therapeutic Applications. Clin. Pharmacokinet. 2002, 41, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Hannan, P.A.; Khan, J.A.; Khan, A.; Safiullah, S. Oral Dispersible System: A New Approach in Drug Delivery System. Indian J. Pharm. Sci. 2016, 78, 2–7. [Google Scholar] [CrossRef]
- Elshafeey, A.H.; El-Dahmy, R.M. A Novel Oral Medicated Jelly for Enhancement of Etilefrine Hydrochloride Bioavailability: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2022, 30, 1435–1447. [Google Scholar] [CrossRef]
- Farias, S.; Boateng, J.S. In Vitro, Ex Vivo and in Vivo Evaluation of Taste Masked Low Dose Acetylsalicylic Acid Loaded Composite Wafers as Platforms for Buccal Administration in Geriatric Patients with Dysphagia. Int. J. Pharm. 2020, 589, 119807. [Google Scholar] [CrossRef]
- Fating, H.; Ambadkar, J.; Kajale, A. Advances in Taste Masking of Drug: A Review Study. J. Drug Deliv. Ther. 2022, 12, 255–261. [Google Scholar] [CrossRef]
- Nasr, N.E.H.; ElMeshad, A.N.; Fares, A.R. Nanocarrier Systems in Taste Masking. Sci. Pharm. 2022, 90, 20. [Google Scholar] [CrossRef]
- Rana, S.S.; Kharbanda, O.P.; Agarwal, B. Influence of Tongue Volume, Oral Cavity Volume and Their Ratio on Upper Airway: A Cone Beam Computed Tomography Study. J. Oral Biol. Craniofac. Res. 2020, 10, 110–117. [Google Scholar] [CrossRef]
- Chore, S.A.; Dighade, S.J. Review on Buccal Drug Delivery System. Int. J. Pharm. Sci. Rev. Res. 2020, 65, 140–148. [Google Scholar] [CrossRef]
- Hao, J.; Heng, P.W.S. Buccal Delivery Systems. Drug Dev. Ind. Pharm. 2003, 29, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An All-Rounder of Our Body. Eur. J. Pharm. Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.F.; Liu, F.; Brown, M.B. Advances in Oral Transmucosal Drug Delivery. J. Control. Release 2011, 153, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Serpe, L.; Jain, A.; de Macedo, C.G.; Volpato, M.C.; Groppo, F.C.; Gill, H.S.; Franz-Montan, M. Influence of Salivary Washout on Drug Delivery to the Oral Cavity Using Coated Microneedles: An in Vitro Evaluation. Eur. J. Pharm. Sci. 2016, 93, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising Applications of Human-Derived Saliva Biomarker Testing in Clinical Diagnostics. Int. J. Oral Sci. 2023, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front. Pharmacol. 2019, 10, 1196. [Google Scholar] [CrossRef] [PubMed]
- Mudie, D.M.; Amidon, G.L.; Amidon, G.E. Physiological Parameters for Oral Delivery and In Vitro Testing. Mol. Pharm. 2010, 7, 1388–1405. [Google Scholar] [CrossRef]
- Schiller, C.; Fröhlich, C.-P.; Giessmann, T.; Siegmund, W.; Mönnikes, H.; Hosten, N.; Weitschies, W. Intestinal Fluid Volumes and Transit of Dosage Forms as Assessed by Magnetic Resonance Imaging. Aliment. Pharmacol. Ther. 2005, 22, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical Properties of Mucus and Their Impact on Transmucosal Drug Delivery. Int. J. Pharm. 2017, 532, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Golshani, S.; Vatanara, A.; Amin, M. Recent Advances in Oral Mucoadhesive Drug Delivery. J. Pharm. Pharm. Sci. 2022, 25, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Lesch, C.A.; Squier, C.A.; Cruchley, A.; Williams, D.M.; Speight, P. The Permeability of Human Oral Mucosa and Skin to Water. J. Dent. Res. 1989, 68, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Matoltsy, A.G.; Parakkal, P.F. Membrane-coating granules of keratinizing epithelia. J. Cell Biol. 1965, 24, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Bierbaumer, L.; Schwarze, U.Y.; Gruber, R.; Neuhaus, W. Cell Culture Models of Oral Mucosal Barriers: A Review with a Focus on Applications, Culture Conditions and Barrier Properties. Tissue Barriers 2018, 6, 1479568. [Google Scholar] [CrossRef] [PubMed]
- Sayed, O.M. Oral Mucosal Absorption: Mechanisms, Methods, and Challenges in Drug Delivery. Int. J. Clin. Med. Res. 2024, 2, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Utoguchi, N.; Watanabe, Y.; Suzuki, T.; Maehara, J.; Matsumoto, Y.; Matsumoto, M. Carrier-Mediated Transport of Monocarboxylic Acids in Primary Cultured Epithelial Cells from Rabbit Oral Mucosa. Pharm. Res. 1997, 14, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Oyama, Y.; Yamano, H.; Ohkuma, A.; Ogawara, K.; Higaki, K.; Kimura, T. Carrier-Mediated Transport Systems for Glucose in Mucosal Cells of the Human Oral Cavity. J. Pharm. Sci. 1999, 88, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Streekstra, E.J.; Keuper-Navis, M.; van den Heuvel, J.J.; van den Broek, P.; Stommel, M.W.; Bervoets, S.; O’Gorman, L.; Greupink, R.; Russel, F.G.; van de Steeg, E.; et al. Human Enteroid Monolayers as a Potential Alternative for Ussing Chamber and Caco-2 Monolayers to Study Passive Permeability and Drug Efflux. Eur. J. Pharm. Sci. 2024, 201, 106877. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K. New Method of Measurement of Epidermal Turnover in Humans. Cosmetics 2017, 4, 47. [Google Scholar] [CrossRef]
- Kumar, A.; Naik, P.K.; Pradhan, D.; Ghosh, G.; Rath, G. Mucoadhesive Formulations: Innovations, Merits, Drawbacks, and Future Outlook. Pharm. Dev. Technol. 2020, 25, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive Drug Delivery Systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Yapto, C.V.; Rajes, K.; Inselmann, A.; Staufenbiel, S.; Stolte, K.N.; Witt, M.; Haag, R.; Dommisch, H.; Danker, K. Topical Application of Dexamethasone-Loaded Core-Multishell Nanocarriers Against Oral Mucosal Inflammation. Macromol. Biosci. 2024, 24, 2400286. [Google Scholar] [CrossRef]
- Wu, J.; Roesger, S.; Jones, N.; Hu, C.-M.J.; Li, S.-D. Cell-Penetrating Peptides for Transmucosal Delivery of Proteins. J. Control. Release 2024, 366, 864–878. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Xue, S.; Sheng, Y.; Gao, B.; Dang, Y.; Zhang, Y.; Zhang, G. β-Cyclodextrin/Dialdehyde Glucan-Coated Keratin Nanoparticles for Oral Delivery of Insulin. Int. J. Biol. Macromol. 2024, 276, 133805. [Google Scholar] [CrossRef]
- Hassan, A.; Khan, J.A.; Nasir, F.; Shabir, H.; Hannan, P.A.; Ullah, R.; Jan, A.; Khalid, A.; Khan, A.; Al-Harrasi, A. Synthesis, Characterization, and Stability Optimization of Ibuprofen Cocrystals eEploying Various Hydrophilic Polymers. Curr. Pharm. Des. 2024, 31, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, J.; Anandhi, B.; Patnaik, S.S.; Shirole, R.L.; Mourya, N.D.; Siddiqui, N.; Mathew, J.; Ravikkumar, V.R.; Karthikeyan, E. Design and Development of Propranolol HCl Fast Dissolving Tablets by Using Isolated Mucilage of Salvia Hispanica for the Treatment of Hypertension by Using DoE Tools. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2024, 40, e20240025. [Google Scholar] [CrossRef]
- Liu, M.; Svirskis, D.; Proft, T.; Loh, J.; Chen, S.; Kang, D.; Wen, J. Exploring Ex Vivo Peptideolysis of Thymopentin and Lipid-Based Nanocarriers towards Oral Formulations. Int. J. Pharm. 2022, 625, 122123. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.B.; Palamakula, A.; Khan, M.A. Cytotoxicity Evaluation of Enzyme Inhibitors and Absorption Enhancers in Caco-2 Cells for Oral Delivery of Salmon Calcitonin. J. Pharm. Sci. 2004, 93, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Mitchell, J.C.; Pawar, H.; Ayensu, I. Functional Characterisation and Permeation Studies of Lyophilised Thiolated Chitosan Xerogels for Buccal Delivery of Insulin. Protein Pept. Lett. 2014, 21, 1163–1175. [Google Scholar] [CrossRef]
- Christrup, L.L.; Jørgensen, A.; Christensen, C.B.; Friis, G.J. Improvement of Buccal Delivery of Morphine Using the Prodrug Approach. Int. J. Pharm. 1997, 154, 157–165. [Google Scholar] [CrossRef]
- Kroth, R.; Cristiano Monteiro, M.; Conte, J.; Fretes Argenta, D.; Amaral, B.R.; Szpoganicz, B.; Caon, T. Transbuccal Delivery of Metal Complexes of Isoniazid as an Alternative to Overcome Antimicrobial Resistance Problems. Int. J. Pharm. 2020, 590, 119924. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, A.L.; De Caro, V.; Campisi, G.; Giannola, L.I. Potential Transbuccal Delivery of L-DOPA Methylester Prodrug: Stability in the Environment of the Oral Cavity and Ability to Cross the Mucosal Tissue. Drug Deliv. 2016, 23, 2355–2362. [Google Scholar] [CrossRef]
- Gültekin, H.E.; Aydın, H.H.; Şahiner, A.; Soylu, F.E.; Şenyiğit, Z.; Karayıldırım, Ç.K. In Vitro and in Vivo Evaluation of Tedizolid Nanoparticle Incorporated Buccal Films for Oromucosal Infections. Int. J. Pharm. 2024, 665, 124688. [Google Scholar] [CrossRef] [PubMed]
- Ghadhban, H.Y.; Ahmed, K.K. Nanosuspension-Based Repaglinide Fast-Dissolving Buccal Film for Dissolution Enhancement. AAPS PharmSciTech 2024, 25, 161. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Ngo, H.V.; Nguyen, H.D.; Park, J.-M.; Lee, K.W.; Park, C.; Park, J.-B.; Lee, B.-J. Nanonization and Deformable Behavior of Fattigated Peptide Drug in Mucoadhesive Buccal Films. Pharmaceutics 2024, 16, 468. [Google Scholar] [CrossRef]
- Haghighatseir, N.; Mozafari, N.; Shadvand, E.; Ashrafi, H.; Daneshamouz, S.; Azadi, A. Mixed-Micelle in Situ Gel as a Candidate for Oral Inflammatory Ulcerative Diseases. AAPS PharmSciTech 2024, 25, 144. [Google Scholar] [CrossRef] [PubMed]
- Ameta, R.K.; Soni, K.; Bhattarai, A. Recent Advances in Improving the Bioavailability of Hydrophobic/Lipophilic Drugs and Their Delivery via Self-Emulsifying Formulations. Colloids Interfaces 2023, 7, 16. [Google Scholar] [CrossRef]
- Porter, C.J.H.; Trevaskis, N.L.; Charman, W.N. Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nat. Rev. Drug Discov. 2007, 6, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Sandmeier, M.; Hoeng, J.; Skov Jensen, S.; Nykjær Nikolajsen, G.; Ziegler Bruun, H.; To, D.; Ricci, F.; Schifferle, M.; Bernkop-Schnürch, A. Oral Formulations for Highly Lipophilic Drugs: Impact of Surface Decoration on the Efficacy of Self-Emulsifying Drug Delivery Systems. J. Colloid Interface Sci. 2025, 677, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- de Jesús Valle, M.J.; Rondon Mujica, A.M.; Zarzuelo Castañeda, A.; Coutinho, P.; de Abreu Duarte, A.C.; Sánchez Navarro, A. Resveratrol Liposomes in Buccal Formulations, an Approach to Overcome Drawbacks Limiting the Application of the Phytoactive Molecule for Chemoprevention and Treatment of Oral Cancer. J. Drug Deliv. Sci. Technol. 2024, 98, 105910. [Google Scholar] [CrossRef]
- De Jesús Valle, M.J.; Zarzuelo Castañeda, A.; Maderuelo, C.; Cencerrado Treviño, A.; Loureiro, J.; Coutinho, P.; Sánchez Navarro, A. Development of a Mucoadhesive Vehicle Based on Lyophilized Liposomes for Drug Delivery through the Sublingual Mucosa. Pharmaceutics 2022, 14, 1497. [Google Scholar] [CrossRef]
- Keum, T.; Noh, G.; Seo, J.-E.; Bashyal, S.; Sohn, D.H.; Lee, S. Examination of Effective Buccal Absorption of Salmon Calcitonin Using Cell-Penetrating Peptide-Conjugated Liposomal Drug Delivery System. Int. J. Nanomed. 2022, 17, 697–710. [Google Scholar] [CrossRef]
- Okafor, N.I.; Ngoepe, M.; Noundou, X.S.; Maçedo Krause, R.W. Nano-Enabled Liposomal Mucoadhesive Films for Enhanced Efavirenz Buccal Drug Delivery. J. Drug Deliv. Sci. Technol. 2019, 54, 101312. [Google Scholar] [CrossRef]
- Smart, J.D. The Basics and Underlying Mechanisms of Mucoadhesion. Adv. Drug Deliv. Rev. 2005, 57, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-castellanos, M.R.; Zia, H.; Rhodes, C.T. Mucoadhesive Drug Delivery Systems. Drug Dev. Ind. Pharm. 1993, 19, 143–194. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive Drug Delivery System: An Overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, M.; Jalil, A.; Bernkop-Schnürch, A. Chapter 20—Mucoadhesive Polymers: Gateway to Innovative Drug Delivery. In Modeling and Control of Drug Delivery Systems; Azar, A.T., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 351–383. ISBN 978-0-12-821185-4. [Google Scholar]
- Komati, S.; Swain, S.; Rao, M.E.B.; Jena, B.R.; Dasi, V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv. Pharm. Bull. 2019, 9, 521–538. [Google Scholar] [CrossRef]
- Vakili, M.R.; Mohammed-Saeid, W.; Aljasser, A.; Hopwood-Raja, J.; Ahvazi, B.; Hrynets, Y.; Betti, M.; Lavasanifar, A. Development of Mucoadhesive Hydrogels Based on Polyacrylic Acid Grafted Cellulose Nanocrystals for Local Cisplatin Delivery. Carbohydr. Polym. 2021, 255, 117332. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.L.; Woods, S.; Methven, L.; Parker, J.K.; Khutoryanskiy, V.V. Mucoadhesive Polysaccharides Modulate Sodium Retention, Release and Taste Perception. Food Chem. 2018, 240, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef] [PubMed]
- Lehr, C.M. Lectin-Mediated Drug Delivery: The Second Generation of Bioadhesives. J. Control. Release 2000, 65, 19–29. [Google Scholar] [CrossRef]
- Mfoafo, K.; Mittal, R.; Eshraghi, A.; Omidi, Y.; Omidian, H. Thiolated Polymers: An Overview of Mucoadhesive Properties and Their Potential in Drug Delivery via Mucosal Tissues. J. Drug Deliv. Sci. Technol. 2023, 85, 104596. [Google Scholar] [CrossRef]
- Sepúlveda-Córdova, A.; Fernández-Martínez, T.; Campos-Requena, V.H. Synthesis of Thiomer/Nanoclay Nanocomposites as a Potential Drug Carrier: Evaluation of Mucoadhesive and Controlled Release Properties. J. Pharm. Sci 2024, 113, 3323–3331. [Google Scholar] [CrossRef]
- Meher, J.; Yadav, N.; Yadav, K.; Rai, V. Buccal Drug Delivery System and Penetration Enhancer: A Review. Pharma Rev. 2012, 10, 113–117. [Google Scholar]
- Tawfeek, H.M.; Hassan, Y.A.; Aldawsari, M.F.; Fayed, M.H. Enhancing the Low Oral Bioavailability of Sulpiride via Fast Orally Disintegrating Tablets: Formulation, Optimization and In Vivo Characterization. Pharmaceuticals 2020, 13, 446. [Google Scholar] [CrossRef]
- Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral Delivery of Therapeutic Peptides and Proteins: Technology Landscape of Lipid-Based Nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nair, A.B.; Boddu, S.H.S.; Gorain, B.; Sreeharsha, N.; Shah, J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021, 13, 1206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral Delivery of Proteins and Peptides: Challenges, Status Quo and Future Perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [Google Scholar] [CrossRef]
- Dahan, A.; Zimmermann, E.M.; Ben-Shabat, S. Modern Prodrug Design for Targeted Oral Drug Delivery. Molecules 2014, 19, 16489–16505. [Google Scholar] [CrossRef] [PubMed]
- Mok, Z.H. The Effect of Particle Size on Drug Bioavailability in Various Parts of the Body. Pharm. Sci. Adv. 2024, 2, 100031. [Google Scholar] [CrossRef]
- Rao, S.; Song, Y.; Peddie, F.; Evans, A.M. Particle Size Reduction to the Nanometer Range: A Promising Approach to Improve Buccal Absorption of Poorly Water-Soluble Drugs. Int. J. Nanomed. 2011, 6, 1245–1251. [Google Scholar] [CrossRef]
- Kokate, A.; Li, X.; Jasti, B. Effect of Drug Lipophilicity and Ionization on Permeability Across the Buccal Mucosa: A Technical Note. AAPS PharmSciTech 2008, 9, 501–504. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting Liposomes for Oral Drug Delivery. Acta Pharm. Sin. B 2019, 9, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gong, X.; Cai, Y.; Li, H.-Y.; Forbes, B. Pullulan-Based Spray-Dried Mucoadhesive Microparticles for Sustained Oromucosal Drug Delivery. Pharmaceutics 2024, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Ikeuchi-Takahashi, Y.; Kobayashi, A.; Yoshimura, N.; Ishihara, C.; Aomori, T.; Onishi, H. Formulation Development of Mucoadhesive Microparticle-Laden Gels for Oral Mucositis: An In Vitro and In Vivo Study. Pharmaceutics 2020, 12, 603. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.J.; Kim, J.-H.; Kim, J.; Lee, S.; Xiang, Z.; Liu, Y.; Koo, H.; Lee, D. Drug-Loaded Adhesive Microparticles for Biofilm Prevention on Oral Surfaces. J. Mater. Chem. B 2024, 12, 4935–4944. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.M.; Hagesaether, E.; Tho, I. Solid Lipid Nanoparticle-Loaded Mucoadhesive Buccal Films—Critical Quality Attributes and in Vitro Safety & Efficacy. Int. J. Pharm. 2021, 592, 120100. [Google Scholar] [CrossRef] [PubMed]
- Teubl, B.J.; Meindl, C.; Eitzlmayr, A.; Zimmer, A.; Fröhlich, E.; Roblegg, E. In-Vitro Permeability of Neutral Polystyrene Particles via Buccal Mucosa. Small 2013, 9, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.S.; Najahi-Missaoui, W. Lyophilization of Nanoparticles, Does It Really Work? Overview of the Current Status and Challenges. Int. J. Mol. Sci. 2023, 24, 14041. [Google Scholar] [CrossRef]
- Gadade, D.D.; Pekamwar, S.S. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv. Pharm. Bull. 2020, 10, 166–183. [Google Scholar] [CrossRef] [PubMed]
- McGrath, C.; Clarkson, J.; Glenny, A.-M.; Walsh, L.J.; Hua, F. Effectiveness of Mouthwashes in Managing Oral Diseases and Conditions: Do They Have a Role? Int. Dent. J. 2023, 73, S69–S73. [Google Scholar] [CrossRef]
- Brookes, Z.L.; McCullough, M.; Kumar, P.; McGrath, C. Mouthwashes: Implications for Practice. Int. Dent. J. 2023, 73 (Suppl. S2), S98–S101. [Google Scholar] [CrossRef] [PubMed]
- Torne, S.R.; Sheela, A.; Sarada, N.C. A Review on Oral Liquid as an Emerging Technology in Controlled Drug Delivery System. Curr. Pharm. Des. 2018, 24, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Wanasathop, A.; Li, S.K. Iontophoretic Drug Delivery in the Oral Cavity. Pharmaceutics 2018, 10, 121. [Google Scholar] [CrossRef]
- De Caro, V.; Giannola, L.I.; Di Prima, G. Solid and Semisolid Innovative Formulations Containing Miconazole-Loaded Solid Lipid Microparticles to Promote Drug Entrapment into the Buccal Mucosa. Pharmaceutics 2021, 13, 1361. [Google Scholar] [CrossRef] [PubMed]
- Dubashynskaya, N.V.; Petrova, V.A.; Skorik, Y.A. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int. J. Mol. Sci. 2024, 25, 5359. [Google Scholar] [CrossRef]
- Chanda, R.; Nallaguntla, L. Formulation and evaluation of medicated lozenges for sore throat. Asian J. Pharm. Clin. Res. 2020, 13, 62–67. [Google Scholar] [CrossRef]
- Alissa, M.; Hjazi, A.; Abusalim, G.S.; Aloraini, G.S.; Alghamdi, S.A.; Rizg, W.Y.; Hosny, K.M.; Alblowi, J.A.; Alkharobi, H. Development and Optimization of a Novel Lozenge Containing a Metronidazole-Peppermint Oil-Tranexamic Acid Self-Nanoemulsified Delivery System to Be Used after Dental Extraction: In Vitro Evaluation and In Vivo Appraisal. Pharmaceutics 2023, 15, 2342. [Google Scholar] [CrossRef]
- Blanchard, O.L.; Friesenhahn, G.; Javors, M.A.; Smoliga, J.M. Development of a Lozenge for Oral Transmucosal Delivery of Trans-Resveratrol in Humans: Proof of Concept. PLoS ONE 2014, 9, e90131. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.P.; Sharma, A.; Tanwar, S.; Vandana, P.B.; Wadhwa, S.; Singh, G.; Kumar, P.; Kumar, R. Pharmaceutical Lozenges: Recent Trends and Developments with an Update on Research and Patents. Recent Adv. Drug Deliv. Formul. 2022, 16, 45–54. [Google Scholar] [CrossRef]
- Pothu, R.; Yamsani, M. Lozenges formulation and evaluation: A review. Int. J. Pharm. Sci. Rev. Res. 2014, 5, 290–298. [Google Scholar]
- Aslani, A.; Rostami, F. Medicated Chewing Gum, a Novel Drug Delivery System. J. Res. Med. Sci. 2015, 20, 403–411. [Google Scholar]
- Kaushik, P.; Mittal, V.; Kaushik, D. Unleashing the Potential of β -Cyclodextrin Inclusion Complexes in Bitter Taste Abatement: Development, Optimization and Evaluation of Taste Masked Anti-Emetic Chewing Gum of Promethazine Hydrochloride. AAPS PharmSciTech 2024, 25, 169. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; de Freitas, O. Oral Bioadhesive Drug Delivery Systems. Drug Dev. Ind. Pharm. 2005, 31, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Sandri, G.; Caramella, C.M. Buccal Drug Delivery: A Challenge Already Won? Drug Discov. Today Technol. 2005, 2, 59–65. [Google Scholar] [CrossRef]
- Koirala, S.; Nepal, P.; Ghimire, G.; Basnet, R.; Rawat, I.; Dahal, A.; Pandey, J.; Parajuli-Baral, K. Formulation and Evaluation of Mucoadhesive Buccal Tablets of Aceclofenac. Heliyon 2021, 7, e06439. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chaurasia, A.; Gupta, N.; Rajput, D.S. Effect of Formulation Parameters on Enalapril Maleate Mucoadhesive Buccal Tablet Using Quality by Design (QbD) Approach. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2024, 40, e20240003. [Google Scholar] [CrossRef]
- Woyna-Orlewicz, K.; Brniak, W.; Tatara, W.; Strzebońska, M.; Haznar-Garbacz, D.; Szafraniec-Szczęsny, J.; Antosik-Rogóż, A.; Wojteczko, K.; Strózik, M.; Kurek, M.; et al. Investigating the Impact of Co-Processed Excipients on the Formulation of Bromhexine Hydrochloride Orally Disintegrating Tablets (ODTs). Pharm. Res. 2023, 40, 2947–2962. [Google Scholar] [CrossRef] [PubMed]
- Bandari, S.; Mittapalli, R.; Gannu, R.; Yamsani, M. Orodispersible Tablets: An Overview. Asian J. Pharm. 2008, 2, 2–11. [Google Scholar] [CrossRef]
- Dey, P.; Maiti, S. Orodispersible Tablets: A New Trend in Drug Delivery. J. Nat. Sci. Biol. Med. 2010, 1, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Pawar, H.; Varkhade, C.; Jadhav, P.; Mehra, K. Development and Evaluation of Orodispersible Tablets Using a Natural Polysaccharide Isolated from Cassia Tora Seeds. Integr. Med. Res. 2014, 3, 91–98. [Google Scholar] [CrossRef]
- Elkhodairy, K.A.; Hassan, M.A.; Afifi, S.A. Formulation and Optimization of Orodispersible Tablets of Flutamide. Saudi Pharm. J. 2014, 22, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Hemalatha, N.; Shankar, P.U.; Baratam, S.R. Formulation and evaluation of orodispersible tablets (odts) of diclofenac sodium by using superdisintegrant from natural origin. Int. J. Appl. Pharm. 2019, 11, 190–197. [Google Scholar] [CrossRef]
- Jeevanandham, S.; Dhachinamoorthi, D.; Sekhar, K.C.; Muthukumaran, M.; Sriram, N.; Joysaruby, J. Formulation and Evaluation of Naproxen Sodium Orodispersible Tablets—A Sublimation Technique. Asian J. Pharm. 2010, 4, 48–51. [Google Scholar] [CrossRef]
- Kalyankar, P.; Panzade, P.; Lahoti, S. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method. Indian J. Pharm. Sci. 2015, 77, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.L.; Lee, B.-J.; Tran, T.T.D. Strategies and Formulations of Freeze-Dried Tablets for Controlled Drug Delivery. Int. J. Pharm. 2021, 597, 120373. [Google Scholar] [CrossRef]
- Vanbillemont, B.; Everaert, H.; De Beer, T. New Advances in the Characterization of Lyophilised Orally Disintegrating Tablets. Int. J. Pharm. 2020, 579, 119153. [Google Scholar] [CrossRef] [PubMed]
- Authelin, J.R.; Koumurian, B.; Meagher, K.; Walsh, E.; Clavreul, T.; Rellis, B.; Gerbeau, L.; Nakach, M.; Peral, F. A Simple and Cost-Effective Technique to Monitor the Sublimation Flow During Primary Drying of Freeze-Drying Using Shelf Inlet/Outlet Temperature Difference or Chamber to Condenser Pressure Drop. J. Pharm. Sci. 2024, 113, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Akdag, Y.; Gulsun, T.; Izat, N.; Cetin, M.; Oner, L.; Sahin, S. Evaluation of Preparation Methods for Orally Disintegrating Tablets. Medicine 2020, 9, 259. [Google Scholar] [CrossRef]
- Mishra, D.N.; Bindal, M.; Singh, S.K.; Vijaya Kumar, S.G. Spray Dried Excipient Base: A Novel Technique for the Formulation of Orally Disintegrating Tablets. Chem. Pharm. Bull. 2006, 54, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Toor, R.; Kumari, B. New technologies in the formulation of oral dispersible tablets and taste masking: A review. Indian Res. J. Pharm. Sci. 2018, 5, 1288–1301. [Google Scholar] [CrossRef]
- Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics 2020, 12, 110. [Google Scholar] [CrossRef]
- Pyteraf, J.; Jamróz, W.; Kurek, M.; Bąk, U.; Loskot, J.; Kramarczyk, D.; Paluch, M.; Jachowicz, R. Preparation and Advanced Characterization of Highly Drug-Loaded, 3D Printed Orodispersible Tablets Containing Fluconazole. Int. J. Pharm. 2023, 630, 122444. [Google Scholar] [CrossRef]
- West, T.G.; Bradbury, T.J. 3D Printing: A Case of ZipDose® Technology—World’s First 3D Printing Platform to Obtain FDA Approval for a Pharmaceutical Product. In 3D and 4D Printing in Biomedical Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 53–79. ISBN 978-3-527-81370-4. [Google Scholar]
- Jaipal, A.; Pandey, M.M.; Charde, S.Y.; Sadhu, N.; Srinivas, A.; Prasad, R.G. Controlled Release Effervescent Buccal Discs of Buspirone Hydrochloride: In Vitro and in Vivo Evaluation Studies. Drug Deliv. 2016, 23, 452–458. [Google Scholar] [CrossRef]
- Yildir, E.; Sjöholm, E.; Preis, M.; Trivedi, P.; Trygg, J.; Fardim, P.; Sandler, N. Investigation of Dissolved Cellulose in Development of Buccal Discs for Oromucosal Drug Delivery. Pharm. Dev. Technol. 2018, 23, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.; Bhatt, S.; Mannan, A.; Arora, S.; Singh, T.G. Formulation and Characterization of Zaleplon Buccal Disks Using Grafted Moringa Oleifera Gum. J. App. Pharm. Sci. 2023, 13, 115–127. [Google Scholar] [CrossRef]
- Shahadha, R.; Maraie, N. Mucoadhesive Film Forming Spray for Buccal Drug Delivery: A Review. Al Mustansiriyah J. Pharm. Sci. 2023, 23, 105–116. [Google Scholar] [CrossRef]
- Palermo, A.; Maddaloni, E.; Pozzilli, P. Buccal Spray Insulin (Oralgen) for Type 2 Diabetes: What Evidence? Expert Opin. Biol. Ther. 2012, 12, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.B.; Huang, K.X.; Zhu, Y.S.; Gao, Q.H.; Wu, Q.Z.; Tian, W.Q.; Sheng, X.Q.; Chen, Z.X.; Gao, Z.H. Hypoglycaemic Effect of a Novel Insulin Buccal Formulation on Rabbits. Pharmacol. Res. 2002, 46, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Modi, P.; Mihic, M.; Lewin, A. The Evolving Role of Oral Insulin in the Treatment of Diabetes Using a Novel RapidMist System. Diabetes Metab. Res. Rev. 2002, 18 (Suppl. S1), S38–S42. [Google Scholar] [CrossRef] [PubMed]
- Trincado, V.; Gala, R.P.; Morales, J.O. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines 2021, 9, 1177. [Google Scholar] [CrossRef]
- Modi, A.; Sanal, R.; Suresh, A.; Saraswathy, M. Enhanced Mucoadhesive Properties of Ionically Cross-Linked Thiolated Gellan Gum Films. J. Biomater. Sci. Polym. Ed. 2024, 1–15. [Google Scholar] [CrossRef]
- Shahidulla, D.; Begum, A.; Fatima, A. Buccal film: An updated overview. Int. J. Innov. Res. Multidiscipl. Field 2022, 8, 132–140. [Google Scholar] [CrossRef]
- Shipp, L.; Liu, F.; Kerai-Varsani, L.; Okwuosa, T.C. Buccal Films: A Review of Therapeutic Opportunities, Formulations & Relevant Evaluation Approaches. J. Control. Release 2022, 352, 1071–1092. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Vemula, S.K.; Narala, S.; Lakkala, P.; Munnangi, S.R.; Narala, N.; Jara, M.O.; Williams, R.O.; Terefe, H.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation—Where Are We Now? AAPS PharmSciTech 2024, 25, 37. [Google Scholar] [CrossRef]
- Brandl, M.; Bauer-Brandl, A. Oromucosal Drug Delivery: Trends in in-Vitro Biopharmaceutical Assessment of New Chemical Entities and Formulations. Eur. J. Pharm. Sci. 2019, 128, 112–117. [Google Scholar] [CrossRef] [PubMed]
Volume (Mean) | pH | Enzyme Activity | |
---|---|---|---|
Saliva | 1.1 mL | 5.5–7 | Low |
Gastric fluid | 45–686 mL | 2.9–5.4 | High |
Intestinal fluid | 54–105 mL | 6.8–7.2 | High |
Rectal fluid | 1–3 mL | 7–8 | Low |
Region | Permeability Constant (Kp (×10−7 ± SEM cm/min)) |
---|---|
Skin | 44 ± 4 |
Hard palate | 470 ± 27 |
Buccal mucosa | 579 ± 16 |
Lateral border of tongue | 772 ± 23 |
Floor of mouth | 973 ± 33 |
Method | Advantage | Disadvantage | Literature |
---|---|---|---|
Mucoadhesion |
|
| [45,46,47] |
Penetration enhancement |
|
| [48,49] |
Fast disintegration |
|
| [50,51,52,53] |
Enzyme inhibition |
|
| [52,53,54] |
Prodrug |
|
| [55,56,57] |
Nanoparticles |
|
| [58,59,60,61] |
Modifying lipophilicity |
|
| [62,63,64] |
Liposomes |
|
| [65,66,67,68] |
Method | Common Excipients | Pharmacon Examples | Literature |
---|---|---|---|
Mucoadhesion | Polyacrylic acid, carboxymethyl-cellulose, chitosan | Fentanyl, miconazole, theophylline, dexamethasone | [45,46,47] |
Penetration enhancement | Sodium deoxycholate, sodium myristate, cyclodextrin | Insulin, other peptides | [48,49] |
Fast disintegration | Microcrystalline cellulose, camphor, mannitol | Propranolol, metformin, ibuprofen | [50,51,52,53] |
Enzyme inhibition | Aprotinin, bestatin | Insulin, calcitonin, thymopentin | [52,53,54] |
prodrug | isoniazid, levodopa, morphine | [55,56,57] | |
Nanoparticles | Polystyrene, pullulan, chitosan, hydroxypropyl methylcellulose, oleic acid | Tedizolid, repaglinide, dexamethasone, leuprolide | [58,59,60,61] |
Modifying lipophilicity | Polyethylene glycol | Warfarin, naproxen, verapamil, lidocaine, progesterone, cyclosporine | [62,63,64] |
Liposomes | Phosphatidylcholine, cholesterol, soybean lecithin | Resveratrol, calcitonin, efavirenz | [65,66,67,68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bácskay, I.; Arany, P.; Fehér, P.; Józsa, L.; Vasvári, G.; Nemes, D.; Pető, Á.; Kósa, D.; Haimhoffer, Á.; Ujhelyi, Z.; et al. Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review. Pharmaceutics 2025, 17, 148. https://doi.org/10.3390/pharmaceutics17020148
Bácskay I, Arany P, Fehér P, Józsa L, Vasvári G, Nemes D, Pető Á, Kósa D, Haimhoffer Á, Ujhelyi Z, et al. Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review. Pharmaceutics. 2025; 17(2):148. https://doi.org/10.3390/pharmaceutics17020148
Chicago/Turabian StyleBácskay, Ildikó, Petra Arany, Pálma Fehér, Liza Józsa, Gábor Vasvári, Dániel Nemes, Ágota Pető, Dóra Kósa, Ádám Haimhoffer, Zoltán Ujhelyi, and et al. 2025. "Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review" Pharmaceutics 17, no. 2: 148. https://doi.org/10.3390/pharmaceutics17020148
APA StyleBácskay, I., Arany, P., Fehér, P., Józsa, L., Vasvári, G., Nemes, D., Pető, Á., Kósa, D., Haimhoffer, Á., Ujhelyi, Z., & Sinka, D. (2025). Bioavailability Enhancement and Formulation Technologies of Oral Mucosal Dosage Forms: A Review. Pharmaceutics, 17(2), 148. https://doi.org/10.3390/pharmaceutics17020148