User Acceptance of Smart Watch for Medical Purposes: An Empirical Study
Abstract
:1. Introduction
2. Literature Review
3. The Adopted Model and Hypotheses Development
3.1. Content Richness
3.2. Personal Innovativeness
3.3. TAM Model
4. Research Methodology
4.1. Data Collection
4.2. Students’ Personal Information/Demographic Data
4.3. Study Instrument
4.4. Pilot Study of the Questionnaire
4.5. Survey Structure
- The foremost section contains the personal data of the participants.
- The next section contains the two items of basic questions about the adoption of smartwatches.
- The third section contains eighteen items related to Perceived Ease of Use, Perceived Usefulness, Content Richness (Relevance, Timeliness, and Sufficiency), and Personal Innovativeness.
5. Findings and Discussion
5.1. Data Analysis
5.2. Convergent Validity
5.3. Discriminant Validity
5.4. Hypotheses Testing Using PLS-SEM
6. Discussion
6.1. Practical Implication in the Medical Field
6.2. Managerial Implication in the Medical Field
6.3. Limitations of the Study
6.4. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niknejad, N.; Ismail, W.B.; Mardani, A.; Liao, H.; Ghani, I. A comprehensive overview of smart wearables: The state of the art literature, recent advances, and future challenges. Eng. Appl. Artif. Intell. 2020, 90, 103529. [Google Scholar] [CrossRef]
- Talukder, M.S.; Chiong, R.; Bao, Y.; Malik, B.H. Acceptance and use predictors of fitness wearable technology and intention to recommend. Ind. Manag. Data Syst. 2019, 119, 170–188. [Google Scholar] [CrossRef]
- AlQudah, A.A.; Salloum, S.A.; Shaalan, K. The Role of Technology Acceptance in Healthcare to Mitigate COVID-19 Outbreak. Emerg. Technol. Dur. Era COVID-19 Pandemic 2021, 348, 223. [Google Scholar]
- Al Mansoori, S.; Almansoori, A.; Alshamsi, M.; Salloum, S.A.; Shaalan, K. Suspicious Activity Detection of Twitter and Facebook using Sentimental Analysis. TEM J. 2020, 4, 1313–1319. [Google Scholar] [CrossRef]
- Lyons, K. What can a dumb watch teach a smartwatch? Informing the design of smartwatches. In Proceedings of the 2015 ACM international symposium on wearable computers, Osaka, Japan, 9–11 September 2015; pp. 3–10. [Google Scholar]
- Xu, C.; Pathak, P.H.; Mohapatra, P. Finger-writing with smartwatch: A case for finger and hand gesture recognition using smartwatch. In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 12–13 February 2015; pp. 9–14. [Google Scholar]
- Lee, B.-G.; Lee, B.-L.; Chung, W.-Y. Wristband-type driver vigilance monitoring system using smartwatch. IEEE Sens. J. 2015, 15, 5624–5633. [Google Scholar] [CrossRef]
- Alghizzawi, M.; Ghani, M.A.; Som, A.P.M.; Ahmad, M.F.; Amin, A.; Bakar, N.A.; Salloum, S.A.; Habes, M. The Impact of Smartphone Adoption on Marketing Therapeutic Tourist Sites in Jordan. Int. J. Eng. Technol. 2018, 7, 91–96. [Google Scholar] [CrossRef]
- King, C.E.; Sarrafzadeh, M. A survey of smartwatches in remote health monitoring. J. Healthc. Inform. Res. 2018, 2, 1–24. [Google Scholar] [CrossRef]
- Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Schüssler-Fiorenza Rose, S.M.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S. Digital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 2017, 15, e2001402. [Google Scholar] [CrossRef]
- Glowacki, E.M.; Zhu, Y.; Hunt, E.; Magsamen-Conrad, K.; Bernhardt, J.M. Facilitators and barriers to smartwatch use among individuals with chronic diseases: A qualitative study. Available online: https://www.mccombs.utexas.edu/~/media/files/msb/centers/healthcareinitiativeresponsive/2016%20symposium/glowacki_facilitators%20and%20barriers%20to%20smartwatch%20use.pdf (accessed on 12 May 2021).
- Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 2016, 63, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Årsand, E.; Muzny, M.; Bradway, M.; Muzik, J.; Hartvigsen, G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diabetes Sci. Technol. 2015, 9, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.H.; Rivera, C.C. SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 2018, 18, 3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Kim, K.J.; Shin, D.-H. An acceptance model for smart watches. Internet Res. 2015, 25, 527–541. [Google Scholar] [CrossRef]
- Jeong, S.C.; Kim, S.-H.; Park, J.Y.; Choi, B. Domain-specific innovativeness and new product adoption: A case of wearable devices. Telemat. Inform. 2017, 34, 399–412. [Google Scholar] [CrossRef]
- Hsiao, K.-L. What drives smartwatch adoption intention? Comparing Apple and non-Apple watches. Libr. Hi Tech 2017, 35, 186–206. [Google Scholar] [CrossRef]
- Chuah, S.H.-W.; Rauschnabel, P.A.; Krey, N.; Nguyen, B.; Ramayah, T.; Lade, S. Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Comput. Hum. Behav. 2016, 65, 276–284. [Google Scholar] [CrossRef]
- Park, E. User acceptance of smart wearable devices: An expectation-confirmation model approach. Telemat. Inform. 2020, 47, 101318. [Google Scholar] [CrossRef]
- Al-Emran, M.; Al-Maroof, R.; Al-Sharafi, M.A.; Arpaci, I. What impacts learning with wearables? An integrated theoretical model. Interact. Learn. Environ. 2020, 1–21. [Google Scholar] [CrossRef]
- Simon, B. Wissensmedien im Bildungssektor. Eine Akzeptanzuntersuchung an Hochschulen. Ph.D. Thesis, Wirtschaftsuniversität Wien, Wien, Austria, 2001. [Google Scholar]
- Mathieson, K. Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Dillon, A.; Morris, M.G. User Acceptance of New Information Technology: Theories and Models; Information Today: Medford, NJ, USA, 1996. [Google Scholar]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Yu-Huei, C.; Ja-Shen, C.; Ming-Chao, W. Why Do Older Adults Use Wearable Devices: A Case Study Adopting the Senior Technology Acceptance Model (STAM). In Proceedings of the 2019 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, 25–29 August 2019; pp. 1–8. [Google Scholar]
- Dutot, V.; Bhatiasevi, V.; Bellallahom, N. Applying the technology acceptance model in a three-countries study of smartwatch adoption. J. High Technol. Manag. Res. 2019, 30, 1–14. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güler, M. Smart watch evaluation with integrated hesitant fuzzy linguistic SAW-ARAS technique. Measurement 2020, 153, 107353. [Google Scholar] [CrossRef]
- Baudier, P.; Ammi, C.; Wamba, S.F. Differing perceptions of the Smartwatch by users within developed countries. J. Glob. Inf. Manag. 2020, 28, 1–20. [Google Scholar] [CrossRef]
- Jeong, M.; Park, K.; Kim, K. A survey of what customers want in smartwatch brand applications. Int. J. Mob. Commun. 2020, 18, 540–558. [Google Scholar] [CrossRef]
- Kranthi, A.K.; Ahmed, K.A.A. Determinants of smartwatch adoption among IT professionals-an extended UTAUT2 model for smartwatch enterprise. Int. J. Enterp. Netw. Manag. 2018, 9, 294–316. [Google Scholar]
- Choe, M.-J.; Noh, G.-Y. Combined Model of Technology Acceptance and Innovation Diffusion Theory for Adoption of Smartwatch. Int. J. Contents 2018, 14, 32–38. [Google Scholar]
- Kim, K.J. Round or square? How screen shape affects utilitarian and hedonic motivations for smartwatch adoption. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 733–739. [Google Scholar] [CrossRef]
- Hong, J.-C.; Lin, P.-H.; Hsieh, P.-C. The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Comput. Hum. Behav. 2017, 67, 264–272. [Google Scholar] [CrossRef]
- Jung, Y.; Perez-Mira, B.; Wiley-Patton, S. Consumer adoption of mobile TV: Examining psychological flow and media content. Comput. Human Behav. 2009, 25, 123–129. [Google Scholar] [CrossRef]
- De Wulf, K.; Schillewaert, N.; Muylle, S.; Rangarajan, D. The role of pleasure in web site success. Inf. Manag. 2006, 43, 434–446. [Google Scholar] [CrossRef]
- Doll, W.J.; Torkzadeh, G. The measurement of end-user computing satisfaction. MIS Q. 1988, 15, 259–274. [Google Scholar] [CrossRef]
- Eiriksdottir, E.; Catrambone, R. Procedural instructions, principles, and examples: How to structure instructions for procedural tasks to enhance performance, learning, and transfer. Hum. Factors 2011, 53, 749–770. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Roman, R.; Lee, S.; Chung, J.E. User acceptance of a digital library system in developing countries: An application of the Technology Acceptance Model. Int. J. Inf. Manag. 2009, 29, 196–209. [Google Scholar] [CrossRef]
- Lee, Y.-C. An empirical investigation into factors influencing the adoption of an e-learning system. Online Inf. Rev. 2006, 30, 517–541. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Son, H.; Kim, C. Investigating the determinants of construction professionals’ acceptance of web-based training: An extension of the technology acceptance model. Autom. Constr. 2012, 22, 377–386. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Lewis, W.; Agarwal, R.; Sambamurthy, V. Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS Q. 2003, 27, 657–678. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Yao, J.E.; Yu, C.-S. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strateg. Inf. Syst. 2005, 14, 245–268. [Google Scholar] [CrossRef]
- Serenko, A. A model of user adoption of interface agents for email notification. Interact. Comput. 2008, 20, 461–472. [Google Scholar] [CrossRef]
- Bhatti, T. Exploring factors infuencing the adoption of mobile commerce. J. Internet Bank. Commer. 2007, 12, 1–13. [Google Scholar]
- Tan, G.W.-H.; Ooi, K.-B.; Leong, L.-Y.; Lin, B. Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-Neural Networks approach. Comput. Hum. Behav. 2014, 36, 198–213. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Huang, T.-Y. High speed rail passengers’ mobile ticketing adoption. Transp. Res. Part C Emerg. Technol. 2013, 30, 143–160. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Salloum, S.A. An Integrated Model of Continuous Intention to Use of Google Classroom. In Recent Advances in Intelligent Systems and Smart Applications; Al-Emran, M., Shaalan, K., Hassanien, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 295. [Google Scholar]
- Al-Maroof, R.A.; Arpaci, I.; Al-Emran, M.; Salloum, S.A.; Shaalan, K. Examining the Acceptance of WhatsApp Stickers Through Machine Learning Algorithms. In Recent Advances in Intelligent Systems and Smart Applications; Al-Emran, M., Shaalan, K., Hassanien, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 295. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manage. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Aburayya, A.; Alshurideh, M.; Al Marzouqi, A.; Al Diabat, O.; Alfarsi, A.; Suson, R.; Salloum, S.A.; Alawadhi, D.; Alzarouni, A. Critical success factors affecting the implementation of tqm in public hospitals: A case study in UAE Hospitals. Syst. Rev. Pharm. 2020, 11, 230–242. [Google Scholar]
- Terziovski, M. Quality management practices and their relationship with customer satisfaction and productivity improvement. Manag. Res. News 2006, 29, 414–424. [Google Scholar] [CrossRef]
- Aburayya, A.; Alshurideh, M.; Albqaeen, A.; Alawadhi, D.; Ayadeh, I. An investigation of factors affecting patients waiting time in primary health care centers: An assessment study in Dubai. Manag. Sci. Lett. 2020, 10, 1265–1276. [Google Scholar] [CrossRef]
- Samat, N.; Ramayah, T.; Saad, N.M. TQM practices, service quality, and market orientation. Manag. Res. News 2006, 29, 713–728. [Google Scholar] [CrossRef]
- Sit, W.; Ooi, K.; Lin, B.; Chong, A.Y. TQM and customer satisfaction in Malaysia’s service sector. Ind. Manag. Data Syst. 2009, 109, 957–975. [Google Scholar] [CrossRef] [Green Version]
- Easterby-Smith, M.; Thorpe, R.; Jackson, P.R. Management Research; Sage: Newcastle upon Tyne, UK, 2012; ISBN 1446260267. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Chuan, C.L.; Penyelidikan, J. Sample size estimation using Krejcie and Morgan and Cohen statistical power analysis: A comparison. J. Penyelid. IPBL 2006, 7, 78–86. [Google Scholar]
- Al-Emran, M.; Salloum, S.A. Students’ Attitudes Towards the Use of Mobile Technologies in e-Evaluation. Int. J. Interact. Mob. Technol. 2017, 11, 195–202. [Google Scholar] [CrossRef]
- Rai, R.S.; Selnes, F. Conceptualizing task-technology fit and the effect on adoption–A case study of a digital textbook service. Inf. Manag. 2019, 56, 103161. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-M.; Huang, Y.-M.; Huang, S.-H.; Lin, Y.-T. A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Comput. Educ. 2012, 58, 273–282. [Google Scholar] [CrossRef]
- Larsen, T.J.; Sørebø, A.M.; Sørebø, Ø. The role of task-technology fit as users’ motivation to continue information system use. Comput. Human Behav. 2009, 25, 778–784. [Google Scholar] [CrossRef]
- Mun, Y.Y.; Jackson, J.D.; Park, J.S.; Probst, J.C. Understanding information technology acceptance by individual professionals: Toward an integrative view. Inf. Manag. 2006, 43, 350–363. [Google Scholar]
- Salloum, S.A.; Al-Emran, M.; Shaalan, K.; Tarhini, A. Factors affecting the E-learning acceptance: A case study from UAE. Educ. Inf. Technol. 2019, 24, 509–530. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS: Bönningstedt, Germany, 2015. [Google Scholar]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Al-Skaf, S.; Youssef, E.; Habes, M.; Alhumaid, K.; Salloum, S.A. The Acceptance of Social Media Sites: An Empirical Study Using PLS-SEM and ML Approaches. In Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2021; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1339, pp. 548–558. [Google Scholar]
- Goodhue, D.L.; Lewis, W.; Thompson, R. Does PLS have adavantages for small sample size or non-normal data? MIS Q. 2012, 36, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Barclay, D.; Higgins, C.; Thompson, R. The Partial Least Squares (PLS) Approach to Casual Modeling: Personal Computer Adoption Ans Use as an Illustration. Technol. Stud. 1995, 2, 285–309. [Google Scholar]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1994; ISBN 0070474656. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015; ISBN 1462523358. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models With Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Al-Maroof, R.S.; Salloum, S.A.; Hassanien, A.E.; Shaalan, K. Fear from COVID-19 and technology adoption: The impact of Google Meet during Coronavirus pandemic. Interact. Learn. Environ. 2020. [Google Scholar] [CrossRef]
- Kurdi, B.A.; Alshurideh, M.; Salloum, S.A.; Obeidat, Z.M.; Al-dweeri, R.M. An empirical investigation into examination of factors influencing university students’ behavior towards elearning acceptance using SEM approach. Int. J. Interact. Mob. Technol. 2020, 14, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Alshurideh, M.; Salloum, S.A.; Al Kurdi, B.; Monem, A.A.; Shaalan, K. Understanding the quality determinants that influence the intention to use the mobile learning platforms: A practical study. Int. J. Interact. Mob. Technol. 2019, 13, 157–183. [Google Scholar] [CrossRef]
- Alghizzawi, M.; Habes, M.; Salloum, S.A.; Ghani, M.A.; Mhamdi, C.; Shaalan, K. The effect of social media usage on students’e-learning acceptance in higher education: A case study from the United Arab Emirates. Int. J. Inf. Technol. Lang. Stud. 2019, 3, 13–26. [Google Scholar]
- Habes, M.; Salloum, S.A.; Alghizzawi, M.; Alshibly, M.S. The role of modern media technology in improving collaborative learning of students in Jordanian universities. Int. J. Inf. Technol. Lang. Stud. 2018, 2, 71–82. [Google Scholar]
- Alghizzawi, M.; Salloum, S.A.; Habes, M. The role of social media in tourism marketing in Jordan. Int. J. Inf. Technol. Lang. Stud. 2018, 2, 59–70. [Google Scholar]
- Salloum, S.A.; Mhamdi, C.; Al Kurdi, B.; Shaalan, K. Factors affecting the Adoption and Meaningful Use of Social Media: A Structural Equation Modeling Approach. Int. J. Inf. Technol. Lang. Stud. 2018, 2, 96–109. [Google Scholar]
- Salloum, S.A.; Al-Emra, M.; Habes, M.; Alghizzawi, M. Understanding the Impact of Social Media Practices on E-Learning Systems Acceptance; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Salloum, S.A.; Shaalan, K. Adoption of E-Book for University Students; Springer: Berlin/Heidelberg, Germany, 2019; Volume 845, ISBN 9783319990095. [Google Scholar]
- Saeed Al-Maroof, R.; Alhumaid, K.; Salloum, S. The Continuous Intention to Use E-Learning, from Two Different Perspectives. Educ. Sci. 2021, 11, 6. [Google Scholar] [CrossRef]
- Zainal, A.Y.; Yousuf, H.; Salloum, S.A. Dimensions of agility capabilities organizational competitiveness in sustaining. In Joint European-US Workshop on Applications of Invariance in Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1153, pp. 762–772. [Google Scholar]
- Habes, M.; Alghizzawi, M.; Ali, S.; SalihAlnaser, A.; Salloum, S.A. The Relation among Marketing ads, via Digital Media and mitigate (COVID-19) pandemic in Jordan. Int. J. Adv. Sci. 2020, 29, 2326–12348. [Google Scholar]
- Alhashmi, S.F.S.; Alshurideh, M.; Al Kurdi, B.; Salloum, S.A.; Alhashmi, S.F.S.; Alshurideh, M.; Al Kurdi, B.; Salloum, S.A. A Systematic Review of the Factors Affecting the Artificial Intelligence Implementation in the Health Care Sector. In Joint European-US Workshop on Applications of Invariance in Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 37–49. [Google Scholar]
- Alhashmi, S.F.S.; Salloum, S.A.; Abdallah, S. Critical Success Factors for Implementing Artificial Intelligence (AI) Projects in Dubai Government United Arab Emirates (UAE) Health Sector: Applying the Extended Technology Acceptance Model (TAM). In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, Cairo, Egypt, 26–28 October 2019; pp. 393–405. [Google Scholar]
- Salloum, S.A.; Maqableh, W.; Mhamdi, C.; Al Kurdi, B.; Shaalan, K. Studying the Social Media Adoption by university students in the United Arab Emirates. Int. J. Inf. Technol. Lang. Stud. 2018, 2, 83–95. [Google Scholar]
- Alshurideh, M.; Al Kurdi, B.; Salloum, S. Examining the Main Mobile Learning System Drivers’ Effects: A Mix Empirical Examination of Both the Expectation-Confirmation Model (ECM) and the Technology Acceptance Model (TAM). In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, Cairo, Egypt, 26–28 October 2019; pp. 406–417. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016; ISBN 1483377466. [Google Scholar]
- Senapathi, M.; Srinivasan, A. An empirical investigation of the factors affecting agile usage. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 12–14 May 2014; p. 10. [Google Scholar]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Rhein, F.E. B2B Innovation Adoption and Diffusion. In The Dynamics of Green Innovation in B2B Industries; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–56. [Google Scholar]
- Wibowo, A.; Chen, S.-C.; Wiangin, U.; Ma, Y.; Ruangkanjanases, A. Customer Behavior as an Outcome of Social Media Marketing: The Role of Social Media Marketing Activity and Customer Experience. Sustainability 2021, 13, 189. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, C.; Tondeur, J. Using micro-lectures in small private online courses: What do we learn from students’ behavioural intentions? Technol. Pedagog. Educ. 2020, 1–15. [Google Scholar] [CrossRef]
- Jimenez, I.A.C.; García, L.C.C.; Violante, M.G.; Marcolin, F.; Vezzetti, E. Commonly Used External TAM Variables in e-Learning, Agriculture and Virtual Reality Applications. Futur. Internet 2021, 13, 7. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, X.; Rai, L.; Du, Y. Mobile Payment: The Next Frontier of Payment Systems?-An Empirical Study Based on Push-Pull-Mooring Framework. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 155–169. [Google Scholar] [CrossRef]
- Saprikis, V.; Avlogiaris, G.; Katarachia, A. Determinants of the Intention to Adopt Mobile Augmented Reality Apps in Shopping Malls among University Students. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 491–512. [Google Scholar] [CrossRef]
- Alfadda, H.A.; Mahdi, H.S. Measuring Students’ Use of Zoom Application in Language Course Based on the Technology Acceptance Model (TAM). J. Psycholinguist. Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Ozkan-Yildirim, S.; Pancar, T. Smart Wearable Technology for Health Tracking: What Are the Factors that Affect Their Use. In IoT in Healthcare and Ambient Assisted Living; Springer: Berlin/Heidelberg, Germany, 2021; pp. 165–199. [Google Scholar]
- Tung, F.-C.; Chang, S.-C.; Chou, C.-M. An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. Int. J. Med. Inform. 2008, 77, 324–335. [Google Scholar] [CrossRef]
- Zaman, N.; Goldberg, D.M.; Kelly, S.; Russell, R.S.; Drye, S.L. The Relationship between Nurses’ Training and Perceptions of Electronic Documentation Systems. Nurs. Rep. 2021, 11, 12–27. [Google Scholar] [CrossRef]
- Ghosh, A.; Ahmed, S. Shared Medical Decision-Making and Patient-Centered Collaboration. Mod. Tech. Biosens. 2021, 327, 215–228. [Google Scholar]
- Can, Y.S.; Ersoy, C. Privacy-preserving Federated Deep Learning for Wearable IoT-based Biomedical Monitoring. ACM Trans. Internet Technol. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A review of wearable technology in medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Sultan, N. Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. Int. J. Inf. Manag. 2015, 35, 521–526. [Google Scholar] [CrossRef]
- Salmon, J.W.; Thompson, S.L. Big Data: Information Technology as Control over the Profession of Medicine. In The Corporatization of American Health Care; Springer: Berlin/Heidelberg, Germany, 2021; pp. 181–254. [Google Scholar]
- Al-Maroof, R.S.; Alfaisal, A.M.; Salloum, S.A. Google glass adoption in the educational environment: A case study in the Gulf area. Educ. Inf. Technol. 2021, 26, 2477–2500. [Google Scholar] [CrossRef]
Author(s) | Country or Place | Theory | Method | Samples | Smart Watch External Factors | Study Type |
---|---|---|---|---|---|---|
[17] | South Korea | TAM | Survey | Participants who owns smartwatch | Availability Mobility | Adoption |
[20] | Malaysia | TAM | Paper-based Survey | University Students | Visibility Attitude | Adoption |
[18] | Korea | Product-possessing innovativeness (PPI) and information-possessing innovativeness (IPI). | Survey | University Students | relative advantage, social image, aesthetics, and novelty | Adoption |
[19] | Taiwan | Task-Technology Fit, Innovation Diffusion | an online survey | University Students | Relative advantage Complexity Design aesthetics | Adoption |
[27] | Taiwan | Senior Technology Acceptance Model | Interview | Adults and their children | Social Influence Users Context | Adoption |
[28] | France, Thailand and China | TAM | Survey | University Students | Trust Availability Mobility | Adoption |
[29] | Turkey | SAW-ARAS approach in the hesitant fuzzy environment, | Survey | Research paper | N/A | Papers on Acceptance and Adoption |
[30] | Developed Countries: UK, USA, Germany, and France | TAM | Survey | Consumers | Perceived Connectivity Age and gender-differences | Acceptance |
[31] | South Korea | TAM | Survey | Hongik University Students | Motivation Innovative Resistance | Acceptance |
[21] | Not Applicable | TAM | Online Survey | Smart Wearable devices users | Satisfaction, enjoyment, usefulness, flow state, and cost. | Acceptance |
[22] | Arab World | TAM & TBP | Online Survey | Students | Mobility and Trust | Acceptance |
[32] | India | UTAUT2 | Survey | Consumers | Innovativeness Self-efficacy, Social media influence, aesthetics | Adoption |
[33] | South Korea | IDT & TAM | Online-Survey | Company Workers | N/A | Adoption |
[34] | Asia | TAM | Survey | East Asian university | Subcultural appeal Attractiveness | Adoption |
[35] | Taiwan | TAM | Survey | Students at University | Innovativeness Experiential Value | Continuous intention |
Criterion | Factor | Frequency | Percentage |
---|---|---|---|
Gender | Female | 201 | 62% |
Male | 124 | 38% | |
Age | Between 18 to 29 | 36 | 11% |
Between 30 to 39 | 211 | 65% | |
Between 40 to 49 | 72 | 22% | |
Between 50 to 59 | 6 | 2% | |
Education qualification | Diploma | 3 | 1% |
Bachelor | 236 | 73% | |
Master | 48 | 14% | |
Doctorate | 38 | 12% | |
Experience | 1–5 | 26 | 8% |
5–10 | 88 | 27% | |
10–15 | 156 | 48% | |
15–20 | 25 | 8% | |
20+ | 30 | 9% | |
Type of Sector | Federal/Government | 310 | 95% |
Private | 15 | 5% |
Constructs | Items | Instrument | Source |
---|---|---|---|
Adoption of SW | ASW1 | Using SW is recommended within medical environment. | [52,62,63] |
ASW2 | Using SW with my patients and peers develops helps me in my career. | ||
Perceived Ease of Use | PEOU1 | I think that SW is easy to use among doctors and patients. | [64,65] |
PEOU2 | I think SW can replace other technology because it is easy to use. | ||
PEOU3 | I think SW is a complicated device and need mental effort. | ||
Perceived Usefulness | PU1 | I think that SW helps in developing my technical abilities. | [64,65] |
PU2 | I think that SW improves my desire to get new information regularly. | ||
PU3 | I think that SW is a good source of medical information for both doctors and patients. | ||
PU4 | I think that using SW makes it difficult to get an immediate type of information | ||
Relevance | REL1 | SW offers sufficient content that I need. | [37] |
REL2 | SW has very useful information for me as a doctor or a patient. | ||
REL3 | SW is not a source of sufficient content that exactly satisfies my needs. | ||
Sufficiency | SUF1 | SW has sufficient medical information. | [37] |
SUF2 | SW has provided me with satisfactory information whenever I need it. | ||
SUF3 | SW is unable to provide me with the information I need. | ||
Timeliness | TIM1 | SW has up-to-date medical information that I need. | [37] |
TIM2 | SW is unable to support me with up-to-date-information. | ||
Personal Innovativeness | PER1 | Whenever there is new technology, I am ready to use it. | [66] |
PER2 | I am the first one to use new technology among my group of doctors | ||
PER3 | I am usually hesitant to use new technology. |
Constructs | Cronbach’s Alpha |
---|---|
ASW | 0.883 |
PEOU | 0.801 |
PU | 0.848 |
CONT | |
REL | 0.707 |
TIM | 0.765 |
SUF | 0.869 |
PER | 0.831 |
Constructs | Items | Factor Loading | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Adoption of SW | ASW1 | 0.857 | 0.848 | 0.859 | 0.658 |
ASW2 | 0.851 | ||||
Perceived ease of use | PEOU1 | 0.849 | 0.899 | 0.833 | 0.688 |
PEOU2 | 0.800 | ||||
PEOU3 | 0.786 | ||||
Perceived usefulness | PU1 | 0.881 | 0.833 | 0.903 | 0.779 |
PU2 | 0.881 | ||||
PU3 | 0.844 | ||||
PU4 | 0.859 | ||||
Relevance | REL1 | 0.843 | 0.812 | 0.789 | 0.703 |
REL2 | 0.859 | ||||
REL3 | 0.806 | ||||
Timeliness | TIM1 | 0.794 | 0.840 | 0.828 | 0.799 |
TIM1 | 0.822 | ||||
Sufficiency | SUF1 | 0.835 | 0.820 | 0.796 | 0.760 |
SUF2 | 0.874 | ||||
SUF3 | 0.824 | ||||
Personal Innovativeness | PER1 | 0.897 | 0.876 | 0.861 | 0.782 |
PER1 | 0.821 | ||||
PER1 | 0.847 |
ASW | PEOU | PU | REL | TIM | SUF | PER | |
---|---|---|---|---|---|---|---|
ASW | 0.844 | ||||||
PEOU | 0.203 | 0.849 | |||||
PU | 0.124 | 0.668 | 0.829 | ||||
REL | 0.205 | 0.288 | 0.330 | 0.853 | |||
TIM | 0.207 | 0.278 | 0.526 | 0.890 | 0.836 | ||
SUF | 0.203 | 0.296 | 0.636 | 0.896 | 0.424 | 0.861 | |
PER | 0.200 | 0.281 | 0.652 | 0.895 | 0.523 | 0.419 | 0.829 |
ASW | PEOU | PU | REL | TIM | SUF | PER | |
---|---|---|---|---|---|---|---|
ASW | |||||||
PEOU | 0.445 | ||||||
PU | 0.266 | 0.368 | |||||
REL | 0.449 | 0.427 | 0.359 | ||||
TIM | 0.453 | 0.523 | 0.363 | 0.505 | |||
SUF | 0.477 | 0.602 | 0.399 | 0.591 | 0.452 | ||
PER | 0.526 | 0.521 | 0.448 | 0.600 | 0.498 | 0.510 |
H | Relationship | Path | t-Value | p-Value | Direction | Decision |
---|---|---|---|---|---|---|
H1 | SUF-> PU | 0.515 | 20.349 | 0.002 | Positive | Supported ** |
H2 | TIM-> PU | 0.382 | 18.238 | 0.000 | Positive | Supported ** |
H3 | REL-> PU | 0.478 | 18.608 | 0.000 | Positive | Supported ** |
H4 | PER-> PU | 0.281 | 4.125 | 0.038 | Positive | Supported * |
H5 | PER-> PEOU | 0.329 | 16.288 | 0.000 | Positive | Supported ** |
H6 | PU-> ASW | 0.668 | 12.433 | 0.004 | Positive | Supported ** |
H7 | PEOU-> ASW | 0.420 | 3.275 | 0.043 | Positive | Supported * |
Constructs | R2 | Results |
---|---|---|
ASW | 0.756 | High |
PEOU | 0.828 | High |
PU | 0.773 | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Maroof, R.S.; Alhumaid, K.; Alhamad, A.Q.; Aburayya, A.; Salloum, S. User Acceptance of Smart Watch for Medical Purposes: An Empirical Study. Future Internet 2021, 13, 127. https://doi.org/10.3390/fi13050127
Al-Maroof RS, Alhumaid K, Alhamad AQ, Aburayya A, Salloum S. User Acceptance of Smart Watch for Medical Purposes: An Empirical Study. Future Internet. 2021; 13(5):127. https://doi.org/10.3390/fi13050127
Chicago/Turabian StyleAl-Maroof, Rana Saeed, Khadija Alhumaid, Ahmad Qasim Alhamad, Ahmad Aburayya, and Said Salloum. 2021. "User Acceptance of Smart Watch for Medical Purposes: An Empirical Study" Future Internet 13, no. 5: 127. https://doi.org/10.3390/fi13050127
APA StyleAl-Maroof, R. S., Alhumaid, K., Alhamad, A. Q., Aburayya, A., & Salloum, S. (2021). User Acceptance of Smart Watch for Medical Purposes: An Empirical Study. Future Internet, 13(5), 127. https://doi.org/10.3390/fi13050127