Digital Manufacturing Challenges Education—SmartLab Concept as a Concrete Example in Tackling These Challenges
Abstract
:1. Introduction
2. Literature Study and Research Design
2.1. Literature Study
2.2. SmartLab Concept
2.3. Research Design
3. Case Study: SmartLab Concept and 3D Printing Environment
3.1. Main Functions of SmartLab Concept
3.2. Main Functions of the 3D Printing Environment
4. Results
4.1. Increasing Awareness and Knowledge
4.2. Renewing of Education
- Engineering design;
- Product design principles;
- Material knowledge;
- Combining the principles of traditional and digital manufacturing;
- Programming the digital assembly functions;
- Understanding from automated manufacturing and process planning.
5. Discussion
5.1. Actors Involved the SmartLab
5.2. Technical Challenges and Future Studies
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parviainen, P.; Tihinen, M.; Kääriäinen, J.; Teppola, S. Tackling the digitalization challenge: How to benefit from digitalization in practice. Int. J. Inf. Syst. Proj. Manag. 2017, 5, 63–77. [Google Scholar]
- Thoben, K.D.; Wiesner, S.; Wuest, T. “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. Int. J. Autom. Technol. 2017, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Brennen, S.; Kreiss, D. Digitalization and Digitization. Culture Digitally. 8 September 2014. Available online: https://culturedigitally.org/2014/09/digitalization-and-digitization/ (accessed on 12 June 2021).
- Ghobakhloo, M.; Iranmanesh, M. Digital transformation success under Industry 4.0: A strategic guideline for manufacturing SMEs. J. Manuf. Technol. Manag. 2021. [Google Scholar] [CrossRef]
- Gerrikagoitia, J.K.; Unamuno, G.; Urkia, E.; Serna, A. Digital manufacturing platforms in the industry 4.0 from private and public perspectives. Appl. Sci. 2019, 9, 2934. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, M.; Cadavid, M.N.; Kenley, C.R.; Deshmukh, A.V. Reference architectures for smart manufacturing: A critical review. J. Manuf. Syst. 2018, 49, 215–225. [Google Scholar] [CrossRef]
- Ailisto, H.; Komi, M.; Parviainen, P.; Tanner, H.; Tuikka, T.; Valtanen, K. The Industrial Internet in Finland: On Route to Success? VTT Technology: 278; Tihinen, M., Kääriäinen, J., Eds.; VTT: Espoo, Finland, 2016; ISBN 978-951-38-8484-0. Available online: http://www.vtt.fi/inf/pdf/technology/2016/T278.pdf (accessed on 24 April 2021).
- Kagermann, H.; Wahlster, W.; Helbig, J. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0; Final Report of the Industrie 4.0 Working Group. Forschungsunion, acatech: Germany, 2013. Available online: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/ (accessed on 26 July 2021).
- Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Do Noh, S. Smart manufacturing: Past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 111–128. [Google Scholar] [CrossRef]
- Terry, S.; Lu, H.; Fidan, I.; Zhang, Y.; Tantawi, K.; Guo, T.; Asiabanpour, B. The Influence of Smart Manufacturing towards Energy Conservation: A Review. Technologies 2020, 8, 31. [Google Scholar] [CrossRef]
- Klitou, D.; Conrads, J.; Rasmussen, M.; Probsst, L.; Pedersen, B. Key Lessons from National Industry 4.0 Policy Initiatives in Europe; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Won, J.Y.; Park, M.J. Smart factory adoption in small and medium-sized enterprises: Empirical evidence of manufacturing industry in Korea. Technol. Forecast. Soc. Chang. 2020, 157, 120117. [Google Scholar] [CrossRef]
- Madsen, O.; Møller, C. The AAU smart production laboratory for teaching and research in emerging digital manufacturing technologies. Procedia Manuf. 2017, 9, 106–112. [Google Scholar] [CrossRef]
- Mortensen, S.T.; Madsen, O. A virtual commissioning learning platform. Procedia Manuf. 2018, 23, 93–98. [Google Scholar] [CrossRef]
- Pikkarainen, A.; Piili, H.; Salminen, A. Introducing novel learning outcomes and process selection model for additive manufacturing education in engineering. Eur. J. Educ. Stud. 2021, 8, 64–88. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies, 3rd ed.; Springer Nature: Cham, Switzerland, 2021; pp. 2–3, 48–49. [Google Scholar]
- Degryse, C. Digitalisation of the Economy and Its Impact on Labour Markets; ETUI Research Paper-Working Paper 2016.02; European Trade Union Institute (ETUI): Brussels, Belgium, 2016. [Google Scholar] [CrossRef] [Green Version]
- Michelsen, K.-E. Industry 4.0 in Retrospect and in Context. Technical, Economic and Societal Effects of Manufacturing 4.0; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 1–14. [Google Scholar]
- Tuptuk, N.; Hailes, S. Security of smart manufacturing systems. J. Manuf. Syst. 2018, 47, 93–106. [Google Scholar] [CrossRef]
- NIST. Smart Manufacturing Operations Planning and Control Program. Gaithersburg: National Institute of Standards and Technology; 2017. Available online: https://www.nist.gov/programs-projects/smart-manufacturing-operations-planning-and-control-program (accessed on 10 May 2021).
- Lee, J.; Bagheri, B.; Jin, C. Introduction to cyber manufacturing. Manuf. Lett. 2016, 8, 11–15. [Google Scholar] [CrossRef] [Green Version]
- ACATECH. Skills for Industrie 4.0: Training Requirements and Solutions. ACATECH Position Paper. 2020. Available online: https://www.acatech.de/publikation/kompetenzen-fuer-industrie-4-0-qualifizierungsbedarfe-und-loesungsansaetze/download-pdf?lang=en_excerpt (accessed on 21 April 2021).
- Akyazi, T.; Goti, A.; Oyarbide-Zubillaga, A.; Alberdi, E.; Carballedo, R.; Ibeas, R.; Garcia-Bringas, P. Skills Requirements for the European Machine Tool Sector Emerging from Its Digitalization. Metals 2020, 10, 1665. [Google Scholar] [CrossRef]
- Moldovan, L. An Innovative Guide to Work-Based Learning in the Field of Industry 4.0. Proceedings 2020, 63, 3058. [Google Scholar] [CrossRef]
- Ruohomaa, H.; Mäntyneva, M.; Salminen, V. Renewing a university to support smart manufacturing within a region. Digit. Transform. Smart Manuf. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Balyer, A.; Öz, Ö. Academicians’ Views on Digital Transformation in Education. Int. Online J. Educ. Teach. 2018, 5, 809–830. [Google Scholar]
- Bond, M.; Marín, V.I.; Dolch, C.; Bedenlier, S.; Zawacki-Richter, O. Digital transformation in German higher education: Student and teacher perceptions and usage of digital media. Int. J. Educ. Technol. High. Educ. 2018, 15, 48. [Google Scholar] [CrossRef]
- Marks, A.; Maytha, A.A.; Attasi, R.; Elkishk, A.A.; Rezgui, Y. Digital transformation in higher education: Maturity and challenges post COVID-19. In Proceedings of the International Conference on Information Technology & Systems 2021, Península de Santa Elena, Ecuador, 4–6 February 2021; pp. 53–70. [Google Scholar] [CrossRef]
- Schenk, B.; Dolata, M. Facilitating digital transformation through education: A case study in the public administration. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020. [Google Scholar]
- Schmidt, J.T.; Tang, M. Digitalization in Education: Challenges, Trends and Transformative Potential. In Führen und Managen in der Digitalen Transformation: Trends, Best Practices und Herausforderungen; Harwardt, M., Niermann, P.F.-J., Schmutte, A.M., Steuernagel, A., Eds.; Springer Gabler: Wiesbaden, Germany, 2020; pp. 287–312. [Google Scholar] [CrossRef]
- McGuinness, N.; Vlachopoulos, D. Student Experiences of Using Online Material to Support Success in A-Level Economics. Int. J. Emerg. Technol. Learn. 2019, 14, 80–109. [Google Scholar] [CrossRef]
- International Society for Technology Education. ISTE Standards for Students. ISTE, 2016. Available online: https://www.iste.org/standards/for-students (accessed on 12 July 2021).
- International Society for Technology Education. ISTE Standards for Educators. ISTE, 2017. Available online: https://www.iste.org/standards/for-educators (accessed on 12 July 2021).
- OECD. Teaching for the Future: Effective Classroom Practices to Transform Education. 2018. Available online: https://doi.org/10.1787/9789264293243-en (accessed on 12 July 2021).
- OECD. The Future of Education and Skills: Education 2030. 2018. Available online: http://www.oecd.org/education/2030/OECD%20Education%202030%20Position%20Paper.pdf (accessed on 12 July 2021).
- OECD. Education in the Digital Age—Healthy and Happy Children. 2020. Available online: https://www.oecd-ilibrary.org/education/education-in-the-digital-age_1209166a-en (accessed on 12 July 2021).
- Kircheim, A.; Dennig, H.-J.; Zumofen, L. Why education and training in the field of additive manufacturing is a necessity—The right way to teach students and professionals. In Proceedings of the International Conference on Additive Manufacturing in Products and Applications AMPA 2017, Zurich, Switzerland, 13–15 September 2017; pp. 329–336. [Google Scholar]
- Assunçao, E.; Silva, E.; Pei, E. Professional training of AM at the European level. In Additive Manufacturing—Developments in Training and Education; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chong, S.; Pan, G.-T.; Chin, J.; Show, P.; Yang, T.; Huang, C.-H. Integration of 3D printing and Industry 4.0 into engineering teaching. Sustainability 2018, 10, 3960. [Google Scholar] [CrossRef] [Green Version]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- ERDF-Project, SmartLab. Available online: https://www.eura2014.fi/rrtiepa/projekti.php?projektikoodi=A73618 (accessed on 3 May 2021).
- ESF-Project, SmartLab. Available online: https://www.eura2014.fi/rrtiepa/projekti.php?projektikoodi=S21419 (accessed on 3 May 2021).
- Yin, R.K. Case Study Research: Design and Methods; Sage Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Järvinen, P. On Research Methods; Tampereen Yliopistopaino Oy: Tampere, Finland, 2012. [Google Scholar]
- Statista. Most Used 3D Printing Technologies Worldwide in 2020. Available online: https://www.statista.com/statistics/560304/worldwide-survey-3d-printing-top-technologies/ (accessed on 24 May 2021).
- Teamcenter® Software. Siemens. Available online: https://www.plm.automation.siemens.com/global/en/products/teamcenter/ (accessed on 19 April 2021).
- Festo CP Lab: System Overview. Available online: https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/cp-lab-basic-modules/cp-lab-system-overview.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC4xODQ3LjUzNzUx (accessed on 19 April 2021).
- Festo Didactic. MES4. Available online: https://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/mes4.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC41ODUuNTM3NjA (accessed on 3 May 2021).
- Pikkarainen, A.; Piili, H.; Salminen, A. Perspectives of mechanical engineering students to learning of additive manufacturing—Learning through multiple technologies. Int. J. Innov. Res. Educ. Sci. 2021, 8, 35–54. [Google Scholar]
- Fumagalli, L.; Macchi, M.; Pozzetti, A.; Taisch, M.; Tavola, G.; Terzi, S. New methodology for smart manufacturing research and education: The lab approach. In Proceedings of the Summer School Francesco Turco, Naples, Italy, 13–15 September 2016; pp. 13–15. [Google Scholar]
- Pikkarainen, A. Development of Learning Methodology of Additive Manufacturing for Mechanical Engineering Students in Higher Education. Ph.D. Thesis, Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland, 2021; 123p. Available online: http://urn.fi/URN:ISBN:978-952-335-678-8 (accessed on 12 July 2021).
- Kim, S.; Shin, Y.; Park, J.; Lee, S.W.; An, K. Exploring the Potential of 3D Printing Technology in Landscape Design Process. Land 2021, 10, 259. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tihinen, M.; Pikkarainen, A.; Joutsenvaara, J. Digital Manufacturing Challenges Education—SmartLab Concept as a Concrete Example in Tackling These Challenges. Future Internet 2021, 13, 192. https://doi.org/10.3390/fi13080192
Tihinen M, Pikkarainen A, Joutsenvaara J. Digital Manufacturing Challenges Education—SmartLab Concept as a Concrete Example in Tackling These Challenges. Future Internet. 2021; 13(8):192. https://doi.org/10.3390/fi13080192
Chicago/Turabian StyleTihinen, Maarit, Ari Pikkarainen, and Jukka Joutsenvaara. 2021. "Digital Manufacturing Challenges Education—SmartLab Concept as a Concrete Example in Tackling These Challenges" Future Internet 13, no. 8: 192. https://doi.org/10.3390/fi13080192
APA StyleTihinen, M., Pikkarainen, A., & Joutsenvaara, J. (2021). Digital Manufacturing Challenges Education—SmartLab Concept as a Concrete Example in Tackling These Challenges. Future Internet, 13(8), 192. https://doi.org/10.3390/fi13080192